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2) (12 p.ts) Find eigenvalues and eigenvectors of the following matrix and determine if it is diago-
nalizable? If so, identify the invertible matrix T that transforms A into a diagonal matrix, and show
how T realizes this transformation.

A =

 1 2 1
0 2 0
1 −2 1



Let us look for Real eigenvalues

|A− λ| =

∣∣∣∣∣∣
1− λ 2 1

0 2− λ 0
1 −2 1− λ

∣∣∣∣∣∣ = −λ(λ− 2)2

the characteristic polynomial has three real zeroes λ1 = 0 (simple eigenvalue) and λ2 = λ3 = 2
(double eigenvalue). Let us check if the algebraic and geometric multiplicities are equal. For the
eigenvalue λ1 the condition is trivially verified. Regarding λ2 = 2, whose algebraic multiplicity is
ma = 2, notice that

A− 2I3 =

 −1 2 1
0 0 0
1 −2 −1


is such that rank(A− 2I3) = 1 (first and third row are multiple by factor −1, and the second row is
a null row), hence the geometric multiplicity of λ2 = 2 is mg = 3− rank(A− 2I3) = 2. This implies
the diagonalizability of the given matrix A. Let us calculate a base of three independent eigenvectors
(1 correspondent to the eigenvalue λ1 = 0 and two correspondent to the double eigenvalue λ2 = 2).
If λ = 0 we obtain a first eigenvector by solving the homogenoeus system

(A− 0 · I3)X = 0, where X =

 x
y
z


that we can write as { x+ 2y + z = 0

2y = 0
x− 2y + z = 0

this system has solutions v1 =

 −α0
α

, with α ∈ R and α 6= 0. If we choose α = 1 we obtain

v1 =

 −1
0
1


If λ = 2, we obtain the remaining independent eigenvectors by solving the homogenoeus system

(A− 2 · I3)X = 0, where X =

 x
y
z

 ,



that we can write as { −x+ 2y + z = 0
0 = 0
x− 2y − z = 0

.

This system has solutions v2 =

 2β + γ
β
γ

, with β, γ ∈ R and β2 + γ2 6= 0. If we choose

(β, γ) = (1, 0) we obtain v2 =

 2
1
0

 .

If we choose (β, γ) = (0, 1) we obtain v3 =

 1
0
1

 .If we display v1, v2 and v3 in the following matrix

T =

 −1 2 1
0 1 0
1 0 1


by setting D =

 0 0 0
0 2 0
0 0 2

, diagonal matrix with eigenvalues in the diagonal, it is easy to prove

that T−1AT = D, where
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 .



3) (10 p.ts) Find max/min of the following function

f(x, y) = x2 − y2

subject to the following constraint
x2 − y = 0

The Lagrangian funtion is
L(x, y, λ) = x2 − y2 − λ(x2 − y),

with gradient

∇(x, y, λ) = (2x− 2λx,−2y + λ,−x2 + y),

whose components cancel in the three following cases
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)
both for λ = 1.

Second order conditions imply calculation of the Bordered Hessian H(x, y, λ):

H(x, y, λ) =

 0 2x −1
2x 2− 2λ 0
−1 0 −2

 hence |H(x, y, λ)| = 2λ− 2 + 8x2.

Let us analyze second order conditions case by case :
If (x, y, λ) = (0, 0, 0), |H(0, 0, 0)| = −2 < 0, and this implies that (0, 0) is a local minimum.
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