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Sets: a summary of the quantifiers

a € A reads as “the element a belongs to the set A"
@ Va € A reads as “for all the elements of A".
@ dJa € A reads as “there exists at least one ain A".

fa € A reads as ‘it does not exist an a in A"

e dla € A reads as “there exists one and only one a in A",
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Negation of the logical symbol

Statement ‘ Negation

Vxe A=P(x) | 3xe A: =P (x)
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The U and N symbols
Let A and B be two sets

@ The set AU B is the set

AUB={x|xc€AorxeB}={x|xeAvxeB}

@ The set AN B is the set

ANB={x|xe€Aand xe B} = {x|xe AAx € B}
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The U and N symbols: some examples.

A={% & %}, B={#ho}.

then
e AUB = {&, M, %k, o}
e ANB = {&}.
Definition

The symbol @ indicates the set WITHOUT elements, also said the empty

set.

Remark. For ANY set E

EUD=E, ENO=0
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Sets and subsets

The C and C symbols
Let A and B be two sets.

@ We say that A C B if
xe€A=x¢eB.

@ We say that AcC B if

xeEA=xeBAIbeB:b¢A.

e We say that AD Bif BC A.
e We say that AD B if B C A.
o We say that A= B if and only if

ACBABCA.
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Example.
A = {All cities of Europe}, B ={x € A| x is a capital city} .

then B C A.
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Sets: the complement set

The minus set

Let A and B be two sets. We define A\ B={x € A|x ¢ B}.

J

Example.

A={% & %}, B={&o}.
then A\ B= {#,%}.
The complement

Let A and B be two sets and suppose B C A. We define B€ = A\ B.

Example.

A = {All cities of Europe}, B = {x € A| x is a capital city} .

then B = {x € A| x is not a capital city}.
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Sets: the complement set

Remark If B C A then

BU B =A.

Bn B¢ =0.
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Sets: the cartesian product

Example. Consider the two sets
A= {A707*}7 B = {A,O}.
then

Ax B ={(A,1), (4A,0), (O, 4), (O,2), (k,A), (K, 0)}

and

BxA={(£,4),(£,0),(L,%),(0,4),(2,0), (o, %)}

so typically A x B # B x A.
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Definition
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The power set

Definition
For any set A the power set is the set denoted with P (A) and it is defined

as the set of all possible subsets of A, that is

P(A)={Bisaset| BC A}.

Example. Consider the set
A={A,0, %}
then

P(A) - {(2)7 {A7Ov *}7 {A7O}7 {A, *}7 {07*}7 {A}, {0}7



The power set

Definition
For any set A the power set is the set denoted with P (A) and it is defined

as the set of all possible subsets of A, that is

P(A)={Bisaset| BC A}.

Example. Consider the set
A={A,0, %}
then

P(A) = {0, {4, 0, %}, {2, 0, {24, %}, {O, %}, {4}, {O}, {*}}-



Cardinality

Definition
For any set A the cardinality of A is indicated as Card (A) and it is defined

as the number of elements of A.

Examples.

A=A{A,0, %}



Cardinality

Definition
For any set A the cardinality of A is indicated as Card (A) and it is defined

as the number of elements of A.

Examples.
A={A,O, %} = Card (A) =3

Since
P(A)={0,{2,O,%}.{A,0},{&, %}, {0, %} .{2},{O}, {*}}
then Card (P (A)) = 8 = 23.

More generally if Card (A) = n then Card (P (A)) = 2".
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Cardinality

Definition

For any set A the cardinality of A is

Card (A) = Number of elements of A € N.

Examples.
A = {All numbers greater or equal than zero}

then
Card (A) = + oc.
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Properties of union and intersection

Theorem

Given A, B and C sets, the following properties hold trivially

e ACAUB.

e ANBCA.

e fACBthenAUB =B and AN B = A.

e AUB=BUAand ANB=BnNA.
(AUB)UC=AU(BUC)and (ANB)NC=AN(BNC).
AN(BUC)= (AnB)U(ANC).
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For example...
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Standard operations on Q

o Product:
n k n-k E | 1 7 1.7 25
— = xample: -+ - = — = —
m qg m-q P 3 4 3-4 12
@ Inverse:
1
=
‘m

@ k-th power:
(m)k_ m m m mk _ <1>10_ 1
n/  n n ’ ' -
—_———

and
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Definition

For every g € (Q we use the notation
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Decimal representation of Q
Definition

For every g € Q we use the notation
q = knkn,:[ c. ko, d1d2 PN
to indicate the decimal representation of g, that is

q = ky-10"+k, 1-10" 14k, 5-10" 24, +ko-10%4d1- 107 +db- 10724 ..

v

Example

3 0,3=0-10°+3-107!

10 ’

173

- = 86,5=8-1014+6-10+5-1071
1

Z = 0,3333333...=0-10°+3-107'+3-1072+3-1073+...
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Decimal representation of Q

Theorem
Let g = 77 be a rational number. Then there are two mutually exclusive

possibilities:
@ The decimal representation of q is made by a finite number of digits.

@ The decimal representation of q is made by an infinite number of

digits but it is periodic. In this case the period contains at most n — 1

different digits.




Decimal representation of Q

Number

~iR

Decimal Representation

Length of the period

0,8181818181... = 0,81
0,14285714285714 . .. = 0, 142857
0,01234567901234679 . .. = 0,012345679

0,0344827586206896551724137931

28



