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Each class starts 15 minutes after the
~../ posted starting time.

NO ENTRANCE will be allowed after this time. ( >

Talking is forbidden during classes.
@ For any question or doubt raise your hand and ask the
teacher, not your colleagues!

Those who disturb the lesson will be invited to

leave the classroom immediately.
A N

Nomal . If the noise in the classroom exceeds a certain

S 9‘ threshold, the lesson will be ended.
- PN

3

'?4 The undiscussed topics will still be subject
" of examination.
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Detailed time schedule
Day Typology Starting at

Tuesday Sep 17, 2019 Lecture 15:00 Aula T3
Thursday Sep 19, 2019 Lecture 11:00 Aula T2
Tuesday Sep 24, 2019 Lecture 17:00 Aula T3
Seg 26, 2019 Iﬁcture 13:00 Aula T2

Sep 26, 2019 Practice 18:00 Aula 12
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Berkan Alessio Fernando
Acar Fiorentini Loaiza Erazo
All surnames All surnames All surnames
from from from
AtoD E to M N to Z

ﬂ Teaching assistants will help you and provide
w further guidance.

A Be respectful with them!
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. .’ Raise as many questions as you want
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PRACTICES

At the beginning of each practice the TA will
assign a “Classwork” to each student present.
\‘ The classwork is a short exam, made of few

| I exercises, on the topics discussed during the
previous lectures.

(“ The classwork lasts from 5 to 15 minutes
. depending on the difficulty.

You will be assigned a grade form 0 to 3. The
average of all the grades will be summed to the
mid-term.

5:@_

If you are absent...this will be counted as a zero.
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» Classwork 11 October 2017

» Classwork 14 November 2017
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~

Ghe solutions of the classwork will
be published some day after the
corresponding practice.

Ask your TA to keep trace of your
errors and mistakes in the

classworks!
\__ Y,
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Books for the course f 1
- Additional Material The main text are my NOTES.

\ Some additional material is also
» NOTES available.

N J

Radicals, algebraic fractions, set theory, intervals of real
numbers, functions, equations, inequalities, geometry and
trigonometry.
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Books for the course
» Additional Material
data inserimento: 2018-09-15 19:32:02

» NOTES
data inserimento: 2018-09-15 19:31:38

WARNING
( SLIDES ARE NOT AVAILABLE! (
e Pay attention during M

each class, ask questions and take notes.
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Structure of the course and of the exam
Mid-term

B The mid-term is scheduled for the last
week of November (to be defined).

SO . . . . .
$e%%% The mid-term is an examination on all the topics

O g O . . .
‘0 discussed during lectures and practices.

The arithmetic mean of all the class-works is
added to the grade of the mid-term.

0_—| Registration to the mid-term is compulsory!
(=) Registrations will be open from November, 1st, 2019 to

—I five days before the exam date.
Info: Silvia Tabuani.
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Teaching material

Previous exams and mid-terms
» Exam, Part I, September 2018
data inserimento: 2018-09-13 17:19:28

» Mid-term of 2017/2018 (February) with solutions
data inserimento: 2018-02-14 13:56:15

» Exam, Part I, January 2018
data inserimento: 2018-01-24 14:20:21

» Exam, Part I, July 2017
data inserimento: 2018-01-11 11:34:03

» Exam, Part I, July 2018
data inserimento: 2018-07-03 19:00:06
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sure.
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Did you pass the mid-term?
(grade > 18)

© @

Y (A1l class-works are

(Do you accept the gradeJ @ invalidated.

You can attend the midterm

of M2.

@ In the summer call you will
have to do the M1-part for
sure.

You must choose one and only one call of the summer
session and you will have to do only the M2 part.

Should you be successful also in the M2 mid-term, the exam is
approved.
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Propositional Calculus: formal definition of a Proposition

Definition
A proposition is any claim/assertion that can be either TRUE or FALSE.
We indicate propositions with the calligraphic letter P, Q, R, ...

Example

@ R ="Rome is a nice city”. It attributes a subjective quality = it is not
possible to establish CERTAINLY whether it is TRUE or FALSE (for

someone will be true for someone else will be false).
@ P ="Rome is the capital of France”, P is FALSE.
o Q ="Paris is the capital of France”, Q is TRUE.
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Propositional Calculus: logical operators
Definition
Given a proposition P we indicate with —P a new proposition which is

FALSE if P is TRUE and vice versa. The proposition —P is called the
negation of P.

—
M

Example

P = “Rome is the capital of France”

=P = “Rome is not the capital of France”
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Given two propositions P and Q, we define a third proposition denoted with
PAQ,

which is read “P and Q" and that is TRUE if and only if both P and Q are
TRUE, and it is FALSE in all the other cases.
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Definition
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Propositional Calculus: logical operators

Definition
Given two propositions P and Q, we define a third proposition denoted with

PAQ,

which is read “P and Q" and that is TRUE if and only if both P and Q are
TRUE, and it is FALSE in all the other cases.

v

Q
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F
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F
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RAS is
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Example

P = “Rome is the capital of France”
P A Q is FALSE.

Q = “Paris is the capital of France”

Example

R = “Rome is the capital of Italy”
RAS is TRUE.

S = “Paris is the capital of France”
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Propositional Calculus: logical operators

Definition
Given two propositions P and Q, we define a third proposition denoted with

PV O,

which is read “P or Q" and that is FALSE if and only if both P and O are
FALSE, and it is TRUE in all the other cases.
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Propositional Calculus: logical operators

Example

P = “Rome is the capital of France”
PV Qis TRUE.

Q = “Paris is the capital of France”

Example

R = “Rome is the capital of France”
RVS is FALSE.

S = “Paris is the capital of Italy”
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TI|F F T
FIT F T
F|F F T

P|lQ|-P|-Q|-PV-0Q
T|T|F |F F
T|F|F |T T
F|T|T |F T
FIF [T |T T

Thatis = (PAQ)=-PV-0Q



Propositional Calculus: some identities




Propositional Calculus: some identities




Propositional Calculus: some identities

Plao|Pval|-(Pvo
TIT] 7T F
TIF| T F
FIT] T F



Propositional Calculus: some identities

PlQ|PVQ|-(PVQ)
T T T F
TI|F T F
FIT T F
F|F F T




Propositional Calculus: some identities

PlQ|PVQ|-(PVQ)
T T T F
TI|F T F
FIT T F
F|F F T




Propositional Calculus: some identities

PlQ|PVQ|-(PVQ)
T T T F
TI|F T F
FIT T F
F|F F T

Plo|-P|-g|-Pr-Q
TIT[F |F F
TIFI|F |T F




Propositional Calculus: some identities

PlQ|PVQ|-(PVQ)
T T T F
TI|F T F
FIT T F
F|F F T

Plo|-P|-g|-Pr-Q
TIT[F |F F
TIFI|F |T F
FlT|T |F F



Propositional Calculus: some identities

PlQ|PVQ|-(PVQ)
T T T F
TI|F T F
FIT T F
F|F F T

P|lQ|-P|-Q|-PA-Q
T|T|F |F F
T|F|F |T F
F|T|T |F F
FIF [T |T T




Propositional Calculus: some identities

PlQ|PVQ|-(PVQ)
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P|lQ|-P|-Q|-PA-Q
T|T|F |F F
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FIF [T |T T

Thatis = (PV Q) =—-P A-Q
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Propositional Calculus: logical operators
Definition
Given two propositions P and Q, we define a third proposition denoted with

P =09,

read as “If P then Q" or, also,”P implies Q" and such that

P|lQ|P=2Q
T| T T
TI\F| F
Fl1T T
F|F T

If we assume a TRUE hypothesis the implication is TRUE if and only if the
thesis is also TRUE, while from a FALSE hypothesis we can derive anything
(both a TRUE and a FALSE thesis).
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Propositional Calculus: logical operators

Example

P = “Rome is the capital of France”

Q = “Paris is the capital of France”

P = Qis TRUE.

Example

R = “Rome is the capital of France”

S = “Paris is the capital of Italy”

R =S is TRUE.

Example

T = “Rome is the capital of Italy”
U = “Paris is the capital of Germany”

T =U is FALSE.




Propositional Calculus: logical operators

Starting from

Mmoo A
47 Hlo

compute the table of truth of =Q = —P

4 47+l



Propositional Calculus: logical operators

Starting from

o449
m 4T 4
4 4947 4|4

compute the table of truth of -Q = =P

Plo|-P|-g|-0=-P
T|T[F |F | T



Propositional Calculus: logical operators

Starting from

Mmoo A
47 Hlo

compute the table of truth of -Q = =P

Plo|-r|-0|-esr
T|T|F |F T
T|F|F |T F




Propositional Calculus: logical operators

Starting from

Pl Q ‘ P=Q

T|T T

TI|F F

F|T T

FIF T

compute the table of truth of -Q = =P

Plo|-P|-g|-0=-P
T|T|F F T
TIF|F |T F
F|T|T F T



Propositional Calculus: logical operators

Starting from

o449
m 4T 4
4 4947 4|4

compute the table of truth of -Q = =P

Plo|-P|-g|-0=-P
T|T|F |F T
TIF|F |T F
FIT|T |F T
FIFE|T | T T



Propositional Calculus: logical operators

Starting from

o449
m 4T 4
4 4947 4|4

compute the table of truth of -Q = =P

Plo|-P|-g|-0=-P
T|T|F |F T
TIF|F |T F
FIT|T |F T
FIFE|T | T T

that is (P = Q) = (-Q = —P).
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Definition

When a proposition can be cast in the form
H=>T

we sometimes refer to H = T as a Theorem, the proposition H is call the hypothesis
of the theorem while the proposition T is called the thesis.

Consider the following statement:

Theorem

Let m and n be two even numbers. Then n+ m is an even number.

In this case

H = "Let m and n be two even numbers”

T ="“n-+ mis an even number’.
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Another example of Theorem could be

Theorem

The number \/2 is irrational.

In this case the theorem is a general statement, which cannot be put in the

form H = T. It can be rephrase for example in

Theorem

It is not possibile to find a rational number q such that q> = 2.
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Proving a theorem: direct proof.

Direct proof is typically used for H = T.
The method

We assume that the properties stated in the hypothesis H are true to prove
that also 7 is true.

Theorem

Let m and n be two even numbers. Then m + n is an even number.

Proof. Since m is even, then m = 2 k for some k. Since n is even, then

n = 2q for some q. Then
m+n=2k+2q=2(k+q)=2h

with h = k + g, so also n+ m is even, whence the thesis. O
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Proving a theorem: proof by contraposition.

Proof by contraposition is typically used for H = T.
The method

We use the equivalence, in terms of table of truth, given by

H=T)=T=-H).

Theorem

If n? is even, then n is even.

Proof. Assume that nis odd. Then n =2 k + 1, which implies

n? =



Proving a theorem: proof by contraposition.

Proof by contraposition is typically used for H = T.
The method

We use the equivalence, in terms of table of truth, given by

H=T)=T=-H).

Theorem

If n? is even, then n is even.

Proof. Assume that nis odd. Then n =2 k + 1, which implies

P =4k>+1+4k=



Proving a theorem: proof by contraposition.

Proof by contraposition is typically used for H = T.
The method

We use the equivalence, in terms of table of truth, given by

H=T)=(CT=-H).

Theorem

If n? is even, then n is even.

Proof. Assume that nis odd. Then n =2 k + 1, which implies
=4k +1+4k=4 (kK +k)+1

which is odd, so n? is odd.
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Proving a theorem: reductio ad absurdum AKA proof by contradiction

Theorem

It is not possibile to find a rational number q such that g> = 2.

Proof. Direct proof seems quite hard. Proceed by contradiction. Assume,

by contradiction, that there exists two integer numbers n and m such that

(2 -2

Since they appear in a fraction =-assume that n and m have no common

factors =-at least one is odd.

(the proof continues in the next slide).
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Proving a theorem: reduction ad absurdum AKA proof by contradiction

Summing up we have two integers number, n and m, at least one is odd,

and such that

then

2

and so n“ is even, but then n is even, that is n = 2 k,
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Summing up we have two integers number, n and m, at least one is odd,
and such that

then
n® =2m? (%)
and so n? is even, but then n is even, that is n = 2 k,whence equation (%)
gives
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Proving a theorem: reduction ad absurdum AKA proof by contradiction

Summing up we have two integers number, n and m, at least one is odd,
and such that

then
n® =2m? (%)
and so n? is even, but then n is even, that is n = 2 k,whence equation (%)
gives

4Kk?=2m? = 2k = m?,



Proving a theorem: reduction ad absurdum AKA proof by contradiction

Summing up we have two integers number, n and m, at least one is odd,
and such that

then
n® =2m? (%)
and so n? is even, but then n is even, that is n = 2 k,whence equation (%)
gives
4Kk?=2m? = 2k = m?,
so m?

is even, but then m is even, a contradiction. ]
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Necessary and sufficient conditions.
Definition
Suppose that the following implication

A=B

is true. Then B is called a necessary condition for A.

Example
We will prove that....

If f(x) is differentiable in xg = f (x) is continuous in xo ().

A B

Suppose you find a funct. that is not continuous in xg. Could it be
differentiable in xo? NO! Implication (%) would establish that the funct. is
continuos in xg. This is why continuity in xg is a necessary condition for

differentiability....although it is not sufficient!
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Sets
Definition
A set is any collection/grouping/list of objects and it is defined once the full list of its

constituents/elements is given.

Extensive declaration

When all elements are explicitly listed:
° A={A,0O, %}, B={-20,5,13,56.7}.
e N={0,1,2,3,4,5,...}.

Very problematic to use when the number of elements is infinite! We all have an
intuitive notion of N, but for other sets with an infinite number of elements it could be

very problematic to use the extensive declaration.

Intensive declaration

When the rule/property that defines the elements is given
@ A= {All cities of Europe}.

@ A = {All numbers between zero and one}.
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Sets: the € symbol

The € symbol
Write a € A to say that a is an element of A and a ¢ A to say the opposite.

o fA={A, O, %} then Ac A O€Aand % € A
o If A={-20,5,13,56.7} then —20 € A, 5 € A and so on...
o If A= {All cities of Europe} then Paris € A

o If A= {All numbers between zero and one} then 1 € A.

Remark. The € symbol is frequently used in the intensive notation.
A = {All cities of Europe}, B = {x € A| x is a capital city} .

So that Milan € A but Milan ¢ B.
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Sets: the V symbol

The V symbol

Write Va € A as a shortcut to declare a property that holds
“for ALL the elements of the set A"

Examples:

e If A={0,0.2,0.5,0.6,0.7,0.9,1} then we can say that Va € A it
holds that a > 0.

e If A={0,0.2,0.5,0.6,0.7,0.9,1} then we can say that Va € A it
holds that a < 1.
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Write da € A
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Sets: the 3, 7 symbols

The 3 symbol
Write Ja € A as a shortcut to declare a property that holds

“for AT LEAST ONE element of A".

We use 7 to say the opposite.
Examples:
e If A={0,0.2,0.5,0.6,0.7,0.9,1} then we can say that Ja € A such
that 0 < a < %
o If A=1{0,0.2,0.5,0.6,0.7,0.9, 1} then we can say that fa € A such
that a < 0.
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The 3! symbol
Write Jla € A
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The 3! symbol
Write Jla € A as a shortcut to declare a property that holds

“for a UNIQUE element of A".

Examples:

e If A={0,0.2,0.5,0.6,0.7,0.9, 1} then we can say that 3!a € A such
that 0 < a < 3.
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Sets: a summary of the quantifiers

a € A reads as “the element a belongs to the set A"
@ Va € A reads as “for all the elements of A".
@ dJa € A reads as “there exists at least one ain A".

fa € A reads as ‘it does not exist an a in A"

e dla € A reads as “there exists one and only one a in A",
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Statement ‘ Negation

Vxe A=P(x) | 3xe A: =P (x)
IxeA:P(x) |VxeA=-P(x)
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Negation of the logical symbol

Statement ‘ Negation

Vxe A=P(x) | 3xe A: =P (x)

IxeA:P(x) |VxeA=-P(x)

AxeA:P(x) | (WxeA=-Px)V@ByecAy#x:P(y))

Example
—|(VXEA:>X2<1) = (EIXGA:X221)
—|(3X€A:X2<1) = (VXGA:>X2Z].)

—|(E|!x€A:x2<1) = (VXEA:>X2Zl)v(flyeA,y#x:y2<1
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Sets: operations

The U and N symbols
Let A and B be two sets

@ The set AU B is the set that contains all the elements of A and all the

elements of B

AUB={x|xecAorxeB}={x|xeAVvxeB}

@ The set AN B is the set that contains all the elements in common
between A and B

ANB={x|xeAand xe B} ={x|xe€ AAx e B}




