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Each class starts 15 minutes after the 
posted starting time.

NO ENTRANCE will be allowed after this time.

Talking is forbidden during classes.  
For any question or doubt raise your hand and ask the 
teacher, not your colleagues!

Those who disturb the lesson will be invited to 
leave the classroom immediately.

If the noise in the classroom exceeds a certain 
threshold, the lesson will be ended.  
The undiscussed topics will still be subject 
of examination.
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Fernando 
Loaiza Erazo

Alessio 
Fiorentini

Berkan  
Acar

All surnames  
from  

A to D

All surnames  
from  

E to M

All surnames  
from  

N to Z

Be respectful with them!

Teaching assistants will help you and provide  
further guidance.
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LECTURES

Topics of the program are  
exposed through slides and the 
blackboard.

Focus

Takes notes

Raise as many questions as you want
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PRACTICES

At the beginning of each practice the TA will 
assign a “Classwork” to each student present.

The classwork lasts from 5 to 15 minutes 
depending on the difficulty. 

You will be assigned a grade form 0 to 3. The 
average of all the grades will be summed to the 
mid-term. 

The classwork is a short exam, made of few 
exercises, on the topics discussed during the 
previous  lectures. 

If you are absent…this will be counted as a zero. 
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Structure of the course and of the exam
https://economia.uniroma2.it/ba/business-administration-economics/corso/1206/

The main text are my NOTES.  

Some additional material is also 
available. 

Radicals, algebraic fractions, set theory,   intervals of real 
numbers, functions, equations, inequalities, geometry and 
trigonometry. 
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Structure of the course and of the exam
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WARNING
SLIDES ARE NOT AVAILABLE! 

Pay attention during 
each class, ask questions and take notes.  
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Structure of the course and of the exam
Mid-term

The mid-term is scheduled for the last 
week of November (to be defined). 

The mid-term is an examination on all the topics 
discussed during lectures and practices. 

The arithmetic mean of all the class-works is 
added to the grade of the mid-term. 

Registration to the mid-term is compulsory! 
Registrations will be open from November, 1st, 2019 to 
five days before the exam date.  
Info: Silvia Tabuani. 
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Did you pass the mid-term? 
(grade        )� 18

y

A l l c l a s s - w o r k s a r e 
invalidated.  
You can attend the midterm 
of M2.  
In the summer call you will 
have to do the M1-part for 
sure.

n

You must choose one and only one call of the summer 
session and you will have to do only the M2 part.  

Should you be successful also in the M2 mid-term, the exam is 
approved.  

Do you accept the grade? 
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Propositional Calculus and Set Theory

Davide Pirino

September 17, 2019
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Propositional Calculus: formal definition of a Proposition

Definition
A proposition is any claim/assertion that can be either TRUE or FALSE.

We indicate propositions with the calligraphic letter P, Q, R, ...

Example
R =“Rome is a nice city”. It attributes a subjective quality ⇒ it is not

possible to establish CERTAINLY whether it is TRUE or FALSE (for

someone will be true for someone else will be false).

P =“Rome is the capital of France”, P is FALSE.

Q =“Paris is the capital of France”, Q is TRUE.
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Propositional Calculus: logical operators

Definition
Given a proposition P we indicate with ¬P a new proposition which is

FALSE if P is TRUE and vice versa. The proposition ¬P is called the

negation of P.

P ¬P
T F

F T

Example P = “Rome is the capital of France”

¬P = “Rome is not the capital of France”
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Propositional Calculus: logical operators

Definition
Given two propositions P and Q, we define a third proposition denoted with

P ∧Q,

which is read “P and Q” and that is TRUE if and only if both P and Q are

TRUE, and it is FALSE in all the other cases.
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Propositional Calculus: logical operators

ExampleP = “Rome is the capital of France”

Q = “Paris is the capital of France”
P ∧Q is

FALSE

.

ExampleR = “Rome is the capital of Italy”

S = “Paris is the capital of France”
R∧ S is

TRUE

.
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Q = “Paris is the capital of France”
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Propositional Calculus: some identities

P Q P ∧Q ¬ (P ∧Q)
T T T F

T F F T

F T F T

F F F T

P Q ¬P ¬Q ¬P ∨ ¬Q
T T F F F

T F F T T

F T T F T

F F T T T

That is ¬ (P ∧Q) = ¬P ∨ ¬Q



8/29

Propositional Calculus: some identities

P Q P ∧Q ¬ (P ∧Q)
T T T F

T F F T

F T F T

F F F T

P Q ¬P ¬Q ¬P ∨ ¬Q
T T F F F

T F F T T

F T T F T

F F T T T

That is ¬ (P ∧Q) = ¬P ∨ ¬Q



8/29

Propositional Calculus: some identities

P Q P ∧Q ¬ (P ∧Q)
T T T F

T F F T

F T F T

F F F T

P Q ¬P ¬Q ¬P ∨ ¬Q
T T F F F

T F F T T

F T T F T

F F T T T

That is ¬ (P ∧Q) = ¬P ∨ ¬Q



8/29

Propositional Calculus: some identities

P Q P ∧Q ¬ (P ∧Q)
T T T F

T F F T

F T F T

F F F T

P Q ¬P ¬Q ¬P ∨ ¬Q
T T F F F

T F F T T

F T T F T

F F T T T

That is ¬ (P ∧Q) = ¬P ∨ ¬Q



8/29

Propositional Calculus: some identities

P Q P ∧Q ¬ (P ∧Q)
T T T F

T F F T

F T F T

F F F T

P Q ¬P ¬Q ¬P ∨ ¬Q
T T F F F

T F F T T

F T T F T

F F T T T

That is ¬ (P ∧Q) = ¬P ∨ ¬Q



8/29

Propositional Calculus: some identities

P Q P ∧Q ¬ (P ∧Q)
T T T F

T F F T

F T F T

F F F T

P Q ¬P ¬Q ¬P ∨ ¬Q
T T F F F

T F F T T

F T T F T

F F T T T

That is ¬ (P ∧Q) = ¬P ∨ ¬Q



8/29

Propositional Calculus: some identities

P Q P ∧Q ¬ (P ∧Q)
T T T F

T F F T

F T F T

F F F T

P Q ¬P ¬Q ¬P ∨ ¬Q
T T F F F

T F F T T

F T T F T

F F T T T

That is ¬ (P ∧Q) = ¬P ∨ ¬Q



8/29

Propositional Calculus: some identities

P Q P ∧Q ¬ (P ∧Q)
T T T F

T F F T

F T F T

F F F T

P Q ¬P ¬Q ¬P ∨ ¬Q
T T F F F

T F F T T

F T T F T

F F T T T

That is ¬ (P ∧Q) = ¬P ∨ ¬Q



8/29

Propositional Calculus: some identities

P Q P ∧Q ¬ (P ∧Q)
T T T F

T F F T

F T F T

F F F T

P Q ¬P ¬Q ¬P ∨ ¬Q
T T F F F

T F F T T

F T T F T

F F T T T

That is ¬ (P ∧Q) = ¬P ∨ ¬Q



9/29

Propositional Calculus: some identities

P Q P ∨Q ¬ (P ∨Q)
T T T F

T F T F

F T T F

F F F T

P Q ¬P ¬Q ¬P ∧ ¬Q
T T F F F

T F F T F

F T T F F

F F T T T

That is ¬ (P ∨Q) = ¬P ∧ ¬Q



9/29

Propositional Calculus: some identities

P Q P ∨Q ¬ (P ∨Q)
T T T F

T F T F

F T T F

F F F T

P Q ¬P ¬Q ¬P ∧ ¬Q
T T F F F

T F F T F

F T T F F

F F T T T

That is ¬ (P ∨Q) = ¬P ∧ ¬Q



9/29

Propositional Calculus: some identities

P Q P ∨Q ¬ (P ∨Q)
T T T F

T F T F

F T T F

F F F T

P Q ¬P ¬Q ¬P ∧ ¬Q
T T F F F

T F F T F

F T T F F

F F T T T

That is ¬ (P ∨Q) = ¬P ∧ ¬Q



9/29

Propositional Calculus: some identities

P Q P ∨Q ¬ (P ∨Q)
T T T F

T F T F

F T T F

F F F T

P Q ¬P ¬Q ¬P ∧ ¬Q
T T F F F

T F F T F

F T T F F

F F T T T

That is ¬ (P ∨Q) = ¬P ∧ ¬Q



9/29

Propositional Calculus: some identities

P Q P ∨Q ¬ (P ∨Q)
T T T F

T F T F

F T T F

F F F T

P Q ¬P ¬Q ¬P ∧ ¬Q
T T F F F

T F F T F

F T T F F

F F T T T

That is ¬ (P ∨Q) = ¬P ∧ ¬Q



9/29

Propositional Calculus: some identities

P Q P ∨Q ¬ (P ∨Q)
T T T F

T F T F

F T T F

F F F T

P Q ¬P ¬Q ¬P ∧ ¬Q
T T F F F

T F F T F

F T T F F

F F T T T

That is ¬ (P ∨Q) = ¬P ∧ ¬Q



9/29

Propositional Calculus: some identities

P Q P ∨Q ¬ (P ∨Q)
T T T F

T F T F

F T T F

F F F T

P Q ¬P ¬Q ¬P ∧ ¬Q
T T F F F

T F F T F

F T T F F

F F T T T

That is ¬ (P ∨Q) = ¬P ∧ ¬Q



9/29

Propositional Calculus: some identities

P Q P ∨Q ¬ (P ∨Q)
T T T F

T F T F

F T T F

F F F T

P Q ¬P ¬Q ¬P ∧ ¬Q
T T F F F

T F F T F

F T T F F

F F T T T

That is ¬ (P ∨Q) = ¬P ∧ ¬Q



9/29

Propositional Calculus: some identities

P Q P ∨Q ¬ (P ∨Q)
T T T F

T F T F

F T T F

F F F T

P Q ¬P ¬Q ¬P ∧ ¬Q
T T F F F

T F F T F

F T T F F

F F T T T

That is ¬ (P ∨Q) = ¬P ∧ ¬Q



10/29

Propositional Calculus: logical operators

Definition
Given two propositions P and Q, we define a third proposition denoted with

P ⇒ Q,

read as “If P then Q” or, also,“P implies Q” and such that

P Q P ⇒ Q
T T T

T F F

F T T

F F T

If we assume a TRUE hypothesis the implication is TRUE if and only if the

thesis is also TRUE, while from a FALSE hypothesis we can derive anything

(both a TRUE and a FALSE thesis).



10/29

Propositional Calculus: logical operators

Definition
Given two propositions P and Q, we define a third proposition denoted with

P ⇒ Q,

read as “If P then Q” or, also,“P implies Q” and such that

P Q P ⇒ Q
T T T

T F F

F T T

F F T

If we assume a TRUE hypothesis the implication is TRUE if and only if the

thesis is also TRUE, while from a FALSE hypothesis we can derive anything

(both a TRUE and a FALSE thesis).



10/29

Propositional Calculus: logical operators

Definition
Given two propositions P and Q, we define a third proposition denoted with

P ⇒ Q,

read as “If P then Q” or, also,“P implies Q” and such that

P Q P ⇒ Q
T T T

T F F

F T T

F F T

If we assume a TRUE hypothesis the implication is TRUE if and only if the

thesis is also TRUE, while from a FALSE hypothesis we can derive anything

(both a TRUE and a FALSE thesis).



10/29

Propositional Calculus: logical operators

Definition
Given two propositions P and Q, we define a third proposition denoted with

P ⇒ Q,

read as “If P then Q” or, also,“P implies Q” and such that

P Q P ⇒ Q
T T T

T F F

F T T

F F T

If we assume a TRUE hypothesis the implication is TRUE if and only if the

thesis is also TRUE, while from a FALSE hypothesis we can derive anything

(both a TRUE and a FALSE thesis).



10/29

Propositional Calculus: logical operators

Definition
Given two propositions P and Q, we define a third proposition denoted with

P ⇒ Q,

read as “If P then Q” or, also,“P implies Q” and such that

P Q P ⇒ Q
T T T

T F F

F T T

F F T

If we assume a TRUE hypothesis the implication is TRUE if and only if the

thesis is also TRUE, while from a FALSE hypothesis we can derive anything

(both a TRUE and a FALSE thesis).



11/29

Propositional Calculus: logical operators

ExampleP = “Rome is the capital of France”

Q = “Paris is the capital of France”
P ⇒ Q is

TRUE

.

ExampleR = “Rome is the capital of France”

S = “Paris is the capital of Italy”
R ⇒ S is

TRUE

.

Example

T = “Rome is the capital of Italy”

U = “Paris is the capital of Germany”
T ⇒ U is

FALSE

.
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Propositional Calculus: logical operators

Starting from

P Q P ⇒ Q
T T T
T F F
F T T
F F T

compute the table of truth of ¬Q ⇒ ¬P

P Q ¬P ¬Q ¬Q ⇒ ¬P
T T F F T
T F F T F
F T T F T
F F T T T

that is (P ⇒ Q) = (¬Q ⇒ ¬P).
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Propositional Calculus: Theorems

Definition

When a proposition can be cast in the form

H ⇒ T

we sometimes refer to H ⇒ T as a Theorem, the proposition H is call the hypothesis
of the theorem while the proposition T is called the thesis.

Consider the following statement:

Theorem

Let m and n be two even numbers. Then n +m is an even number.

In this case

H = “Let m and n be two even numbers”

T = “n +m is an even number” .
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Propositional Calculus: Theorems

Another example of Theorem could be

Theorem

The number
√
2 is irrational.

In this case the theorem is a general statement, which cannot be put in the

form H ⇒ T . It can be rephrase for example in

Theorem

It is not possibile to find a rational number q such that q2 = 2.
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Proving a theorem: direct proof.

Direct proof is typically used for H ⇒ T .
The method
We assume that the properties stated in the hypothesis H are true to prove

that also T is true.

Theorem
Let m and n be two even numbers. Then m + n is an even number.

Proof. Since m is even, then m = 2 k for some k . Since n is even, then

n = 2 q for some q. Then

m + n = 2 k + 2 q = 2 (k + q) = 2 h

with h = k + q, so also n +m is even, whence the thesis.
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Proving a theorem: proof by contraposition.

Proof by contraposition is typically used for H ⇒ T .

The method
We use the equivalence, in terms of table of truth, given by

(H ⇒ T ) = (¬T ⇒ ¬H) .

Theorem

If n2 is even, then n is even.

Proof. Assume that n is odd. Then n = 2 k + 1, which implies

n2 = 4 k2 + 1+ 4 k = 4
(
k2 + k

)
+ 1

which is odd, so n2 is odd.
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Proving a theorem: reductio ad absurdum AKA proof by contradiction

We want to prove that a proposition P is true.

The method
1 We assume that P is false, so ¬P is true.

2 We prove that assuming ¬P to be true implies that a proposition Q
and ¬Q are simultaneously true.

3 Since Q and ¬Q cannot be true simultaneously, then P must be true.
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Proving a theorem: reductio ad absurdum AKA proof by contradiction

Theorem

It is not possibile to find a rational number q such that q2 = 2.

Proof. Direct proof seems quite hard. Proceed by contradiction. Assume,

by contradiction, that there exists two integer numbers n and m such that( n

m

)2
= 2.

Since they appear in a fraction ⇒assume that n and m have no common

factors ⇒at least one is odd.

(the proof continues in the next slide).
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Proving a theorem: reduction ad absurdum AKA proof by contradiction

Summing up we have two integers number, n and m, at least one is odd,

and such that ( n

m

)2
= 2.

then

n2 = 2m2 (?)

and so n2 is even, but then n is even, that is n = 2 k ,whence equation (?)

gives

4 k2 = 2m2 ⇒ 2 k2 = m2,

so m2 is even, but then m is even, a contradiction.
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Necessary and sufficient conditions.

Definition
Suppose that the following implication

A ⇒ B
is true.

Then B is called a necessary condition for A.

Example
We will prove that....

If f (x) is differentiable in x0︸ ︷︷ ︸
A

⇒ f (x) is continuous in x0 (F)︸ ︷︷ ︸
B

.

Suppose you find a funct. that is not continuous in x0. Could it be

differentiable in x0? NO! Implication (F) would establish that the funct. is

continuos in x0. This is why continuity in x0 is a necessary condition for

differentiability....although it is not sufficient!
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Necessary and sufficient conditions.

Definition
Suppose that the following implication

A ⇒ B
is true. Then A is called a sufficient condition for B .

Example
We will prove that....

If f (x) is differentiable in x0 ⇒ f (x) is continuous in x0 (F) .

Now suppose that you find a function that is differentiable in x0. Is it

continuous in x0? YES! It is enough to apply implication (F).
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Sets

Definition

A set is any collection/grouping/list of objects and it is defined once the full list of its
constituents/elements is given.

Extensive declaration

When all elements are explicitly listed:

A = {4,©,F}, B = {−20, 5, 13, 56.7}.

N = {0, 1, 2, 3, 4, 5, ....}.

Very problematic to use when the number of elements is infinite! We all have an
intuitive notion of N, but for other sets with an infinite number of elements it could be
very problematic to use the extensive declaration.

Intensive declaration

When the rule/property that defines the elements is given

A = {All cities of Europe}.

A = {All numbers between zero and one}.
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Sets: the ∈ symbol

The ∈ symbol

Write a ∈ A to say that a is an element of A and a /∈ A to say the opposite.

If A = {4,©,F} then 4 ∈ A, © ∈ A and F ∈ A.

If A = {−20, 5, 13, 56.7} then −20 ∈ A, 5 ∈ A and so on...

If A = {All cities of Europe} then Paris ∈ A

If A = {All numbers between zero and one} then 1
2 ∈ A.

Remark. The ∈ symbol is frequently used in the intensive notation.

A = {All cities of Europe} , B = {x ∈ A | x is a capital city} .

So that Milan ∈ A but Milan /∈ B .
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Sets: the ∀ symbol

The ∀ symbol
Write ∀a ∈ A

as a shortcut to declare a property that holds

“for ALL the elements of the set A”.

Examples:

If A = {0, 0.2, 0.5, 0.6, 0.7, 0.9, 1} then we can say that ∀a ∈ A it

holds that a ≥ 0.

If A = {0, 0.2, 0.5, 0.6, 0.7, 0.9, 1} then we can say that ∀a ∈ A it

holds that a ≤ 1.



24/29

Sets: the ∀ symbol

The ∀ symbol
Write ∀a ∈ A as a shortcut to declare a property that holds

“for ALL the elements of the set A”.

Examples:

If A = {0, 0.2, 0.5, 0.6, 0.7, 0.9, 1} then we can say that ∀a ∈ A it

holds that a ≥ 0.

If A = {0, 0.2, 0.5, 0.6, 0.7, 0.9, 1} then we can say that ∀a ∈ A it

holds that a ≤ 1.



24/29

Sets: the ∀ symbol

The ∀ symbol
Write ∀a ∈ A as a shortcut to declare a property that holds

“for ALL the elements of the set A”.

Examples:

If A = {0,

0.2, 0.5, 0.6, 0.7, 0.9, 1} then we can say that ∀a ∈ A it

holds that a ≥ 0.

If A = {0, 0.2, 0.5, 0.6, 0.7, 0.9, 1} then we can say that ∀a ∈ A it

holds that a ≤ 1.



24/29

Sets: the ∀ symbol

The ∀ symbol
Write ∀a ∈ A as a shortcut to declare a property that holds

“for ALL the elements of the set A”.

Examples:

If A = {0, 0.2

, 0.5, 0.6, 0.7, 0.9, 1} then we can say that ∀a ∈ A it

holds that a ≥ 0.

If A = {0, 0.2, 0.5, 0.6, 0.7, 0.9, 1} then we can say that ∀a ∈ A it

holds that a ≤ 1.



24/29

Sets: the ∀ symbol

The ∀ symbol
Write ∀a ∈ A as a shortcut to declare a property that holds

“for ALL the elements of the set A”.

Examples:

If A = {0, 0.2, 0.5

, 0.6, 0.7, 0.9, 1} then we can say that ∀a ∈ A it

holds that a ≥ 0.

If A = {0, 0.2, 0.5, 0.6, 0.7, 0.9, 1} then we can say that ∀a ∈ A it

holds that a ≤ 1.



24/29

Sets: the ∀ symbol

The ∀ symbol
Write ∀a ∈ A as a shortcut to declare a property that holds

“for ALL the elements of the set A”.

Examples:

If A = {0, 0.2, 0.5, 0.6

, 0.7, 0.9, 1} then we can say that ∀a ∈ A it

holds that a ≥ 0.

If A = {0, 0.2, 0.5, 0.6, 0.7, 0.9, 1} then we can say that ∀a ∈ A it

holds that a ≤ 1.



24/29

Sets: the ∀ symbol

The ∀ symbol
Write ∀a ∈ A as a shortcut to declare a property that holds

“for ALL the elements of the set A”.

Examples:

If A = {0, 0.2, 0.5, 0.6, 0.7

, 0.9, 1} then we can say that ∀a ∈ A it

holds that a ≥ 0.

If A = {0, 0.2, 0.5, 0.6, 0.7, 0.9, 1} then we can say that ∀a ∈ A it

holds that a ≤ 1.



24/29

Sets: the ∀ symbol

The ∀ symbol
Write ∀a ∈ A as a shortcut to declare a property that holds

“for ALL the elements of the set A”.

Examples:

If A = {0, 0.2, 0.5, 0.6, 0.7, 0.9

, 1} then we can say that ∀a ∈ A it

holds that a ≥ 0.

If A = {0, 0.2, 0.5, 0.6, 0.7, 0.9, 1} then we can say that ∀a ∈ A it

holds that a ≤ 1.



24/29

Sets: the ∀ symbol

The ∀ symbol
Write ∀a ∈ A as a shortcut to declare a property that holds

“for ALL the elements of the set A”.

Examples:

If A = {0, 0.2, 0.5, 0.6, 0.7, 0.9, 1} then we can say that ∀a ∈ A it

holds that a ≥ 0.

If A = {0, 0.2, 0.5, 0.6, 0.7, 0.9, 1} then we can say that ∀a ∈ A it

holds that a ≤ 1.



24/29

Sets: the ∀ symbol

The ∀ symbol
Write ∀a ∈ A as a shortcut to declare a property that holds

“for ALL the elements of the set A”.

Examples:

If A = {0, 0.2, 0.5, 0.6, 0.7, 0.9, 1} then we can say that ∀a ∈ A it

holds that a ≥ 0.

If A = {0, 0.2, 0.5, 0.6, 0.7, 0.9, 1} then we can say that ∀a ∈ A it

holds that a ≤ 1.



25/29

Sets: the ∃, @ symbols

The ∃ symbol
Write ∃a ∈ A

as a shortcut to declare a property that holds

“for AT LEAST ONE element of A”.

We use @ to say the opposite.
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Sets: the ∃! symbol

The ∃! symbol
Write ∃!a ∈ A

as a shortcut to declare a property that holds

“for a UNIQUE element of A”.

Examples:

If A = {0, 0.2, 0.5, 0.6, 0.7, 0.9, 1} then we can say that ∃!a ∈ A such

that 0 < a < 1
2 .
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Sets: a summary of the quantifiers

a ∈ A reads as “the element a belongs to the set A”.

∀a ∈ A reads as “for all the elements of A”.

∃a ∈ A reads as “there exists at least one a in A”.

@a ∈ A reads as “it does not exist an a in A”.

∃!a ∈ A reads as “there exists one and only one a in A”.
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Negation of the logical symbol

Statement Negation

∀x ∈ A⇒ P (x)

∃x ∈ A : ¬P (x)

∃x ∈ A : P (x) ∀x ∈ A⇒ ¬P (x)

∃!x ∈ A : P (x) (∀x ∈ A⇒ ¬P (x)) ∨ (∃y ∈ A, y 6= x : P (y))

Example

¬
(
∀x ∈ A⇒ x2 < 1

)
=

(
∃x ∈ A : x2 ≥ 1

)
¬
(
∃x ∈ A : x2 < 1

)
=

(
∀x ∈ A⇒ x2 ≥ 1

)
¬
(
∃!x ∈ A : x2 < 1

)
=

(
∀x ∈ A⇒ x2 ≥ 1

)
∨
(
∃y ∈ A, y 6= x : y2 < 1

)
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Sets: operations

The ∪ and ∩ symbols
Let A and B be two sets

The set A∪B is the set that contains all the elements of A and all the

elements of B

A ∪ B = {x | x ∈ A or x ∈ B} = {x | x ∈ A ∨ x ∈ B}

The set A ∩ B is the set that contains all the elements in common

between A and B

A ∩ B = {x | x ∈ A and x ∈ B} = {x | x ∈ A ∧ x ∈ B}
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