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models. Forecasting.

� Nonstationary time series analysis: ARIMA models. Seasonality, The
Box-Jenkins approach.

� Unit roots in macroeconomic time series: Deterministic trends vs.
random walks. Unit-roots tests.

� The analysis of �nancial time series: Volatility and conditional het-
eroscedasticity. GARCH and IGARCH models.



1 Univariate time series analysis: Basic concepts

We consider a univariate time series, yt; t = 1; : : : ; T .

The information set is the series itself and its position in time.

We now review some basic concepts in time series analysis, along with
simple and essential tools for descriptive analysis.

The main descriptive tool is the plot of the series, by which we represent
the pair of values (t; yt) on a Cartesian plane.

The graph can immediately reveal the presence of important features, such
as trend and seasonality, structural breaks and outliers, and so forth.

The series may be a transformation of the original measurements: loga-
rithms; changes, log-di�erences, etc.
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Figure 1: Plots of various time series



2 Stationary stochastic processes

Stochastic process: a collection of random variables fyt(!); ! 2 
; t 2 Zg
de�ned on a probability space (
; F; P ), where the integer number t is a
time-index, 
 is the sample space, F is a sigma algebra de�ned on 
 and
P is a probability measure on 
. A time series is a realization of the
stochastic process for a given ! 2 
 and t = 0; 1; 2; :::; T .

Stationarity: yt is weakly stationary if 8t; k 2 Z:

E(yt) = � <1
E(yt � �)2 = 
(0) <1

E(yt � �)(yt�k � �) = 
(k)

yt is strictly stationary if 8t; k; h 2 Z:

(yt; yt+1; :::yt+h)
d
= (yt+k; yt+1+k; :::yt+h+k)



Strict stationarity implies weak stationarity whereas the viceversa is in gen-
eral not true. The exception are Gaussian processes, i.e., if the distribution
of (yt; yt+1; :::yt+h) is a multivariate Gaussian for 8t; h 2 Z.

Autocovariance function, 
(k), is symmetric: 
(k) = 
(�k).
The partial autocovariance function at lag k is the covariance between yt
and yt�k having removed the e�ects of wt = (yt�1; � � � ; yt�k+1), i.e.

g(k) = E
�
[yt � E(ytjwt)][yt�k � E(yt�kjwt)]

	
Autocorrelation function (ACF):

�(k) = 
(k)=
(0)

i) �(0) = 1; ii) j�(k)j < 1; iii) �(k) = �(�k).
The partial autocorrelation function (PACF):

r(k) = g(k)=
n
E[yt � E(ytjwt)]2E[yt�k � E(yt�kjwt)]2

o1=2



White noise (WN): "t �WN(�2);

E("t) = 0; 8t;
E("2t ) = �2 <1 8t;

E("t"t�k) = 0; 8t;8k 6= 0:

Lag operator: Lkyt = yt�k; L is an algebraic operator.

Wold theorem: (almost) any weakly stationary stochastic process can be

represented as a linear process, i.e.

yt = �+ "t +  1"t�1 +  2"t�2 + � � � = �+  (L)"t;

where  (L) =
P1
j=0 jL

j, with  0 = 1 and
P1
j=0j jj <1.

Notice that

E(yt) = �; 
(0) = �2
P1
j=0 

2
j <1; 
(k) = �2

P1
j=0 j j+k:



2.1 Estimation

� sample mean �̂ = �y = T�1
TP
t=1

yt

� sample variance: 
̂(0) = T�1
PT
t=1(yt � �y)2

� sample autocovariance: 
̂(k) = T�1
PT
t=k+1(yt � �y)(yt�k � �y)

� The ACF is estimated by �̂(k) = 
̂(k)=
̂(0); the barplot (k; �̂(k)) is

the correlogram. If yt �WN(�2), then T 1=2�̂(k)
d! N(0; 1).



3 Genesis and Properties of Autoregressive - Mov-

ing Average (ARMA) processes

A problem arises with linear stationary process: an in�nite number of

coe�cients
n
 j; j > 0

o
need to be estimated.

Since stationarity implies lim
j!1

 j = 0, we could approximate  (L) by its

"truncated" version e (L) such that
e j =

(
 j; j � m
0; j > m

where m!1 and m=T ! 0 as T !1.



However, the "best" approximation of a 1�order polynomial is obtained
by a rational polynomial, i.e.

 (L) ' �(L)

�(L)
;

where

�(L) = 1�Pp
j=1�jL

j; p <1
�(L) = 1 +

Pq
j=1�jL

j; q <1

Autoregressive-Moving average (ARMA) processes: A linear stationary
process such that  (L) = �(L)=�(L), which can be rewritten as

�(L)yt = �(L)"t;

yt =
Pp
j=1�jyt�j + "t +

Pq
j=1�j"t�j

It is denoted as yt �ARMA(p; q), where p is the AR order and q is the MA
order.



A numerical example: Consider a �rst-order polynomial �(L) = (1� �L)

such that j�j < 1. From the relation

1� (�L)n+1 = (1� �L)[1 + �L+ (�L)2 + � � �+ (�L)n];

we obtain that

1

1� �L
= lim
n!1

[1 + �L+ (�L)2 + � � �+ (�L)n]
1� (�L)n+1

=
1X
j=0

(�L)j

Assume now that �(L) = 1 and �(L) = (1 � �L) with j�j < 1. Hence,

we have

yt = "t + �"t�1 + �2"t�2 + � � � =
"t

1� �L
= "t + �yt�1:



3.1 Autoregressive (AR) processes

AR(1) processes: The autoregressive process of order 1, AR(1), is gener-

ated by the equation

yt = m+ �yt�1 + "t

The process is stationary if j�j < 1. Indeed, by recursive substitution we

obtain the Wold representation:

yt = m=(1� �) + "t + �"t�1 + � � �+ �n"t�n + � � �

Hence, the condition
P1
j=0j jj =

P1
j=0j�jj <1 is satis�ed i� j�j < 1 or,

equivalently, i� the root of the equation (1 � �L) = 0, is greater then 1

in modulus.



Under stationarity, the process is uniquely characterized by its moments.

E(yt) = � = m=(1� �)
Var(yt) = 
(0) = E[yt(yt � �)] = E[(m+ �yt�1 + "t)(yt � �)]

= �
(1) + �2

since E[(yt � �)"t] = E[("t + �"t�1 + � � � )"t] = �2.


(1) = E[yt(yt�1 � �)] = E[(m+ �yt�1 + "t)(yt�1 � �)]
= �
(0)

since E[(yt�1 � �)"t] = E[("t�1 + �"t�2 + � � � )"t] = 0.

Replacing 
(1) in the expression for 
(0), we obtain:


(0) =
�2

1� �2

Moreover, 
(k) = �
(k � 1) for k � 1, so that 
(k) = �k
(0).



� The autocorrelation function (ACF) is thus

�(k) = �k

� The partial autocorrelation function (PACF) is easily obtained as

r(k) =

(
�(k); k � 1
0; k > 1

since yt � E[ytj(yt�1; � � � ; yt�k+1)] = "t for k > 1.



Figure 2: ACF and PACF of an AR(1) process



AR(2) processes: The AR(2) process is generated by the equation

yt = m+ �1yt�1 + �2yt�2 + "t

It can be shown that yt is stationary if the roots of 1 � �1L � �2L
2 = 0

are greater than 1 in modulus (lie outside the unit circle). This implies the

following constraints on the parameter space (�1; �2):

i) j�2j < 1 and ii) j�1j < 1� �2.

The stationarity region of the AR parameters lies inside the triangle with

vertices (-2,-1),(2,-1),(0,1). A pair of complex conjugate roots arises for

�21 + 4�2 < 0.



Figure 3: The complex unit circle



Figure 4: Stationarity region of an AR(2) process



Under stationarity, the process yt can be uniquely characterized by its

moments:

� Expected value: E(yt) = � = m=(1� �1 � �2).

� Autocovariance function: it is given recursively by


(k) = �1
(k � 1) + �2
(k � 2); k = 2; 3; : : :

with starting values


(0) =
(1� �2)�

2

(1 + �2)([(1� �2)2 � �21]
; 
(1) = �1
(0)=(1� �2):



The expression for 
(k) can be derived as follows:


(0) = E[(m+ �1yt�1 + �2yt�2 + "t)(yt � �)]
= �1
(1) + �2
(2) + �2


(1) = E[(m+ �1yt�1 + �2yt�2 + "t)(yt�1 � �)]
= �1
(0) + �2
(1)


(2) = E[(m+ �1yt�1 + �2yt�2 + "t)(yt�2 � �)]
= �1
(1) + �2
(0)

� � � � � � � � �

(k) = E[(m+ �1yt�1 + �2yt�2 + "t)(yt�k � �)]

= �1
(k � 1) + �2
(k � 2)
Compute 
(1) from the second equation, and substitute in the equa-

tion for 
(2), then replace for 
(1) and 
(2) in the �rst expression to

get 
(0).



� ACF:

�(k) = �1�(k � 1) + �2�(k � 2); k = 2; 3; : : :

with starting values

�(0) = 1; �(1) = �1=(1� �2)

It is such that �(k)! 0 as k !1. If the roots of the AR polynomial
are complex the ACF describes a damped cosine wave.

� PACF: It has a cut-o� (i.e. it's equal to zero) after k = 2 since

yt � E[ytj(yt�1; � � � ; yt�k+1)] = "t; k > 2:



Figure 5: ACF and PACF of an AR(2) process



AR(p) processes: The AR(p) process is generated by the equation

yt = m+ �1yt�1 + �2yt�2 + � � �+ �pyt�p + "t; "t �WN(�2)

�(L)yt = m+ "t; �(L) = 1� �1L� � � � � �pL
p:

� yt is stationary if the p roots of �(L) are outside the unit circle.

� E(yt) = � = m=�(1), where �(1) = 1� �1 � � � � � �p.

� The Autocovariance Function is

(k) = �1
(k � 1) + � � �+ �p
(k � p); for k > 0

(k) = �1
(k � 1) + � � �+ �p
(k � p) + �2; for k = 0



� ACF is given by the Yule-Walker system of equations:

�(k) = �1�(k� 1) + �2�(k� 2) + � � �+ �p�(k� p); k = 1; 2; : : : ; p

� PACF: It has a cut-o� after k = p since

yt � E[ytj(yt�1; � � � ; yt�k+1)] = "t; k > p:



3.2 Moving Average (MA) processes

In the Wold representation set  j = �j; j � q and  j = 0; j > q. This

gives the MA(q) process

yt = �+ "t + �1"t�1 + �2"t�2 + � � �+ �q"t�q

where "t �WN(�2).

Stationarity: Since the condition
P
j j jj < 1 holds, the MA(q) process

is always stationary.



MA(1) processes: The MA(1) process is generated by the equation

yt = �+ "t + �"t�1 = �+ (1 + �L)"t

The moments are obtained as follows

E(yt) = �+ E("t) + �E("t�1) = �


(0) = E(yt � �)2 = E("t + �"t�1)2

= E("2t ) + 2�E("t"t�1) + �2E("2t�1) = �2(1 + �2)


(1) = E[(yt � �)(yt�1 � �)]
= E[("t + �"t�1)("t�1 + �"t�2)] = ��2


(k) = E[(yt � �)(yt�k � �)]
= E[("t + �"t�1)("t�k + �"t�k�1)] = 0; k > 1



� ACF has a cuto� at k = 1:
�(0) = 1

�(1) = �
1+�2

�(k) = 0; k > 1

Invertibility: yt �MA(1) is invertible if j�j < 1. Consider the process

~yt = �+ "t + ~�"t�1

with ~� = 1=� and "t �WN(~�2).
The process ~yt has the same moments �, 
(0) and 
(1), as

yt = �+ "t + �"t�1

with �2 = ~�2~�2. Hence, �(1) = ��1=(1+��2) = �=(1+�2) in both cases.



The two processes have identical properties and cannot be discriminated

from a time series This problem is known as identi�ability and is remedied

upon by constraining � in the interval (-1,+1).

The term invertibility stems from the possibility of rewriting the process as

an in�nite autoregression, AR(1), with coe�cients �j that are convergent:

yt + �1yt�1 + �2yt�2 + � � �+ �kyt�k + � � � = m+ "t;
1X
j=1

j�jj <1

The sequence of weights �j = (��)j converges if and only if j�j < 1.

� PACF: Since an invertible MA(1) process can be rewritten as AR(1),
its PACF has no cuto� but it decays exponentially.



Figure 6: ACF and PACF of an MA(1) process



MA(q) processes: The MA(q) process is generated by the equation

yt = �+ "t + �1"t�1 + � � �+ �q"t�q

is invertible if the roots of �(L) = 0 are outside the unit circle.

The moments are obtained as follows

E(yt) = �


(0) = E(yt � �)2 = E("t + �1"t�1 + � � �+ �q"t�q)2

= �2(1 + �21 + � � �+ �2q)


(k) = E[("t + �1"t�1 + � � �+ �q"t�q)("t�k + �1"t�k�1 + � � �+ �q"t�k�q)]
= �2(�k + �k+1�1 + � � �+ �q�k�q)


(k) = 0; k > q

� ACF has a cuto� at k = q.

� PACF has no cuto�, it is similar has the ACF of an AR(q) process.



3.3 ARMA processes

ARMA(p; q) processes: The ARMA(p; q) process is generated by the equa-
tion

yt = m+ �1yt�1 + � � �+ �pyt�p + "t + �1"t�1 + � � �+ �q"t�q

�(L)yt = m+ �(L)"t

Stationarity: yt is stationary if the roots of the AR polynomial �(L) lie
outside the unit circle.

Invertibility: yt is invertible if the roots of the MA polynomial �(L) lie
outside the unit circle. Invertibility implies that yt can be written as an
AR(1) process with declining coe�cients.



ARMA(1; 1) processes: The ARMA(1; 1) process is generated by the equa-

tion

yt = m+ �yt�1 + "t + �"t�1

The moments are obtained as follows

E(yt) = m+ �E(yt�1) = m+ �� = m=(1� �)

(0) = E[yt(yt � �)] = E[(m+ �yt�1)(yt � �)] + E["t(yt � �)]

+ E f�"t�1[�(yt�1 � �) + "t + �"t�1)g
= �
(1) + �2(1 + ��+ �2)


(1) = E[yt(yt�1 � �)] = E[(m+ �yt�1)(yt�1 � �)] + E["t(yt�1 � �)]
+ E f�"t�1[�(yt�2 � �) + "t�1 + �"t�2)g
= �
(0) + ��2


(k) = E[yt(yt�k � �)] = �
(k � 1); k > 1

� Both ACF and PACF have no cuto�!



Figure 7: ACF and PACF of an ARMA(1,1) process.



3.4 Forecasting from ARMA Models

Let yt �ARMA(p; q) and It = fyt; yt�1; � � � g. The best linear unbiased
predictor of yt+h is given by:

yt(h) = E(yt+hjIt); h = 1; 2; :::;

where E(yt+hjIt) is the expected value of yt+h conditional to It, which is
the called the natural �ltration of the process yt.

From the expression

yt+h = m+�1yt+h�1+� � �+�pyt+h�p+"t+h+�1"t+h�1+� � �+�q"t+h�q
we get

yt(h) = m+ �1E(yt+h�1jIt) + � � �+ �pE(yt+h�pjIt)
+ E("t+hjIt) + �1E("t+h�1jIt) + � � �+ �qE("t+h�qjIt)



It is then possible to recursively compute the optimal h�step ahead pre-
dictor yt(h) given that

E(yt+h�ijIt) =
(

yt+h�i; i � h
yt(h� i); i < h

E("t+h�ijIt) =
(
"t+h�i; i � h
0; i < h

Example: Let assume that yt �ARMA(1,1), we get

yt(h) = m+ �E(yt+h�1jIt) + E("t+hjIt) + �E("t+h�1jIt);

which implies

yt(1) = m+ �yt + �"t
yt(h) = m+ �yt(h� 1) = m(1 + �+ � � �+ �h�2) + �h�1yt(1)

= m(1 + �+ � � �+ �h�1) + �hyt + �h�1�"t; h > 1



Since any ARMA(p; q) admits the Wold representation yt = � +  (L)"t,

where  (L) = �(L)=�(L), we can rewrite h�step ahead predictor as

yt(h)� � = E(
Ph�1
j=0 j"t+h�j +

P1
j=h j"t+h�jjIt) =

P1
j=h j"t+h�j

Hence, the h�step ahead prediction error is

"t(h) = yt+h � yt(h) =
Ph�1
j=0 j"t+h�j

Since "t(h) �MA(h� 1), we have that

E["t(h)] = 0;

�2(h) � Var["t(h)] = �2
Ph�1
j=0 

2
j ;

We note that �2(h) is a non-decreasing function of h such that

lim
h!1

�2(h) = 
(0)



When "t is a Gaussian white-noise, it follows that

"t(h)=�(h) � N(0; 1)

since "t(h) is a linear combination of i.i.d. N(0; �
2) random variables.

Hence, the 100(1� �)% con�dence interval for yt+h is

yt(h)� z�=2�(h) < yt+h < yt(h) + z�=2�(h)

Remark: when the model parameters are estimated, the above formula

underestimates the true sample variability.



4 Nonstationary processes

Integrated processes: yt is said to be integrated of order d, yt � I(d), if

�dyt = �+  (L)"t;
P1
j=0j jj <1

where � = 1� L ) �2 = (1� L)2 = 1� 2L+ L2.

Random Walk (RW): the RW is generated by the equation

yt = �+ yt�1 + "t = y0 + �t+
Pt�1
j=0"t�j

Note: RW� I(1) since �yt = �+ "t, � is the "drift" of the RW.

Integrated Random Walk (IRW): the IRW is generated by the equation

yt = 2yt�1 � yt�2 + "t = y0 +�y0t+
Pt�1
i=0

Pt�1
j=i"t�j

Note: IRW� I(2) since �2yt = "t.



4.1 The Box-Jenkins Approach

1. Identi�cation of the orders p; d; q; P;D;Q. The integration orders are

determined �rst. The MA and AR orders are determined from the

analysis of the correlogram.

2. Estimation of the parameters (maximum likelihood)

3. Diagnostic checking and goodness of �t

� Signi�cance tests for the parameters

� Normality tests on residuals et =
b�(L)b�(L)yt



� Autocorrelation tests on residuals. Ljung-Box test statistic

Q(m) = T (T + 2)
mX
k=1

(T � k)�1�̂2e(k)

Under H0, Q(m) � �2 with m� (p+ q) degrees of freedom.

� Goodness of �t. Coe�cient of determination.

� Selection criteria. Choose the ARMA(p�; q�) such that either

min
�
AIC(p; q) = ln �̂2 + 2

p+ q

T

�
;

or

min
�
BIC(p; q) = ln �̂2 + lnT

p+ q

T

�
:



5 Unit-roots in macroeconomic time series

Consider the AR(1) process yt = �yt�1 + "t. The test of H0 : � = 1

versus H1 : � < 1 is known as a unit root test. We may reparametrize the

model as

�yt = �yt�1 + "t; � = (�� 1);

and formulate the unit root test as H0 : � = 0 versus H1 : � 2 (�2; 0).

Dickey-Fuller test: The test statistic is

�̂ =
b�
s

�PT
t=2y

2
t�1

�1
2 ;

where s2 is the residual variance and b� is the OLS estimate of the regression
coe�cient. Under H0, �̂ has no longer a limit N(0; 1) distribution. Its

critical values were tabulated by Fuller (1977).



The distribution of the test statistic is not invariant to the deterministic

kernel.

If a constant term is included in the model, we have yt = � + ut, where

ut = �ut�1 + "t. We may reparametrize the model as

�yt = ���+ �yt�1 + "t; � = (�� 1);

and the t statistic for the null H0 : � = 0 is denoted �̂�. Critical values

are in Fuller (1977).

If the model is extended to allow for a linear trend, we have yt = �+�t+ut.

We may reparametrize the model as

�yt = (�� � ��)� ��t+ �yt�1 + "t; � = (�� 1);

and the t statistic for the null H0 : � = 0 is denoted �̂� . Critical values are

in Fuller (1977).



5.1 Deterministic Trends vs. Random Walks.

Nelson and Plosser (1982) contrast 2 candidate DGPs:

� Trend-stationary (TS) processes: yt = �� + ��t+ I(0)

� Di�erence-stationary (DS) processes: yt � I(1) + drift.

Both are nested into the process

�(L)yt = �� + ��t+ "t; "t �WN(0; �2) (1)

yt � DS if �(1) = 0 (and �� = 0).



Rewriting the AR polynomial as

�(L) = �(1)L+��y(L);

with

�y(L) = 1� �
y
1L� : : :� �

y
p�1L

p�1; �
y
j = �

pX
i=j+1

�i

we can rewrite (1):

�yt = �� + ��t+ �yt�1 +
p�1X
j=1

�
y
j�yt�j + "t; (2)

where � = ��(1) = Pp
j=1 �j � 1.

The test of H0 : � = 0 is known as the Augmented Dickey-Fuller (ADF)

test. The test statistic has the same limit distribution as �̂� .



Notice that under the null yt � I(1), that is yt 2 DS. The alternative is
� < 0 and implies that yt 2 TS.

In their highly in
uential paper, N&P applied the ADF test to a subset

of annual US macroeconomic time series and concluded that most series

were consistent with the DS hypothesis.

As we shall see, a DS process is driven by a stochastic trend, or permanent

component. Once it is proven that there exists a permanent component,

the next step is to determine its importance.

Another stylized fact is that the ACF of � ln yt displays a non-negative

value at lag 1 and is zero elsewhere. This would imply that most of the


uctuations are permanent (i.e. the transitory component makes little

contribution) and real disturbances are a more important source of output


uctuations than monetary disturbances.


