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Introduction

Sometimes, the single variable function can be inadequate as the
quantity under interest depends on more than one variable, for
example, utility depends on consumption bundle, production on
inputs. In these cases we use a kind of function which is called
multivariable function.

Definition
A n-variables function is a function such that its range is a subset
of the real number R and its domain is the subset of the n
dimensional vector space Rn. That is to say f : Rn → R such that

f = f (x1, x2....., xn) = f (v), where v = (x1, x2....., xn)
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Example 1

f (x , y) = x2 + y2
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Example 2

f (x , y) =
sin(
√

x2 + y2)√
x2 + y2
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Domain

Definition
Given a function f : Rn → R, the subset D of Rn for which the
function f is defined is called domain. The subset of R such that
its elements are image of some vectors of D is called range.

Example:

1. the domain of the function f (x , y) = x2 + y2 is R2, the range
is all non negative real number.

2. the domain fo the function g(x , y) = x+y
x−y is

D = R2 − {(x , y) : x = y}
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Exercises

Find the domain of the following 2-variables functions

1. f (x , y) = ln(xy + 3)

2. g(x , y) = e
x2+1
y−2

3. h(x , y) = ln(x2 + y2)

4. k(x , y) = x2 − y2 +
√
xy
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Level curves

The study of level curve is a way to visualize a function
f : R2 → R. A level curve is a locus in the xy -plane in which f
assume the same value z0.
Example: Consider the function f (x , y) = x2 + y2. All the points
for which the function assume the value 1 is the circle

{(x , y) : x2 + y2 = 1}.

In general for this function the level curve corresponding to the
value k are the circle centered in (0, 0) with radius

√
k.

Economists use level curve to study two fundamental functions:
the production function and the utility function.
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Level curves in Economics

Consider the production function Q(x , y). The level curve
represents the locus of (x , y) (inputs) such that is possible to reach
the same level of production, these sets are called isoquants:

{(x , y) ∈ R2 : Q(x , y) = Q0}

Consider the utility function u(x , y). Level curve of utility
functions are called indifference curves, because they represent
such pairs of x , y such that the consumer is indifferent since she
reaches the same level of satisfaction:

{(x , y) ∈ R2 : u(x , y) = u0}
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Level curves in Economics: Example

A simple production function is the Cobb-Douglas function
Q = xy , where x and y measure amounts of two inputs (for
example, x units of capital and y units of labor.
Suppose we want to study the isoquant of production equal 6:

(x , y) ∈ R2
+ : xy = 6

we can write explicitly this one variable function y = 6
x , which

represents an hyperbole.
The most general Cobb-Douglas production functions is
Q = kxαyβ, with k , α, β > 0 and have level curves similar to
hyperboles. Try to study them.
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Exercises

Find the level curve of the following 2-variables functions

1. f (x , y) = ln(xy + 3)

2. g(x , y) = e
x2+1
y−2

3. h(x , y) = ln(x2 + y2)

4. k(x , y) = x + y
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Partial derivatives of two variables function

Suppose f = f (x , y), then we can define the partial derivatives of
the function by :

I partial derivative of f with respect to x , (i.e. fixing the
variable y):

∂f (x , y)

∂x
= fx(x , y) = lim

∆x→0

f (x + ∆x , y)− f (x , y)

∆x

I partial derivative of f with respect to y , (i.e. fixing the
variable x):

∂f (x , y)

∂y
= fy (x , y) = lim

∆y→0

f (x , y + ∆y)− f (x , y)

∆y
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Example of Partial derivatives of two variables function

Consider the functions

1. f (x , y) = x2 + y2, the partial derivatives are

fx(x , y) = 2x fy (x , y) = 2y .

2. f (x , y) = e3x−4y , the partial derivatives are

fx(x , y) = 3e3x−4y fy (x , y) = −4e3x−4y .

3. f (x , y) = x4 + 2x2y2 + xy4 + 10y , the partial derivatives are

fx(x , y) = 4x3 + 4xy2 + y4 fy (x , y) = 4x2y + 4xy3 + 10.
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Partial derivatives of n-variables function

Suppose f = f (x1, x2, .., xn) is a function of n variables, the partial
derivatives of the function with respect xi :

∂f (x1, x2, .., xn)

∂xi
= lim

∆xi→0

f (x1, x2, .., xi + ∆xi .., xn)− f (x1, x2, ..., xi .., xn)

∆xi

Example: Calculate the three partial derivatives of

1. the three variable function f (x , y , z) = xz + ey
2z +

√
x2yz2

2. the function f (x1, x2, x3, x4) = x2
1 − x2

2 + 3x1x2x3 − x1
3x4
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Gradient

Let f (x1, x2, ..., xn) be a function of n variables we define the
gradient of f the vector

∇f =


fx1

fx2

...
fxn


Geometric interpretation: the gradient points the direction in
which the function increases.
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Second order partial derivatives of a 2-variables function

If f is a function of two variables f = f (x , y), then there are 4
possibilities of second partial derivatives :

1. differentiate with respect to x twice: fxx = ∂2f
∂x2 = ∂

∂x

(
∂f
∂x

)
2. differentiate with respect to y twice: fyy = ∂2f

∂y2 = ∂
∂y

(
∂f
∂y

)
3. differentiate with respect to x first and then with respect to y :

fxy = ∂2f
∂y∂x = ∂

∂y

(
∂f
∂x

)
4. differentiate with respect to y first and then with respect to x :

fyx = ∂2f
∂x∂y = ∂

∂x

(
∂f
∂y

)
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Example

Consider the function f (x , y) = x3y2 − 2xy4 find the four second
order partial derivatives.
The first order partial derivatives are

fx = 3x2y2 − 2y4 fy = 2x3y − 8xy3.

The second order partial derivatives are

fxx = 6xy2 fyy = 2x3 − 24xy2

fxy = 6x2y − 8y3 fyx = 6x2y − 8y3

Note that fxy and fyx are equal.
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Theorem
Suppose f is a function of two variables f (x , y).
If f (x , y) , fx(x , y), fy (x , y), fxy (x , y) and fyx(x , y) are continuous,
then

fxy (x , y) = fyx(x , y).

A similar result holds for a function of n variables. Note that a
function of n variables has n2 second partial derivatives.
Example: Given the function f (x , y , z) = xy3 + xz5 − x2yz , find all
the nine second partial derivatives and check the validity of
theorem.
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Hessian Matrix

Definition
Given the function f (x1, x2, ..., xn) the Hessian matrix is a square
matrix of the second-order partial derivatives of f .

H(x) = D2f (x) =


fx1x1 fx1x2 . . . fx1xn

fx2x1 fx2x2 fx2xn
...

...
fxnx1 fxnx2 . . . fxnxn


If the first and second order partial derivatives are continuous the
matrix H(x) is symmetric.
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Example

Find the hessian matrix in (1, 2) of f (x , y) = ye2x−y + y2.
The first order partial derivatives are

fx = 2ye2x−y , fy = (1− y)e2x−y + 2y .

The second order partial derivatives are

fxx = 4ye2x−y , fxy = fyx = 2(1− y)e2x−y , fyy = (y − 2)e2x−y + 2,

hence the hessian matrix in (1, 2) is

H(1, 2) =

(
8 −2
−2 2

)
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Chain Rule

Let (x1(t), x2(t), ..., xn(t)), with a ≤ t ≤ b, be a regular curve. We
may want to know how a function f : Rn → R behaves along the
curve. In doing this we are led to study the function of one variable

g(t) = f (x1(t), x2(t), ..., xn(t)).

The first derivative of g is given by:

dg

dt
=

∂f

∂x1
(x(t))

dx1

dt
+
∂f

∂x2
(x(t))

dx2

dt
+ ...+

∂f

∂xn
(x(t))

dxn
dt
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Example

Consider the Cobb-Douglas production function Q = 4K 3/4L1/4

and suppose the inputs K and L vary with time t:

K (t) = 5t2 L(t) = 10t2.

Calculate the rate of change of output Q with respect to t when
t = 8.
Calculate

dQ

dt
=
∂Q

∂K

dK

dt
+
∂Q

∂L

dL

dt
.

and compute it in t = 8, K (8) and L(8).
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Definiteness of quadratic forms

Introduction

Definition
A quadratic form on Rn is a real-valued function of the form

Q(x1, x2, ..., xn) =
∑
i≤j

aijxixj

in which each term is a monomial of degree two.

Each quadratic form can be represented by a symmetric matrix A
so that

Q(x) = xTAx

A. Fabretti Optimization



Functions of several variables
Quadratic Form

Unconstrained Optimization
Constrained Optimization: Equality constraints

Definiteness of quadratic forms

Two and three dimensional quadratic forms

A general two dimensional quadratic form:

xTAx =
(
x1 x2

)( a11 a12

a12 a22

)(
x1

x2

)
= a11x

2
1 +2a12x1x2+a22x

2
2 .

A general three dimensional quadratic form:

xTAx =
(
x1 x2 x3

) a11 a12 a13

a12 a22 a23

a13 a23 a33

 x1

x2

x3


= a11x

2
1 + a22x

2
2 + a33x

2
3 + 2a12x1x2 + 2a13x1x3 + 2a23x2x3
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Definiteness of quadratic forms

Example

f (x , y) = −x2 − 3y2 + 4xy with A =

(
−1 2
2 −3

)

−5
0

5−5

0

5−200

−100

0

A. Fabretti Optimization



Functions of several variables
Quadratic Form

Unconstrained Optimization
Constrained Optimization: Equality constraints

Definiteness of quadratic forms

Example

f (x , y) = 3x2 + 4xy − 5y2 with A =

(
3 2
2 −5

)

−5
0

5−5

0

5−100

0

100
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Definiteness of quadratic forms

Positive definite

Q(x1, x2) = x2
1 + x2

2 with A =

(
1 0
0 1

)

−5
0

5−5

0

50

20

40

A quadratic form Q(x) = xTAx which is always greater than zero
at (x1, x2) 6= (0, 0) is called positive definite.
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Definiteness of quadratic forms

Negative definite

Q(x1, x2) = −x2
1 − x2

2 with A =

(
−1 0
0 −1

)

−5
0

5−5

0

5−40

−20

0

A quadratic form Q(x) = xTAx which is always lower than zero at
(x1, x2) 6= (0, 0) is called negative definite.
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Definiteness of quadratic forms

Indefinite

Q(x1, x2) = x2
1 − x2

2 with A =

(
1 0
0 −1

)

−5
0

5−5

0

5−20

0

20

A quadratic form Q(x) = xTAx which can be either greater or
lower than zero at (x1, x2) 6= (0, 0) is called indefinite.
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Definiteness of quadratic forms

Positive semidefinite

Q(x1, x2) = x2
1 + 2x1x2 + x2

2 with A =

(
1 1
1 1

)

−5
0

5−5

0

50

50

100

A quadratic form Q(x) = xTAx which is greater or equal zero at
(x1, x2) 6= (0, 0) is called positive semidefinite.
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Definiteness of quadratic forms

Negative semidefinite

Q(x1, x2) = −x2
1 − 2x1x2 − x2

2 with A =

(
−1 −1
−1 −1

)

−5
0

5−5

0

5−100

−50

0

A quadratic form Q(x) = xTAx which is lower or equal zero at
(x1, x2) 6= (0, 0) is called negative semidefinite.

A. Fabretti Optimization



Functions of several variables
Quadratic Form

Unconstrained Optimization
Constrained Optimization: Equality constraints

Definiteness of quadratic forms

Definition

Definition
Let A be a n × n symmetric matrix, then A is:

I positive definite if xTAx > 0 for all x 6= 0 in Rn,

I negative definite if xTAx < 0 for all x 6= 0 in Rn,

I positive semidefinite if xTAx ≥ 0 for all x 6= 0 in Rn,

I negative semidefinite if xTAx ≤ 0 for all x 6= 0 in Rn,

I indefinite if xTAx > 0 for some x in Rn and < 0 for some
other.
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Introduction

Given the multivariable function f (x1, x2, ..., xn), defined between
D ⊂ Rn onto R, we tackle the problem

min
x∈D

f (x)

or
max
x∈D

f (x).

Recall that in one-variable function we use the first order derivative
to find the critical points and the second order derivative to
identify the type (max or min).

A. Fabretti Optimization



Functions of several variables
Quadratic Form

Unconstrained Optimization
Constrained Optimization: Equality constraints

Definitions

Let f : D ⊂ Rn → R be a real-valued function of n variables, a
point x∗ is

I a max of f in D if f (x∗) ≥ f (x) for all x ∈ D;

I a strict max of f in D if it is a max and f (x∗) > f (x) for all
x 6= x∗;

I a local max of f if there is a ball around x∗, Br (x∗) such that
f (x∗) ≥ f (x) for all x ∈ Br (x∗ ∩ D);

I a strict local max of f if there is a ball around x∗, Br (x∗)
such that f (x∗) > f (x) for all x ∈ Br (x∗ ∩ D) with x 6= x∗.
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Definitions

Let f : D ⊂ Rn → R be a real-valued function of n variables, a
point x∗ is

I a min of f in D if f (x∗) ≤ f (x) for all x ∈ D;

I a strict min of f in D if it is a min and f (x∗) < f (x) for all
x 6= x∗;

I a local min of f if there is a ball around x∗, Br (x∗) such that
f (x∗) ≤ f (x) for all x ∈ Br (x∗ ∩ D);

I a strict local min of f if there is a ball around x∗, Br (x∗)
such that f (x∗) < f (x) for all x ∈ Br (x∗ ∩ D) with x 6= x∗.
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Quadratic form

Consider a quadratic form Q(x) = xTAx, it takes always the value
zero at the point x = 0. Is x = 0 a max, a minimum or neither?

I if the quadratic form Q(x) is always greater than zero at
x 6= (0, 0), hence x = 0 is a minimum.

I the quadratic form Q(x) is always lower than zero at
x 6= (0, 0), hence x = 0 is a maximum.

I the quadratic form Q(x) can be either greater or lower than
zero at x 6= (0, 0), hence x = 0 is neither a minimum nor a
maximum.

The vector x is a maximum or a minimum according to the
definiteness of the quadratic form, which coincides with the
definiteness of the matrix A.
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Note that the quadratic form

Q(x1, x2) = a11x
2
1 + a12x1x2 + a22x

2
2

having matrix

A =

(
a11

1
2a12

1
2a12 a22

)
has

∇Q =

(
2a11x1

2a22x2

)
and H =

(
2a11 a12

a12 2a22

)
and H = 2 A.
The point (x1, x2) = (0, 0) is such that the gradient ∇Q vanishes
and it is a maximum (minimum) if H is negative (positive) definite.
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First Order condition

Let f : D ⊂ Rn → R be a real-valued function of n variables. If a
point x∗ is a local max or min of f in D and if x∗ is an interior
point of D, then

∂f

∂xi
= 0 for i = 1, .., n

in other words the gradient vanishes at x∗.

Definition
We say that the vector x∗ is a critical point of a function
f (x1, x2, ..., xn) if it satisfies

∂f

∂xi
= 0 for i = 1, .., n
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Second Order condition (sufficient)

Let f : D ⊂ Rn → R be a real-valued function of n variables twice
differentiable with continuous partial derivatives. Suppose x∗ is a
critical point of f . If

I the hessian matrix H in x∗ is negative definite symmetric
matrix, then x∗ is a strict local max of f ;

I the hessian matrix H in x∗ is positive definite symmetric
matrix, then x∗ is a strict local min of f ;

I the hessian matrix H in x∗ is indefinite, then x∗ is neither a
local max nor a local min and it is called saddle point of f .
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Taylor Polynomial

Suppose that F : U ⊂ Rn → R is a C 2 function. Let a be a point
in U. Then there exists a C 2 function h→ R2(a,h) such that for
any point a + h in U with the property that the line segment from
a to a + h lies in U,

F (a + h) = F (a) +∇F (a)h +
1

2
hTD2F (x∗)h + R2(a,h)

where
R2(a,h)

||h||2
→ 0 as h→ 0.
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Proof of the second order condition

We can approximate a C 2 function by its Taylor polynomial of
order two about x∗:

f (x) = f (x∗)+∇f (x∗)(x− x∗)+
1

2
(x− x∗)TD2f (x∗)(x− x∗)+R(x− x∗)

Ignoring the negligible term R(x− x∗) and since x∗ is a critical
point we get

f (x)− f (x∗) ≈ 1

2
(x− x∗)TD2f (x∗)(x− x∗)

If D2f (x∗) is negative definite f (x)− f (x∗) < 0 in a neighborhood
of x∗ , which means that x∗ is a strict local maximum, since
f (x) < f (x∗).
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Second Order condition: Max

Let f : D ⊂ Rn → R be a real-valued function of n variables twice
differentiable with continuous partial derivatives. Suppose x∗ is a
critical point of f and the n leading principal minor of H alternate
in sign

|fx1x1 | < 0

∣∣∣∣ fx1x1 fx1x2

fx2x1 fx2x2

∣∣∣∣ > 0

∣∣∣∣∣∣
fx1x1 fx1x2 fx1x3

fx2x1 fx2x2 fx2x3

fx3x1 fx3x2 fx3x3

∣∣∣∣∣∣ < 0 ....

at x∗. Then x∗ is a strict local max of f .
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Second Order condition: Min

Let f : D ⊂ Rn → R be a real-valued function of n variables twice
differentiable with continuous partial derivatives. Suppose x∗ is a
critical point of f and the n leading principal minor of H are all
positive

|fx1x1 | > 0

∣∣∣∣ fx1x1 fx1x2

fx2x1 fx2x2

∣∣∣∣ > 0

∣∣∣∣∣∣
fx1x1 fx1x2 fx1x3

fx2x1 fx2x2 fx2x3

fx3x1 fx3x2 fx3x3

∣∣∣∣∣∣ > 0 ....

at x∗. Then x∗ is a strict local min of f .
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Second Order condition: saddle

Let f : D ⊂ Rn → R be a real-valued function of n variables twice
differentiable with continuous partial derivatives. Suppose x∗ is a
critical point of f and some non zero leading principal minor of H
violate the hypothesis to be a min or a max. Then x∗ is a saddle
point of f .
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Definiteness and Eigenvalues

Theorem
Let A be a symmetric matrix. Then,

I A is positive definite if and only if all the eigenvalues of A are
positive;

I A is negative definite if and only if all the eigenvalues of A are
negative;

I A is positive semidefinite if and only if all the eigenvalues of A
are non negative;

I A is negative semidefinite if and only if all the eigenvalues of
A are non positive;

I A is indefinite if and only if A has a positive eigenvalue and a
negative eigenvalue.
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Example

Compute the critical point of the function f (x , y) = x3− y3 + 9xy ,
then compute the Hessian and say for each critical point if it is a
min a max or a saddle.
First order derivatives:

fx = 3x2 + 9y fy = −3y2 + 9x

then the critical points are (0, 0) and (3,−3).
The Hessian matrix is

H(x , y) =

(
6x 9
9 −6y

)
hence applying the second order conditions we can conclude that
(0, 0) is a saddle and (3,−3) is a strict local min of f .
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Example (2)

f (x , y) = x3 − y3 + 9xy

−5
0

5−5

0

5
−500

0
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Global Maxima and Minima

First and second order conditions allow to find local maxima or
minima. When these points are global maxima or minima? We
need to define concavity and convexity.
Let F : U ⊂ Rn → R be a C 2 function whose domain U is convex,

I if F is a concave function on U and ∇F (x∗) = 0 for some
x∗ ∈ U, then x∗ is a global max of F on U.

I if F is a convex function on U and ∇F (x∗) = 0 for some
x∗ ∈ U, then x∗ is a global min of F on U.
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Global Maxima: concavity

Let F : U ⊂ Rn → R be a C 2 function whose domain U is convex.
The following three conditions are equivalent:

I F is a concave function;

I F (y − x) ≤ ∇F (x)(y − x) for all x, y ∈ U

I D2F (x) is negative semidefinite for all x ∈ U.
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Global Minima: convexity

Let F : U ⊂ Rn → R be a C 2 function whose domain U is convex.
The following three conditions are equivalent:

I F is a convex function;

I F (y − x) ≥ ∇F (x)(y − x) for all x, y ∈ U

I D2F (x) is positive semidefinite for all x ∈ U.
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Exercises

For each of the following functions find the critical points and
classify them as local (or global) max, min or saddle point.

1. f (x , y) = x2y + xy3 − xy

2. f (x , y , z) = (2x2 + 3y2 + z2)e−(x2+y2+z2)

3. f (x1, x2) = 3x4
1 + 3x2

1x2 − x3
2
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Introduction

The classical problem is
max

x
f (x)

subject to the constraints

g1(x) ≤ b1, ..., gk(x) ≤ bk

h1(x) = c1, ..., hm(x) = cm.

The function f is called the objective function, the functions
g1, .., gk and h1, ..., hm are the constraint functions.
The gj ’s define the inequality constraints and the hi ’s define
equality constraints.
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Utility Maximization Problem

Let U(x1, ..., xn) the function measuring the individual level of
utility or satisfaction with consuming x1 units of good 1, x2 units
of good 2 and so on. Let p1, ..., pn denote the prices of the
commodities and let I be the individual’s income. The consumer’s
problem is

max
x1,...,xn

U(x1, ..., xn)

subject to
p1x1 + p2x2 + ...+ pnxn ≤ I

x1 ≥ 0, x2 ≥ 0, ..., xn ≥ 0
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Profit Maximization of a competitive firm

Let x1, ..., xn denote the amount of inputs which a competitive
industry uses to manufacture the amount y of product, given the
production function y = f (x1, ..., xn). Let p be the unit price of
the output and let wi be the cost of input i . The firm’s objective is
to maximize the profit function Π(x1, ..., xn):

max
x1,...,xn

Π(x1, ..., xn) = pf (x1, ..., xn)−
n∑

i=1

wixi (revenue minus cost)

subject to

pf (x1, ..., xn)−
∑n

i=1 wixi ≥ 0 (no negative profit)
g1(x) ≤ b1, ..., gk(x) ≤ bk (availability of inputs)
x1 ≥ 0, x2 ≥ 0, ..., xn ≥ 0 (no negative amount of inputs)
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The problem

Consider the problem
max
x1,x2

f (x1, x2)

subject to
h(x1, x2) = c

We can draw in R2 the level curves of the objective function f and
the constraint set. Our goal is to find the highest valued level
curve of f which meets the constraint set. This equals to require
that the level curve of f is tangent to the constraint set at the
constrained maximizer x∗.
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cont’d

Hence the slope of the level set of f equals the slope of the
constraint curve at x∗:

∂f
∂x1

(x∗)
∂f
∂x2

(x∗)
=

∂h
∂x1

(x∗)
∂h
∂x2

(x∗)

which can be re-written in

∂f
∂x1

(x∗)
∂h
∂x1

(x∗)
=

∂f
∂x2

(x∗)
∂h
∂x2

(x∗)

where we suppose that x∗ is not a critical point of h (non
degenerate constraint qualification).
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cont’d

Hence we have the three conditions

∂f
∂x1

(x)− µ ∂h
∂x1

(x) = 0

∂f
∂x2

(x)− µ ∂h
∂x2

(x) = 0

h(x1, x2)− c = 0

where µ is called Lagrange multiplier.
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First Order condition

Let f and h be C 1 functions of two variables. Suppose that
x∗ = (x∗1 , x

∗
2 ) is a solution of the problem

max
x1,x2

f (x1, x2)

subject to
h(x1, x2) = c

Suppose further that x∗ = (x∗1 , x
∗
2 ) is not a critical point of h.

Then there is a real number µ∗ such that (x∗1 , x
∗
2 , µ

∗) is a critical
point of the Lagrangian function

L(x1, x2, µ) = f (x1, x2)− µ (h(x1, x2)− c) .

In other words at (x∗1 , x
∗
2 , µ

∗)

∂L

∂x1
= 0,

∂L

∂x2
= 0,

∂L

∂µ
= 0.
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Example 1

Solve the following problem

max x1x2

with x1 + 4x2 = 16

Write the Lagrangian function

L(x1, x2, µ) = x1x2 − µ(x1 + 4x2 − 16).
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Example 1

The FOC are
∂L
∂x1

= x2 − µ = 0

∂L
∂x2

= x1 − 4µ = 0

∂L
∂µ = x1 + 4x2 − 16 = 0

which admit the solution x1 = 8, x2 = 2 and µ = 2.
Is this point a min, a max or a saddle?
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Example 2

Solve the following problem

max x2
1x2

with 2x2
1 + x2

2 = 3

Write the Lagrangian function

L(x1, x2, µ) = x2
1x2 − µ(2x2

1 + x2
2 − 3).
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Example 2

The FOC are
∂L
∂x1

= 2x1x2 − 4µx1 = 0

∂L
∂x2

= x2
1 − 2µx2 = 0

∂L
∂µ = 2x2

1 + x2
2 − 3 = 0

which give 6 candidates

(0,
√

3, 0), (0,−
√

3, 0), (1, 1,
1

2
), (−1, 1,

1

2
), (1,−1,−1

2
), (−1,−1,−1

2
)

A. Fabretti Optimization



Functions of several variables
Quadratic Form

Unconstrained Optimization
Constrained Optimization: Equality constraints

Economic Examples
Two variables and one equality constraint
Several Equality Constraints
The meaning of the multiplier

Reducing the problem to a one variable unconstrained
problem

When the constraint h(x , y) = c permits to explicit one variable,
the problem can be reduced in a one variable unconstrained one.
Suppose h(x , y) = c is such that we can write y = k(x), hence
substituting y into f (x , y) we get the unconstrained problem

max
x

f (x , k(x)).
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Example 1

Recall example 1
max x1x2

with x1 + 4x2 = 16

the constraint is linear and we can write x1 = 16− 4x2 and
substitute it into f (x1, x2) = x1x2 getting the unconstrained
problem

f (x2) = 16x2 − 4x2
2 .

The derivative is f ′(x2) = 16− 8x2 which vanishes at x2 = 2 which
gives x1 = 8.
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Consider the problem of maximizing the function f (x1, x2, ..., xn)
subject to m equality constraints

max
x

f (x)

with
h1(x) = c1, ..., hm(x) = cm.

The Lagrangian function is defined

L(x, µ) = f (x)−µ1(h1(x)−c1)−µ2(h2(x)−c2)−...−µm(hm(x)−cm).
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Nondegenerate constraint qualification (NDCQ)

In the case of several constraint, the constraint qualification is that
the rank of the Jacobian matrix of h = (h1, ..., hm), denoted
Dh(x), be m (as large as it can be).
The Jacobian matrix of h is

Dh(x) =


∂h1
∂x1

(x) · · · ∂h1
∂xn

(x)
∂h2
∂x1

(x) · · · ∂h2
∂xn

(x)
...

. . .
...

∂hm
∂x1

(x) · · · ∂hm
∂xn

(x)


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First Order Conditions

Let f , h1, h2, ..., hm be C 1 functions of n variables. Suppose that
x∗ is a point which satisfies the constraints and (locally) maximize
or minimize f in the admissible region. Suppose that x∗ satisfies
the NDCQ. Then there exist µ∗1, ..., µ

∗
m such that

(x∗1 , x
∗
2 , ..., x

∗
n , µ

∗
1, ..., µ

∗
m) = (x∗, µ∗) is a critical point of the

Lagrangian function. In other words

∂L

∂x1
(x∗, µ∗) = 0, ...

∂L

∂xn
(x∗, µ∗) = 0

∂L

∂µ1
(x∗, µ∗) = 0 ...

∂L

∂µm
(x∗, µ∗) = 0.
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Example

Consider the problem of maximizing

f (x , y , z) = xyz

on the constraint set defined by

h1(x , y , z) : x2 + y2 = 1 h2(x , y , z) : x + z = 1
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Second Order Condition

Intuitively the second order condition for a constrained
maximization problem:

I should involve the negative definiteness of some Hessian
matrix, but

I should only be concerned with directions along the constraint
set.
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Second Order Condition

Consider the problem of maximizing f on the constraint set Ch. A
point x∗ is a strict local constrained max of F on C − h if

I x∗ lies in the constraint set Ch,

I there exist µ∗1, ..., µ
∗
m such that (x∗1 , x

∗
2 , ..., x

∗
n , µ

∗
1, ..., µ

∗
m)

satisfies the FOC

and the Hessian of L with respect to x at (x∗, µ∗), D2
xL(x∗, µ∗), is

negative definite on the linear constraint set {v : Dh(x∗)v = 0} ;
that is,

v 6= 0 and Dh(x∗)v = 0⇒ vT (D2
xL(x∗, µ∗))v < 0.
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Second Order Condition (max)

The previous condition is equivalent to require that the last
(n − k) leading principal minors of the following matrix H (hessian
of L bordered with Dh(x∗)) alternate in sign with the sign of the
determinant of the (k + n)× (k + n) matrix the same as the sign
of (−1)n.

H =



0 · · · 0 | ∂h1
∂x1

(x∗) · · · ∂h1
∂xn

(x∗)
...

. . .
... |

...
. . .

...

0 · · · 0 | ∂hm
∂x1

(x∗) · · · ∂hm
∂xn

(x∗)

− − − − − − −
∂h1
∂x1

(x∗) · · · ∂hm
∂x1

(x∗) | ∂2L
∂x2

1
(x∗, µ∗) · · · ∂2L

∂xnx1
(x∗, µ∗)

...
. . .

... |
...

. . .
...

∂h1
∂xn

(x∗) · · · ∂hm
∂xn

(x∗) | ∂2L
∂x1xn

(x∗, µ∗) · · · ∂2L
∂x2

n
(x∗, µ∗)


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Second Order Condition (min)

The second order condition for a minimization problem involves
that the Hessian of L with respect to x at (x∗, µ∗), D2

xL(x∗, µ∗), is
positive definite on the linear constraint set {v : Dh(x∗)v = 0} ;
that is,

v 6= 0 and Dh(x∗)v = 0⇒ vT (D2
xL(x∗, µ∗))v > 0.

The condition above equals to require that all the (n − k) leading
principal minors of matrix H have the same sign as (−1)k , where k
is the number of constraints.
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Example 2

Recall the problem

max x2
1x2

with 2x2
1 + x2

2 = 3

and the 6 candidates

(0,
√

3, 0), (0,−
√

3, 0), (1, 1,
1

2
), (−1, 1,

1

2
), (1,−1,−1

2
), (−1,−1,−1

2
).

The (bordered) Hessian matrix is

H =

 0 hx1 hx2

hx1 Lx1x1 Lx1x2

hx2 Lx2x1 Lx2x2

 =

 0 4x1 2x2

4x1 2x2 − 4µ 2x1

2x2 2x1 −2µ


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Exercises

1. Solve the problem

max x2y2z2

with x2 + y2 + z2 = 3

2. Find the maximal and minimal distance from the origin of the
ellipse x2 + xy + y2 = 3.

3. Solve the consumer problem

max kxa1x
1−a
2

with p1x1 + p2x2 = I
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The meaning of the multiplier

Consider the problem

max f (x , y)
with h(x , y) = a

and consider a as a parameter, for any fixed value of a suppose the
problem admits a solution x∗(a), y∗(a), µ∗(a). Let f (x∗(a), y∗(a))
be the optimal value of the objective function. The lagrange
multiplier µ∗(a) measures the rate of change of the optimal value
of f with respect to the parameter a, formally

µ∗(a) =
d

da
f (x∗(a), y∗(a)).

A. Fabretti Optimization



Functions of several variables
Quadratic Form

Unconstrained Optimization
Constrained Optimization: Equality constraints

Economic Examples
Two variables and one equality constraint
Several Equality Constraints
The meaning of the multiplier

Interpreting the multiplier

Suppose the objective function is the profit function of a firm,
x1, x2, .., xn represent the level of intensity of n different productive
activities. The constraint h(x) = a denote the maximum a amount
of input that the firm requires to run activity one at level x1,
activity two at level x2 and so forth.

d

da
f (x∗1 (a), x∗2 (a), ..., x∗n (a))

represents the change in the optimal profit resulting from the
availability of one more unit of input. Hence µ∗(a) tells how
valuable another unit of input would be to the firm’s profits, or,
alternatively, it tells the maximum amount of the firm would be
willing to pay to acquire another unit of input. For this reason it is
called shadow price.
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