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Introduction

Often, for (short run) forecasting purposes, a simple
model that describes the behaviour of a single variable
(or a small set of variables) in terms of its own past
values is satisfactory.

Research shows that simple, linear univariate (ARIMA)
time-series models based on just a few parameters often
have a better forecasting performance than larger
multivariate dynamic simultaneous-equations models
(SEM), especially for aggregated data like
macroeconomic series.
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Intro: Relation DSEM/VAR <-> ARIMA

Zellner and Palm, (JoE (1974, pp 17-54)), provide a
rationale for this: each single variable from a joint linear
dynamic SEM, §7.7.2, or VAR, follows a marginal linear
univariate ARIMA process, see §7.6.1. An ARIMA model
does not accumulate misspecifications related to different
equations and variables as in a multivariate dynamic SEM.

In section §7.1 - §7.3, we study tools of linear analysis of
time-series data starting with key concepts in §7.1. Model
building philosophy is now specific to general with
cycles:
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ARIMA Model building

1. Transform data to stationarity §7.3 (logs, differences,
breaks)

2. Identify a parsimonious ARIMA model for stationary
series, comparing model and data characteristics,
§7.1.3- §7.1.5, §7.2.3

3. Estimate ARIMA model §7.2.2

4. Test ARMA model model, §7.2.4. If not OK , restart
with 1. or 2.

5. Forecast with ARIMA model §7.1.6, §7.2.4 : conditional
mean and variance, one-step and multi-step
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Key concepts of linear time series analysis

Stationarity, second order / weak

A stochastic process yt is said to be stationary in mean
and variance, when the following conditions are satisfied:

E(yt) = µ, Cov(yt, yt−k) = γk,

for any t (that is, for any position in the time series) and for
k = 0, 1, 2, . . ..
This defines second order (weak) stationarity.
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Dow Jones: Nonstationary series

Dow Jones Index Industrials Weekly 1896-2004
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Key concept: SACF, White Noise (WN)

Consistent estimates for mean, variance and covariances
for weakly stationary processes are obtained as follows:

µ̂ = ȳ, γ̂k =
1

n

n∑

t=k+1

(yt − ȳ)(yt−k − ȳ).

γ̂k, k = 0, 1, 2, . . . is the sample autocovariance function
(SACF).
Simplest example of a stationary series is a White Noise
process (WN) which we denote as εt. WN is a sequence
of uncorrelated random variables with constant mean and
variance:

γ0 = σ2

ε , γk = 0, k = 1, 2, . . . .
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Key concept: Random Walk (RW)

Best known economic example of a weakly nonstationary
series is a Random Walk Process (RW) . RW is the partial
sum process of a WN sequence:

ut =

t∑

j=1

εj t = 1, 2, . . . .

The variance (conditional on starting values) of ut

increases (linearly) with t, even if t→ ∞, contradicting
stationarity condition for variance.
Exercise (1) Derive this result.
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Log Dow Jones: Nonstationary series

Log transformed Dow Jones Index Industrials Weekly
1896-2004. Exercise (2): approximate mean weekly
growth.
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Returns (DLog) DJI: Nonstationary series?

Returns Dow Jones Index Industrials Weekly 1896-2004
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Autocovariance, -correlation, correlogram

The autocovariance function , γk, is seen as a function of
lag k. One often plots the autocorrelation function which
has the same shape and contains the same information on
the dynamics, but is dimensionless:

ρk =
γk

γ0

, k = 1, 2, . . . .

Consistent estimates for weakly stationary processes are
obtained by

ρ̂k = rk =
γ̂k

γ̂0

,

a plot of these against k = 1, 2, . . . is known as the
correlogram .
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Identification / Model Selection principles

The sample characteristics of a time series should be
similar to population characteristics of the statistical time
series model. In the identification stage we choose our
first model.

Time series plots and correlograms are the main tools
for analysing the properties of time series. It is often also
illuminating to consider (partial) scatter plots of yt versus
yt−k in the context of the linear, infinite order
autoregressive, (one-step-ahead) prediction
decomposition of a time series process.

See also §5.5, where these techniques were applied as
diagnostic tools on residuals.
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Scatter plot log Dow Jones vs. (-1)

Log Dow Jones Index Industrials Weekly 1896-2004
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Scatter plot dlog Dow Jones vs (-1)

Returns (dlog) Dow Jones Index Industrials Weekly
1896-2004
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AR(∞) representation

Infinite order Autoregressive representation:

yt = E[yt|Yt−1] + εt

E[yt|Yt−1] = α + π1yt−1 + π2yt−2 + . . . (7.2)

E[(yt − µ)|Yt−1] = π1(yt−1 − µ) + π2(yt−2 − µ) + . . .+ εt

where (here a constant) α s.t.
(1 −

∑
πk)

−1α = µ: perfectly predictable deterministic part;
π1(yt−1 − µ) + (π2 − µ)yt−2 + . . .: the (linearly) predictable
stochastic part;
εt: unpredictable part of yt, innovation process or prediction
error, satisfying the White Noise condition.
Exercise (3): Using stationarity, show E(yt) = µ = α

1−
∑

πk

.
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AR(20) Log Dow Jones

Log Dow Jones Index Industrials Weekly 1896-2004

Dependent Variable: LOGDJIND
Method: Least Squares
Date: 02/05/04   Time: 16:10
Sample(adjusted): 3/24/1897 1/27/2004
Included observations: 5576 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.000576 0.001420 0.405789 0.6849
LOGDJIND(-1) 1.019829 0.013412 76.03649 0.0000
LOGDJIND(-2) 0.024193 0.019158 1.262802 0.2067
LOGDJIND(-3) -0.028221 0.019144 -1.474136 0.1405
LOGDJIND(-4) -0.027416 0.019114 -1.434339 0.1515
LOGDJIND(-5) 0.001765 0.019090 0.092460 0.9263
LOGDJIND(-6) 0.017536 0.019086 0.918799 0.3582
LOGDJIND(-7) 0.005282 0.019081 0.276802 0.7819
LOGDJIND(-8) -0.034464 0.019080 -1.806301 0.0709
LOGDJIND(-9) 0.050894 0.019081 2.667203 0.0077
LOGDJIND(-10) -0.024129 0.019091 -1.263928 0.2063
LOGDJIND(-11) -0.021337 0.019091 -1.117659 0.2638
LOGDJIND(-12) 0.020287 0.019070 1.063788 0.2875
LOGDJIND(-13) -0.007611 0.019065 -0.399203 0.6898
LOGDJIND(-14) -0.019612 0.019065 -1.028677 0.3037
LOGDJIND(-15) 0.013889 0.019065 0.728512 0.4663
LOGDJIND(-16) -0.013786 0.019066 -0.723046 0.4697
LOGDJIND(-17) 0.072059 0.019054 3.781789 0.0002
LOGDJIND(-18) -0.059659 0.019080 -3.126773 0.0018
LOGDJIND(-19) -0.015096 0.019095 -0.790558 0.4292
LOGDJIND(-20) 0.025666 0.013361 1.920898 0.0548

R-squared 0.999700    Mean dependent var 5.919391
Adjusted R-squared 0.999699    S.D. dependent var 1.496886
S.E. of regression 0.025960    Akaike info criterion -4.460732
Sum squared resid 3.743740    Schwarz criterion -4.435777
Log likelihood 12457.52    F-statistic 926489.2
Durbin-Watson stat 1.998905    Prob(F-statistic) 0.000000
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AR(20) (+trend) Log Dow Jones

Log Dow Jones Index Industrials Weekly 1896-2004

Dependent Variable: LOGDJIND
Method: Least Squares
Date: 02/05/04   Time: 16:32
Sample(adjusted): 3/24/1897 1/27/2004
Included observations: 5576 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.005196 0.002740 1.896455 0.0580
T 1.41E-06 7.13E-07 1.971410 0.0487

LOGDJIND(-1) 1.019106 0.013414 75.97385 0.0000
LOGDJIND(-2) 0.024200 0.019153 1.263498 0.2065
LOGDJIND(-3) -0.028143 0.019139 -1.470451 0.1415
LOGDJIND(-4) -0.027432 0.019109 -1.435569 0.1512
LOGDJIND(-5) 0.001766 0.019085 0.092521 0.9263
LOGDJIND(-6) 0.017515 0.019081 0.917944 0.3587
LOGDJIND(-7) 0.005277 0.019076 0.276605 0.7821
LOGDJIND(-8) -0.034449 0.019075 -1.805995 0.0710
LOGDJIND(-9) 0.050860 0.019076 2.666130 0.0077
LOGDJIND(-10) -0.024108 0.019086 -1.263142 0.2066
LOGDJIND(-11) -0.021308 0.019086 -1.116404 0.2643
LOGDJIND(-12) 0.020246 0.019065 1.061934 0.2883
LOGDJIND(-13) -0.007609 0.019060 -0.399232 0.6897
LOGDJIND(-14) -0.019612 0.019060 -1.028949 0.3035
LOGDJIND(-15) 0.013859 0.019060 0.727116 0.4672
LOGDJIND(-16) -0.013814 0.019061 -0.724709 0.4687
LOGDJIND(-17) 0.072054 0.019049 3.782509 0.0002
LOGDJIND(-18) -0.059585 0.019075 -3.123700 0.0018
LOGDJIND(-19) -0.015090 0.019090 -0.790459 0.4293
LOGDJIND(-20) 0.024892 0.013364 1.862693 0.0626

R-squared 0.999701    Mean dependent var 5.919391
Adjusted R-squared 0.999699    S.D. dependent var 1.496886
S.E. of regression 0.025954    Akaike info criterion -4.461073
Sum squared resid 3.741122    Schwarz criterion -4.434930
Log likelihood 12459.47    F-statistic 882829.4
Durbin-Watson stat 1.998889    Prob(F-statistic) 0.000000 Chapter 7.1 – p. 18/25



AR(20) dLog Dow Jones

Returns (dlog) Dow Jones Index Industrials Weekly
1896-2004

Dependent Variable: DLOGDJIND
Method: Least Squares
Date: 02/05/04   Time: 16:11
Sample(adjusted): 3/31/1897 1/27/2004
Included observations: 5575 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.000964 0.000352 2.735265 0.0063
DLOGDJIND(-1) 0.020379 0.013416 1.519045 0.1288
DLOGDJIND(-2) 0.044236 0.013414 3.297873 0.0010
DLOGDJIND(-3) 0.014778 0.013425 1.100752 0.2711
DLOGDJIND(-4) -0.011092 0.013408 -0.827272 0.4081
DLOGDJIND(-5) -0.009720 0.013402 -0.725309 0.4683
DLOGDJIND(-6) 0.008131 0.013385 0.607450 0.5436
DLOGDJIND(-7) 0.013087 0.013379 0.978222 0.3280
DLOGDJIND(-8) -0.021609 0.013379 -1.615144 0.1063
DLOGDJIND(-9) 0.029758 0.013382 2.223753 0.0262
DLOGDJIND(-10) 0.005215 0.013385 0.389629 0.6968
DLOGDJIND(-11) -0.016651 0.013385 -1.243954 0.2136
DLOGDJIND(-12) 0.004730 0.013382 0.353478 0.7237
DLOGDJIND(-13) -0.003570 0.013365 -0.267144 0.7894
DLOGDJIND(-14) -0.023138 0.013362 -1.731686 0.0834
DLOGDJIND(-15) -0.008880 0.013364 -0.664465 0.5064
DLOGDJIND(-16) -0.022613 0.013359 -1.692672 0.0906
DLOGDJIND(-17) 0.048747 0.013360 3.648812 0.0003
DLOGDJIND(-18) -0.011406 0.013374 -0.852851 0.3938
DLOGDJIND(-19) -0.025999 0.013360 -1.946003 0.0517
DLOGDJIND(-20) 0.020418 0.013361 1.528155 0.1265

R-squared 0.008920    Mean dependent var 0.001019
Adjusted R-squared 0.005351    S.D. dependent var 0.026027
S.E. of regression 0.025957    Akaike info criterion -4.460958
Sum squared resid 3.742220    Schwarz criterion -4.435999
Log likelihood 12455.92    F-statistic 2.499356
Durbin-Watson stat 2.000775    Prob(F-statistic) 0.000233 Chapter 7.1 – p. 19/25



Practical purpose of linear time series analysis

If yt is stationary, a nearly standard regression
interpretation of (7.2) applies.

We strive to minimize the variance and remove serial
correlation in the “error term” , εt, using parsimonious
linear models for the deterministic part and the
predictable stochastic part of yt.
Exercise (4): Show that the Durbin-Watson statistic is a
consistent estimator of 2(1 − ρ1), c.f. §5.5.3. Which of the
three regression models above is optimal in this respect
using standard regression criteria?
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Some time series algebra

Lags, differences and lag polynomials

The lag operator L is useful in time series algebra:

Lyt = yt−1, Lkyt = yt−k, L0 = 1, L−kyt = yt+k (lead).

The first difference operator is:

∆ = 1 − L, ∆yt = yt − yt−1.

Second differences:

∆2 = ∆∆ = 1 − 2L+ L2.
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Lag polynomials

Examples of lag polynomials are

φ(L) = 1 − φ1L− φ2L
2 − . . .− φpL

p,

θ(L) = 1 + θ1L+ θ2L
2 + . . .+ θqL

q,

where p and q are some fixed maximum lag values.

The set of lag polynomials φ(L) is isomorphic to the set of
algebraic polynomials φ(z), with z ∈ C, |z| ≤ 1.

The inverse of a lag polynomial φ(L), denoted as φ−1(L),
is defined so that the product (convolution) is the “neutral
element” 1.
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Inverse of lag polynomial

In mathematical notation:

φ−1(z) · φ(z) = 1 =

. . .+ 0 · z−2 + 0 · z−1 + 1 · z0 + 0 · z1 + 0 · z2 + . . .

Example: φ(L) = 1 − φL

(1 − φL)−1 = 1L0 + φL+ φ2L2 + . . .

=
∑

∞

j=0
φjLj

A rational lag polynomial φ−1(L)θ(L) is defined
analogously.

Exercise (5): Derive the first 4 terms of (1 − φ1L− φ2L
2)−1.
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Linear Stochastic processes, Wold representation

A general representation of any zero-mean weakly
stationary process yt is the “linearly indeterministic
component” of the so-called Wold-decomposition (MA(∞)):

yt =
∞∑

j=0

ψjεt−j,

with εt WN, where ψ0, ψ1, ψ2, . . . are parameters for which

∞∑

j=0

ψ2

j <∞, or
∞∑

j=0

|ψj| <∞,
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Variance/covariance MA(∞)

so that we have a finite variance and finite covariances

γk = E[ytyt−k] = E[

∞∑

j=0

ψjεt−j

∞∑

h=0

ψhεt−h−k] = σ2

ε

∞∑

h=0

ψk+hψh

Neither this representation, nor the infinite order
autoregression are useful in practice as it is impossible to
estimate all the parameters from a finite sample.

The properties of a linear stochastic process are
expressed in the autocovariance function. All stationary
stochastic linear processes can be efficiently approximated
by the ARMA model class, which uses a parsimonious
rational approximation for ψ(L) or π(L).
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Program

ARMA processes and properties

Autoregressive processes, AR, PACF

Moving average processes, MA, invertibility

Mixed Autoregressive moving average processes, ARMA

Prediction and Forecasting

AR

MA

Practice

Identification ARMA orders

Estimation ARMA models

Test ARMA models

Prediction with ARMA model (see §7.1)
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Autoregressive process of order 1, mean

The AR(1) process is given by yt = φyt−1 + εt leading to
the particular solution (successive substitution)

yt =
J−1∑

j=0

φjεt−j + φJyt−J , with J large.

The mean is (treating yt−J as a fixed number)

E(yt) = φJyt−J ,

s.t. we require |φ| < 1 for (asymptotic) stationarity.
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AR(1) process, variance

Letting J → ∞ leads to an (asymptotically) zero mean
process and

yt =

∞∑

j=0

φjεt−j = (1 − φL)−1εt,

s.t. we have variance

γ0 = σ2
ε

∞∑

j=0

φ2j =
σ2

ε

(1 − φ2)
.
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AR(1) process, autocovariances

Assuming stationarity, there are two ways to obtain γk for
the AR(1) process, 1. via MA(∞), 2. via Yule Walker
1. Substituting solution for yt :

γk = E(ytyt−k) = E

[(

φkyt−k +

k−1∑

j=0

φjεt−j

)

yt−k,

]

leading to
γk = φkγ0, k ≥ 0.
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AR process, autocovariance via Y-W

2. Alternatively using Yule Walker (Y-W) equations:

γk = E(ytyt−k) = φE(yt−1yt−k) + E(εtyt−k), k ≥ 0,

leading to

γk = φγ(|k| − 1), |k| ≥ 1

γ0 = σ2
ε/(1 − φ2).

Note that the autocorrelation is ρk = φk.

Exercise(1): Show this expression holds for negative k.

Chapter 7.1/7.2 – p. 6/27



AR(2) process

φ(L)yt = εt, φ(L) = 1 − φ1L− φ2L
2,

Exercise(2): Using Y-W equations, show for this AR(2) that

ρ1 =
φ1

(1 − φ2)
,

ρ2 =
φ2

1

(1 − φ2)
+ φ2,

ρ3 =
φ1(φ

2
1 + φ2)

(1 − φ2)
+ φ1φ2,

ρ4 = φ1ρ3 + φ2ρ2 etc.

How do you derive γ0? Hint: use "Y-W" equation for k = 0.
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Form of ACF AR( p) process

Autocorrelation function (ACF) of and AR(p) process is a
solution to a linear difference equation of order p.

In general: ACF of AR(p) process dies out exponentially,
oscillating in case of negative or complex roots of φ(z) = 0.

The AR order, p, is not easily derived from ACF. To identify
p, we need a transformation of the ACF, namely the PACF.
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Partial Autocorrelation Function (PACF)

Partial Autocorrelation function

Definition :
Consider k Yule-Walker equations written up for an AR(k)
process. Solve the k Yule-Walker equations, 1, . . . , k for the
k AR parameters, φk1, . . . , φkk, given autocorrelations up to
order k.

The partial autocorrelation coefficient of lag k is given
by the solution φkk (so φ11 =γ1/γ0 = ρ1)

φkk can be interpreted just as the final least squares
coefficient in a k-th order autoregression applied to an
infinitely long ’population’ time series, see book: (7.12).

Exercise(3): Show that φ22 =
ρ2−ρ2

1

1−ρ2

1
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SACF/PACF Log Dow Jones

Log Dow Jones Index Industrials Weekly 1896-2004

Correlogram of LOG(DJIND)

Date: 02/05/04   Time: 16:08
Sample: 5/27/1896 1/27/2004
Included observations: 5596

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.999 0.999 5590.1 0.000
2 0.998 -0.006 11172. 0.000
3 0.998 -0.009 16746. 0.000
4 0.997 -0.004 22312. 0.000
5 0.996 -0.004 27870. 0.000
6 0.995 -0.004 33420. 0.000
7 0.994 -0.001 38961. 0.000
8 0.993 -0.005 44494. 0.000
9 0.993 -0.005 50018. 0.000

10 0.992 -0.004 55534. 0.000
11 0.991 0.002 61042. 0.000
12 0.990 -0.002 66541. 0.000
13 0.989 -0.001 72031. 0.000
14 0.988 0.001 77514. 0.000
15 0.988 0.009 82988. 0.000
16 0.987 0.011 88453. 0.000
17 0.986 0.002 93911. 0.000
18 0.985 0.002 99361. 0.000
19 0.984 -0.002 104803 0.000
20 0.983 0.002 110237 0.000
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SACF/PACF dLog Dow Jones

Returns (dlog) Dow Jones Index Industrials Weekly
1896-2004 Correlogram of DLOG(DJIND)

Date: 02/05/04   Time: 16:09
Sample: 5/27/1896 1/27/2004
Included observations: 5595

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.021 0.021 2.5084 0.113
2 0.044 0.044 13.432 0.001
3 0.022 0.020 16.163 0.001
4 -0.009 -0.012 16.596 0.002
5 -0.008 -0.009 16.938 0.005
6 0.006 0.007 17.154 0.009
7 0.010 0.011 17.733 0.013
8 -0.019 -0.020 19.785 0.011
9 0.027 0.026 23.818 0.005

10 0.002 0.002 23.842 0.008
11 -0.015 -0.016 25.109 0.009
12 0.004 0.003 25.209 0.014
13 -0.008 -0.007 25.591 0.019
14 -0.024 -0.023 28.872 0.011
15 -0.008 -0.007 29.239 0.015
16 -0.025 -0.023 32.651 0.008
17 0.044 0.048 43.461 0.000
18 -0.011 -0.011 44.080 0.001
19 -0.021 -0.025 46.634 0.000
20 0.019 0.020 48.709 0.000
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Estimating and using the PACF, use of PACF

The sample PACF can be derived from the SACF, e.g.:

φ̂22 =
ρ̂2 − ρ̂2

1

1 − ρ̂2
1

.

An alternative estimator for φ22 is derived from OLS of yt on
a constant, yt−1 and yt−2. φ̂22 and φ̂OLS,22 are close in
moderately large samples if the data are weakly stationary.

Application of Sample PACF for Identification:
The PACF is used to determine the order of AR(p)
processes, as φkk = 0, k > p.
AR order p is therefore easily derived from PACF.
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Moving average processes and invertibility

The MA(q) process is given by

yt = εt + θ1εt−1 + . . .+ θqεt−q, or yt = θ(L)εt.

Finite order MA process is always stationary, zero mean,
and variance

γ0 = E
(
y2

t

)
= σ2

ε

(
1 + θ2

1 + . . .+ θ2
q

)
.

The autocovariance function is obtained as (cf. Wold
representation):

γk = σ2
ε(θk + θ1θk+1 + . . .+ θq−kθq), k = 1, . . . , q.

So that, γk = 0 for k = q + 1, q + 2, . . ..
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Autocorrelation MA(q) and invertibility

The autocorrelation function is obtained by ρk = γk

γ0

.
The ACF of and MA(q) process “cuts off” after lag q.
Exercise (4): Show ρ1 = θ

(1+θ2)
for an MA(1).

For an MA(1) there are two values for θ 6= −1, 0, 1 giving
the same ρ1, say θ = x and θ = 1/x.
graph . What about θ = 1?

The multiple solutions for θ(s) given ρ(s) apply to any
MA(q) process. For the MA(1), we choose only solution
with |θ| ≤ 1. The corresponding invertible (causal)
MA-model allows reconstruction of the innovations from an
infinite series for yt:

εt = (1 + θL)−1yt.
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Mixed Autoregressive Moving Average Processes

The general ARMA(p, q) process is φ(L)yt = θ(L)εt where

φ(L) = 1 − φ1L− φ2L
2 − . . .− φpL

p

θ(L) = 1 + θ1L+ θ2L
2 − . . . + θqL

q.

Stationarity requires the roots of φ(z) = 0 to lie outside the
unit circle, and invertibility requires the same for the roots
of θ(z) = 0. Given these conditions, the ARMA(p, q)
process may alternatively be expressed as a pure AR(∞)
process or as a pure MA(∞) process (“Wold
representation”) of infinite order, namely

θ−1(L)φ(L)yt = εt or yt = φ−1(L)θ(L)εt.
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ARMA(1,1)

The lowest mixed process is the ARMA(1,1) is given by

xt = φxt−1 + εt + θεt−1,

εt ∼ NID(0, σ2
ε), t = 1, . . . , n.

Schwert (1987, Journal of Monetary Economics, 73-103)
provides several other reasons for presence of
MA-components in (US) macroeconomic time series, so
it’s definitely worth going ”beyond AR”.
Next to Zellner-Palm argument: Measurement error,
permanent income hypothesis, time aggregation, rational
multi-period forecast errors (interest rates or exchange
rates). Most important for ARIMA(): good fit to data.
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Prediction and Forecasting

Prediction is computing future values of yt (point
predictions) and confidence intervals, that is for
yn+1, yn+2, . . ., given Yn = y1, . . . , yn. Purpose: obtain
optimal linear minimum mean squared error
predictions . Predictions are denoted by ŷn+1|n, ŷn+2|n, . . ..

Forecasting error en+j = yn+j − ŷn+j|n is due to

(i) ignorance of future errors εn+j

(ii) ignorance of pre-sample errors ε0, ε−1, . . .

(iii) uncertainty in estimates ARMA parameters (and
parameters deterministic part)

(iv) Model misspecification
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Prediction errors due to future innovations

The last 3 types of error are usually ignored. Statistical
prediction analysis is confined to (i), (ii) and sometimes
(iii). Under Gaussianity conditional expectations
correspond to optimal forecasts and forecast(error)s have
normal distributions.

We start with the AR(1) case, yt = φyt−1 + εt:

ŷn+1|n = E(yn+1|Yn) = E(φyn + εn+1|Yn) = φyn,

s.t.
en+1 = yn+1 − φyn = εn+1

with properties E(en+1) = 0 and SPE(1) = Var(en+1) = σ2
ε .
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Variance Prediction Errors

Then,

ŷn+2|n = E(yn+2|Yn) = E(φyn+1 + εn+2|Yn) = φ2yn,

s.t. en+2 = yn+2 − φ2yn = φεn+1 + εn+2 with properties

E(en+2) = 0 and SPE(2) = Var(en+2) = σ2
ε(1 + φ2).

For h-step ahead prediction we have,

yn+h = φhyn + φh−1εn+1 + . . .+ εn+h,

s.t. ŷn+h = φhyn and en+h = φh−1εn+1 + . . . + εn+h.
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Interval prediction AR(1)

It follows that E(en+h) = 0 and (cf. MA(∞) representation
AR(1): yt = ψ(L)εt)

SPE(h) = Var(en+h) = σ2
ε(1 + φ2 + . . . + φ2(h−1)).

As h→ ∞, ŷn+h → 0 and

Var(en+h) =
σ2

ε

(1 − φ2)
.

and these correspond with unconditional mean and
variance of yt. In a similar way, predictions for AR(p) model
can be derived with extra administration.
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Point and interval prediction MA( q)

Point and Interval Prediction with an MA(q) model is nearly
trivial if all past εt are known. E.g. take MA(1) model
yt = εt + θεt−1 and assume ε0 = 0, so that ε1, . . . , εn are
known.

The one-step ahead forecast for MA(1) is then:

ŷn+1|n = E(yn+1|Yn) = E(εn+1 + θεn|Yn) = θεn,

s.t. en+1 = yn+1 − θεn = εn+1 with properties

E(en+1) = 0 and SPE(1) Var(en+1) = σ2
ε .

Exercise (5) 7.4 c (p. 713): Derive the “mean and variance
prediction function” of an ARMA(1,1) model.
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Identification of ARMA model orders, ACF

Method 1: ACF and PACF
This method helps to understand the data, but can only
lead to an ’educated guess’.
Take variance of SACF rk and SPACF φkk into account
when trying to identify a model from SACF and SPACF. For
r1 = φ̂11 use ’rule of thumb’ variance of 1

n
under H0 that

process is white noise. Use

1. The ACF of MA(q) process “cuts off” after lag q.

2. The PACF of AR(p) process “cuts off” after lag p.

3. ACF of AR(p) and ARMA(p,q) (p > 0) processes die out
exponentially after lag q, oscillating in case of negative
or complex roots of φ(z) = 0. The AR order, p, is not
easily derived from ACF.
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Identification of ARMA model orders, AIC

Method 2: Minimize AIC or SIC
Estimate a collection models. Do not include models with p
and q large, ( p > 4 and q > 4) unless you have a
compelling reason (e.g. seasonal patterns). Select model
with best trade-off between fit (residual sum of squared
one-step-ahead forecasting errors) and number of
parameters, according to AIC or SIC. Let p∗ be p+ q, One
minimizes -2 × the loglikelihood plus a penalty.

AIC: − 2 ∗ l(p∗) + 2p∗ SIC: − 2 ∗ l(p∗) + p∗ log n

Note: in normal (nonlinear) regression models:
−2 ∗ l(p∗) = c+ n log(

∑
e2

t/n), c.f. §4.3.2 and §5.2.1.
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Estimation ARMA models

1. OLS: What are regressors? see also §5.5.4.

2. Nonlinear least squares (NLS): uses AR(∞)
parameterisation π(L) = θ−1(L)φ(L) to estimate εt

Assumes fixed starting values for yt and εt.

3. Conditional (Gaussian) Maximum Likelihood (CML),
conditional on p+ q starting values. Equals OLS for AR
models. Beware of interpretation regression
parameters. Loose observations at beginning sample.

4. Exact Gaussian Maximum Likelihood (EML). Takes
likelihood for first observations into account.(TSP,
RATS, SAS, PcGive). Not (yet) in Eviews.
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Dangers for ARMA estimation

Dangers for methods:

φ(z) = 0 and θ(z) = 0 should not have common roots.
Do not overspecify AR and MA part simultaneously.

NLS (and Eviews-) estimator and inference bad when
θ(1) ≈ 0. Do not “overdifference” the data. NLS not so
problematic when φ(1) = 0.

EML estimator and inference tricky when φ(1) ≈ 0. Do
not ”underdifference” the data.
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Testing and Evaluating ARMA models

Check white noise assumption residuals, Ljung-Box
test, LM test (Breusch Godfrey). If H0 rejected: add AR
or MA parameter, or add regressors §7.3.

Check other assumptions using residuals
(homoskedasticity, stationarity). If H0 rejected allow for
a changing mean §7.3, or variance §7.4, or both.

Forecast performance out-of-sample. Assess empirical
coverage of theoretical confidence intervals: count no.
of observations outside confidence interval. Compare
Root Mean Squared Prediction Error (RMSE), or Mean
Absolute Prediction Error (MAE) with forecasts of
benchmark models. If performance unsatisfactory:
simplify model or allow for changing mean or variance
in the model: model nonstationarity.
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