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We already know that #x € Q such that x? = 2.
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Maximum and Minimum: uniqueness

Theorem

Let E C Q. The minimum of E, provided that it exists, it is unique. The
same is true for the minimum.

Proof. Let's assume, by contradiction, that there exists two maxima M;
and M, of E, with M, 75 M.

@ Since, by definition of maximum, M; € E and since M, is a maximum,
then My < M.

@ Since, by definition of maximum, M, € E and since M; is a maximum,
then My < Mj.

My < My and My < My imply My = Ma, which contradicts My # M.
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No matter how small we take 1/n
there will be another point in the
set which is smaller!
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Remark
The set E = {% | neN, n> 0} is clearly “limited from below”, but...

it has no minimum!

M

The definition of max and min appears to be too tight!

To define infimum and supremum of a set we need to define oco.
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TN

All rooms are There is no room for
occupied! a new guest!

Are not equivalent if the number of rooms
1s infinite!!
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Iy =,
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V1) 0°.
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Exercize

Which are the lower bounds and the upper bounds of the set

e-{;
n

neN, n>0} ?

Solution. Clearly:

@ For all x € E we have x <1, hence all u € Q such that u > 1 are
upper bounds.

@ For all x € E we have x > 0, hence all £ € Q such that £ <0 are

lower bounds.
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Let E C Q. Recall that
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If Ue = 0 we set
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Supremum and Infimum

Definition
Let E C Q. Recall that

Le={¢€ Q]| ¢is alower bound of E}.

If Le = () we set
inf (E) = —o0.
|(r[12() 00

If Lg # 0 we set
i&f(E) =max(Lg).
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Example

Consider the set
1
E={ nEN,n>O}={1,§,

Ur={ueQ|u>1}, Leg={fecQ|l<0}

and so, although E has no minimum element, we have

S|

Wl =
=
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then
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sup (E) = min (Ug) = 1.
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Supremum and Infimum

Theorem
Let E C Q be a subset of Q. The following statements hold

o If E has a maximum point M then supg (E) = M.

e If E has a minimum point m then infg (E) = m.

Remark
For every set E C Q
(provided that, at least E # ()
the max and the min may not exist ...

. in this case we look for the supremum and the infimum.

Although they could be +00 or —cc ...
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Q is far to be complete.
Problem. Consider the set
A={qeQ|q¢*<2}.
We note that

o A0, for example 3 € A since (%)2 =1<2

@ The number 2 is an upper bound for A.
Does the set A has a supremum? Yes it is the number g, such that
g =2
The supremum 3 in Q! =Q has “holes” here and there...

Can we fill them?
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Natural, N Start with the counting numbers (zero may be included).

[ ® o o] »
0 1 2 3
Integer, Z Extend the line backward to include the negatives.
< ® ® [ [ ® a o] >
-3 -2 -1 0 1 2 3
Rational, © Insert all the fractions.
-23/ -1l =Y 1y 11/ 23/
‘....400....3..020...20...3.....4...>
-3 -2 -1 0 1 2 3
Real, R Fill in all the numbers to make a continuous line.
- -e -2 -1/2 1/2 V2 e =

qe o . @000 . Qo 0.0 : Q0.0 0:Q0:0:0:Q0:0:0:Q:0:0:0:Q:0:0)p

-3 -2 -1 0 1 2 3
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Rational numbers

Theorem

There exists a set R (called: the real line or the set of real numbers) such
that

CR
and such Q

VECR: E#0 A Ug#0 = 3Imin(Ug)= sup(E).
R

Remark

Similarly ... R is such that

VECR: E#0 AN Lg#0 = EImax(LE):i%f(E).
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A natural question

Which are the numbers of R that are not in Q 7 That is, which elements
does the set

I=R\Q

contain? Remember that Q contains all the number whose decimal

representation is either finite or periodic, for example

1

1
5 =0.5 - =0,142857142857142857142857 ...

The set I is called the set of irrational numbers and contains all the

number whose decimal representation is neither finite nor periodic!
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The number p € R such that p? = 2 is called p = v/2 and ...

V2 = 1.4142135623730950488016887242096980785696718753769480731766
797379907324784621070388503875343276415727350138462309122970249 . ..

We will never know the true value of v/2! We can only construct algorithms to compute

which are the next digits ...

Example

e = 2.7182818284590452353602874713526624977572470936999595749669
676277240766303535475945713821785251664274274663919320030599.. . .

m = 3.1415926535897932384626433832795028841971693993751058209749

445923078164062862089986280348253421170679821480865132823066 . . .




