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WARNING

These slides are meant to help the teacher during the lecture, they
are not substitute of the book, they may be incorrect and
incomplete.

During the lecture the teacher explains and integrates what is
written in the slides.

Please do not quote.
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Introduction

A linear space (called also a vector space) is a set of objects called
vectors that can be added or multiplied by a scalar. They are
useful for modelling a wide variety of economic phenomena
because n-tuples of numbers may be interpreted in many ways.

Rn is the “most common” vector space we deal to. For example,
x = (x1, x2, ..., xn) ∈ Rn can represent a consumption bundle or a
portfolio allocation over n assets.
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Examples of vectors

Draw the following vectors

I in R2:

(1, 1)

(
−1

2
,

3

2

)
(0, 0) (−2, 4)

I in R3:

(−1, 2,−1) (0, 1, 0)

(
2,

1

2
,

1

2

)
I in R4:

(0, 1, 2, 0) (2, 0, 1, 0)
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Linear Space Definition

Definition
A linear space over a field F is a set X whose elements are called
vectors and two operations are defined:

I addition + : X × X → X
for any pair u, v ∈ X , u + v ∈ X

I multiplication by scalar · : X ×F → X
for α ∈ F and u ∈ X , αu ∈ X

these two operations satisfies some axioms
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Linear Space Definition: Axioms for addition

Definition

I Associative: (u + v) + w = u + (v + w)

I Commutative: u + v = v + u

I identity element: there exists an element 0 such that
u + 0 = u

I Inverse element of addition: for any u ∈ X there exists an
element −u ∈ X such that u + (−u) = 0, this element is
called the addivitive inverse of u or its opposite.
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Linear Space Definition: Axioms for multiplication by a
scalar

Definition

I Associative: α(βu) = (αβ)u

I Distribuitive 1: α(u + v) = αu + αv

I Distribuitive 2: (α + β)u = αu + βu

I if 1 is the Identity element of F , for any u ∈ X , 1u = u

I 0u = 0, for any u ∈ X .
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Addition

We add vectors as we add numbers and matrices, simply adding
corresponding coordinates. Thus, having u = (u1, u2) and
v = (v1, v2) in R2, their sum is

u + v = (u1 + v1, u2 + v2)
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Subtraction

We subtract vectors as we subtract numbers and matrices, simply
subtracting corresponding coordinates. Thus, having u = (u1, u2)
and v = (v1, v2) in R2, their sum is

u− v = (u1 − v1, u2 − v2)
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Scalar multiplication

If we multiply a vector u by a scalar α, we get a vector pointing in
the same direction of u but with length α times the length of u.
Thus, having u = (u1, u2) we get

αu = (αu1, αu2)
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A linear space on dimension n

Let x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) two vectors in a
linear space of dimension n and α a scalar

I addition x + y = (x1 + y1, x2 + y2, ..., xn + yn);

I subtraction x− y = (x1 − y1, x2 − y2, ..., xn − yn);

I multiplication by a scalar αx = (αx1, αx2, ..., αxn);
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Exercises

I Exercize 1 Let x = (1, 2,−1), y = (0, 1, 1) and
z = (−2, 1, 3). Compute the following vectors

x + 3y − z z− 2x 3(x + y)− 4z
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Distance in euclidean spaces

Consider an euclidean space X of dimension n and two points
P = (x1, x2, ..., xn) and Q = (y1, y2, ..., yn) .
We can define the distance between P and Q, which is the length
of the segment PQ:

||PQ|| =
√

(x1 − y1)2 + (x2 − y2)2 + ....+ (xn − yn)2

Note that ||PQ|| is also the length of the vector obtained by
subtracting the vectors x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn):

||x− y|| =
√

(x1 − y1)2 + (x2 − y2)2 + ....+ (xn − yn)2.
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Length

If we take y = 0 we have the distance of x from the origin which is
the length of vector x = (x1, x2, ..., xn)

||x|| =
√

x21 + x22 + ....+ x2n .

If α is a scalar the length of the vector αx will be |α| times the
length of x:

Theorem

||αx|| = |α|||x||

for all α ∈ R and x ∈ Rn.
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Versor

Given a vector v = (v1, v2, ..., vn) we can be interested in having a
vector pointing in the same direction and having length equal 1.
Such a vector is called unit vector or versor and can be obtained
simply dividing v by its length ||x||. Denoting this vector by w we
have

w =
v

||v||
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Example

Given the vector u = (1, 3,−2) in Rn find its corresponding versor
v.
First compute ||u||:

||u|| =
√

12 + 32 + (−2)2 =
√

14

It follows

v =

(
1√
14
,

3√
14
,− 2√

14

)
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Inner Product

Definition
Let u = (u1, ..., un) and v = (v1, ..., vn) be two vectors in Rn. The
euclidean inner product of u and v, written u · v or < u, v > is
the number

u · v = u1v1 + u2v2 + ...+ unvn

Example: If u = (2,−2, 3) and v = (1,−1, 2):

u · v = 2 · 1 +−2 · (−1) + 3 · 2 = 10.
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Inner Product (2)

Theorem
Let u, v and w be arbitrary vectors in Rn and let α be a scalar.
Then,

I u · v = v · u,
I u · (v + w) = u · v + u ·w,

I u · (αv) = α(u · v) = (αu) · v,
I u · u ≥ 0,

I u · u = 0 implies u = 0,

I (u + v) · (u + v) = u · u + 2(u · v) + v · v.
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Inner Product (3)

The euclidean inner product is closely related to the length of a
vector. Since

u · u = u21 + u22 + ...+ u2n and ||u|| =
√
u21 + u22 + ...+ u2n

we have that
||u|| =

√
u · u

and the distance between two vectors u and v can be written

||u− v|| =
√

(u− v) · (u− v).
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Inner Product (4)

Any two vectors u and v in Rn determine a plane, in this plane we
can measure the angle between u and v, suppose it is θ. The inner
product gives a relation between the length of u and v and the
angle θ between them.

Theorem
Let u and v be two vectors in Rn. Let θ be the angle between
them. Then,

u · v = ||u|| ||v|| cos θ.
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Orthogonality

Theorem
the angle between u and v in Rn is

I acute, if u · v > 0,

I obtuse, if u · v < 0,

I right, u · v = 0.

Two vectors u and v in Rn are orthogonal if and only if

u · v = 0
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Triangular Inequality

Theorem
For any two vectors u and v in Rn,

||u + v|| ≤ ||u||+ ||v||.

The theorem says that any side of a triangle is shorter than the
sum of the lengths of the other two sides.
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Norm

Any assignment of a real number to a vector as the euclidean
length || · || : Rn → R is a norm if satisfies this three properties

I ||u|| ≥ 0 and ||u|| = 0 only if u = 0,

I ||ru|| = |r | ||u||,
I ||u + v|| ≤ ||u||+ ||v||.
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Exercises

Exercise 1 Find the length of the following vectors

(1, 2, 3) (−1, 0, 3, 4)

(
1

2
,−2, 0, 1

)

Exercise 2 Find the distance from P = (5, 2) and Q = (3, 3)

Exercise 3 Use vector notation to prove that the diagonals of a
rhombus are orthogonal to each other.

Exercise 4 Prove that in R2, ||(u1, u2)|| = max{|u1|, |u2|} is a
norm.
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Lines

Lines are among the fundamental objects in an Euclidean space. a
line is determined by a point x0 and a direction v. To determine
any point on the line we add scalar multiples of v to x0, we obtain
the parametric representation of the line

x(t) = x0 + tv.
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Example

The parametric representation of a line going through the point
(3, 2) in the direction (1, 2):

x(t) = (x1(t), x2(t)) = (3, 2) + t(1, 2) = (3 + 1 · t, 2 + 2 · t)

it is equivalent to write{
x1(t) = 3 + t
x2(t) = 2 + 2t
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Lines (2)

Another way to determine a line is to identify two points on the
line. Suppose x and y lie on a line r , then r can be seen as the line
going from x in the direction y − x. Hence

r(t) = x + t(y − x) = (1− t)x + ty

A combination of x and y with coefficients summing to 1.
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Non parametric equation

There is another way to identify a lines in the plane R2. Consider a
point P = (x0, y0) and a vector u = (u1, u2). The parametric
equation is {

x(t) = x0 + t u1
y(t) = y0 + t u2

Expliciting t in the first and substituting in the second we get

−u2 x + u1 y = u1y0 − u2x0.

Note that the vector n = (−u2, u1) is orthogonal to u hence,
denoting p = (x , y) and p0 = (x0, y0) we can write the non
parametric equation

n · p = n · p0
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Exercises

Exercise 1 Find the parametric equation of the line through
u = (1, 0, 1) and v = (−1, 2, 1).

Exercise 2 Is the point

 −1
4
−1

 on the line 1
1
1

+ t

 2
−3
2

? If it is, find the value of t.

Exercise 3 Transform the following parameterized equation into
cartesian equation {

x1(t) = 4 + 2t
x2(t) = 2− t
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Planes

A plane is determined by two vectors v and w which points in
different directions (linearly independent). For any scalar s and t,
the vector sv + tw is called a linear combination of v and w. It is
clear that all the linear combinations of v and w lie on the plane
determined by the two vectors. Hence the plane has parametric
equation

x = sv + tw.

If the plane does not pass through the origin but trough the point
p 6= 0 and v and w are linear independent direction vector from p
then the plane has equation

x = p + sv + tw s, t ∈ R.
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Planes (2)

Three non collinear points determine a plane. Given the points p,
q and r, we can take q− p and r− p as displacement vectors from
p, so we get the parameterized equation

x = p + s(q− p) + t(r − p) = (1− s − t)p + sq + tr.

We can say that a plane is the set of those linear combinations of
three fixed vectors whose coefficients sum to 1:

x = t1p + t2q + t3r; t1 + t2 + t3 = 1.
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Non parametric equation

In R3 a plane can be determined also by a point p = (p1, p2, p3)
and a vector n = (a, b, c) orthogonal to the plane, called a normal
vector. If x = (x1, x2, x3) is an arbitrary point, it will belong to the
plane if x− p is a vector in the plane and if it is orthogonal to n,
hence their inner product must be zero:

0 = (x− p) · n = (x1 − p1, x2 − p2, x3 − p3) · (a, b, c)
= a(x1 − p1) + b(x2 − p2) + c(x3 − p3)

We get that the point-normal equation of the plane is

ax + by + cz = d .
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Examples

Example 1 The equation of the plane through the point (1, 2, 3)
and with normal vector (4, 5, 6) is

4(x − 1) + 5(y − 2) + 6(z − 3) = 0

hence
4x + 5y + 6z = 32.

Example 2 Find the point-normal equation of the plane P which
contains the points

p = (2, 1, 1) q = (1, 0,−3) r = (0, 1, 7).

Solution: 3x − 7y + z = 0.
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Hyperplanes

A line in R2 can be written as

ax1 + bx2 = c

a plane in R3 can be written as

ax1 + bx2 + cx3 = d

Similarly an hyperplane in Rn can be written in point-normal form
as

a1x1 + a2x2 + ...+ anxn = d .

An hyperplane in Rn has dimension n − 1.
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Exercises

Exercise 1 Determine if the following pairs of planes intersect

1. x + 2y − 3z = 6 and x + 3y − 2z = 6

2. x + 2y − 3z = 6 and −2x − 4y + 6z = 10.

Exercise 2 Derive parametric and non parametric equations for the
plane through each of the following triplets of points

1. (6, 0, 0) (0,−6, 0) (0, 0, 3)

2. (0, 3, 2) (3, 3, 1) (2, 5, 0).
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Introduction

Given a vector v when we consider the set of vectors obtained
multiplying v by a scalar we obtain a straight line through the
origin, we denote this set by L(v)

L(v) = {rv : r ∈ R}

and call it the line spanned (or generated) by v.
If we consider two vectors v1 and v2, we can take all possible their
linear combinations and obtaining a set spanned by v1 and v2:

L(v1, v2) = {r1v1 + r2v2 : r1, r2 ∈ R}
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Linear Dependence

If v1 is a multiple of v2, L(v1, v2) is the line L(v2). However if v1

is not a multiple of v2 then the set spanned by v1 and v2,
L(v1, v2), is a plane.
If v1 is a multiple of v2 or vice versa we say that v1 and v2 are
linearly dependent, otherwise we say tha v1 and v2 are linearly
independent.
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Linear Dependence

Definition
Vectors v1, v2, ..., vk in Rn are linearly dependent if and only if
there exist scalars c1, c2, ..., ck not all zero such that

c1v1 + c2v2 + ...+ ckvk = 0

Vectors v1, v2, ..., vk in Rn are linearly independent if and only if
c1v1 + c2v2 + ...+ ckvk = 0 implies that c1 = c2 = ... = ck = 0.
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Example

The vectors

v1 =

 1
−1
1

 v2 =

 2
0
−1

 v3 =

 0
−2
3


are linear dependent since

2

 1
−1
1

+ (−1)

 2
0
−1

+ (−1)

 0
−2
3

 =

 0
0
0


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Matrix Rank

The rank of a matrix A is the dimension of the space spanned by
its vectors (columns or rows). It is denoted by Rank(A).

It is equivalent to say:
the rank is the number of linear independent vectors.
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Examples

Ex 1 Find the rank of matrix

A =


1 1 0
0 1 2
1 2 2
1 0 −2


Ex 2 Study the rank of matrix A in function of a?

A =

 a 1 4
2 1 a2

1 0 −3


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