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Transforming to Stationarity, Trends and Seasons

Transforming non-stationary series to stationarity:
Modelling Trends and Seasonality.
The concept of stationarity is crucial because when a
series is nonstationary,

1. Mean, variance, covariance, correlation and partial
correlation lose their meaning,

2. Important identification and estimation methods do not
work

3. Standard asymptotic results for statistical inference do
not apply to φ̂. Standars CLT is not applicable: No
asymptotic normality, no

√
n convergence.
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Nonstationarity and Decomposition of time series

We distinguish two types of non-stationarity:
deterministic nonstationarity, and stochastic,
random-walk-type nonstationarity. Both deterministic
and stochastic nonstationarity can apply to the trends
and/or seasonal components.
Additive decomposition of a time series into stationary
and nonstationary components:

yt = Tt + St + Rt

Tt: trend(-cycle), St: seasonal component, Rt: stationary
component. Mean (and variance) of Tt and St evolve over
time. Convention: E(St + St+1 + St+2 + St+3) = 0 for
quarterly data.

Use log transformation to get multiplicative decomposition.
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Deterministic Trend (DT)

The simplest deterministic trend model is the linear time
trend:

yt = α+ βt+ εt,

so that mean growth β is derived from

∆yt = β + εt − εt−1

and h-step prediction yt+h : ŷn+h = a+ b(n+ h) and

E[(yn+h − ŷn+h)
2] ∼ σ2

ε , h→ ∞, h/n→ 0

Prediction interval stays finite for h→ ∞

Chapter 7.3 – p. 5/25



Example: DT dLog Dow Jones

Log Dow Jones Index Industrials Weekly 1896-2004
Dependent Variable: LOGDJIND
Method: Least Squares
Date: 02/25/04   Time: 17:40
Sample: 11/04/1896 1/27/2004
Included observations: 5596

Variable Coefficient Std. Error t-Statistic Prob.  

C 3.435230 0.012212 281.3038 0.0000
@TREND(11/04/1896) 0.000885 3.78E-06 234.1009 0.0000

R-squared 0.907380    Mean dependent var 5.910911
Adjusted R-squared 0.907363    S.D. dependent var 1.500914
S.E. of regression 0.456822    Akaike info criterion 1.271313
Sum squared resid 1167.393    Schwarz criterion 1.273683
Log likelihood -3555.134    F-statistic 54803.25
Durbin-Watson stat 0.003266    Prob(F-statistic) 0.000000
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Stochastic Trend

The simplest stochastic trend model is the random walk
model (with drift):

∆yt = α + εt

so that

yt = y1 + α(t− 1) +
t∑

s=2

εs,

but
E[(yn+h − ŷn+h)

2] ∼ hσ2
ε , h→ ∞, h/n→ 0

Prediction interval becomes infinitely large at rate h1/2.
(Compare the root h-law often applied for standard
deviations of predictions of logs of stock prices).
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Example: RW + drift Log Dow Jones

Returns (dLog) Dow Jones Index Industrials Weekly
1896-2004

Dependent Variable: D(LOGDJIND)
Method: Least Squares
Date: 02/25/04   Time: 18:07
Sample(adjusted): 11/11/1896 1/27/2004
Included observations: 5595 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.000993 0.000349 2.845951 0.0044

R-squared 0.000000    Mean dependent var 0.000993
Adjusted R-squared 0.000000    S.D. dependent var 0.026106
S.E. of regression 0.026106    Akaike info criterion -4.453093
Sum squared resid 3.812560    Schwarz criterion -4.451908
Log likelihood 12458.53    Durbin-Watson stat 1.957510
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Unifying Deterministic and Stochastic Trends

Consider the deterministic trend plus AR(1):

DT: yt = µ1 + µ2t+ ut ut ∼ stationary AR, reverting
to trend

ST: yt = µ1 + µ2t+ ut ut ∼ RW, AR process with a
’unit root’

In both cases ∆yt is stationary whereas yt is trending.
The crucial difference is the role of εt in AR (ut = φut−1 + εt)
or RW (∆ut = εt). The models coincide when φ = 1.
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Differences between ST and DT

* In the DT case, the influence of εt on yt+k dies away as k
increases and the series reverts to the trend line after a
shock. In the ST case, the influence of εt persists for any
k > 0: No ’reversion to trend’.
* In practice the difference is subtle, diagnostics based on
time series plots, correlograms of yt and ∆yt and (partial)
scatterplots of yt,∆yt, yt−1,∆yt−1 are not sufficient.
* Information from S(P)ACF: rk for yt does not decrease
exponentially for DT or ST, only for ∆yt. Moreover for DT
only:

∑
∞

1 rk ≈ −0.5 for ∆yt: induced MA ”unit root”, cf.
ACF MA(1) and Exercise (1): Exercise 7.13.
* Nelson and Plosser (1982, JME, 139-162) suggest many
US macro time series to be of the ST type using statistical
unit root tests developed by Dickey and Fuller.
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Det. Trend + AR(1) Log Dow Jones

Returns (dLog) Dow Jones Index Industrials Weekly
1896-2004

Dependent Variable: LOGDJIND
Method: Least Squares
Date: 02/25/04   Time: 17:41
Sample(adjusted): 11/11/1896 1/27/2004
Included observations: 5595 after adjusting endpoints
Convergence achieved after 4 iterations

Variable Coefficient Std. Error t-Statistic Prob.  

C 2.924902 0.729835 4.007623 0.0001
@TREND(11/04/1896) 0.001052 0.000188 5.584583 0.0000

AR(1) 0.998668 0.000764 1306.829 0.0000

R-squared 0.999698    Mean dependent var 5.911304
Adjusted R-squared 0.999698    S.D. dependent var 1.500760
S.E. of regression 0.026102    Akaike info criterion -4.453111
Sum squared resid 3.809768    Schwarz criterion -4.449556
Log likelihood 12460.58    F-statistic 9243842.
Durbin-Watson stat 1.956337    Prob(F-statistic) 0.000000

Inverted AR Roots        1.00
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Extensions of Stochastic Trend, I(1) processes

ARIMA(p, d, q) model:

φ(L)(1 − L)dyt = θ(L)εt

The “purely stochastic” process yt is Integrated of order
d, I(d) if it requires differencing d times to become a
stationary and invertible ARMA process. An I(1) process
requires differencing once and is called difference
stationary. A process that is differenced too many times is
called overdifferenced: I(-1).
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Unit root Tests, algebra

“Tests for an AR unit root (φ = 1)” provide a ”formal
criterion” to choose between stochastic trends and
deterministic trends in the context of AR models.
Consider the general “first order” trend model

yt = µ1 + µ2t+ ut, ut = φut−1 + εt.

Exercise (2): Show that we can rewrite this general trend
model as

yt = [µ1(1 − φ) + φµ2] + µ2(1 − φ)t+ φyt−1 + εt,
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Dickey-Fuller test regression

By introducing ρ = φ− 1 and subtracting yt−1 :
Dickey-Fuller test regression form:

∆yt = [−µ1ρ+ (ρ+ 1)µ2] − µ2ρt+ ρyt−1 + εt.

Note φ(1) = ρ = 0 for ST. So, to test for ST, we look at the
coefficient of yt−1.
Interpretation Dickey-Fuller test regression:
Main Idea: Test for (negative) partial correlation between
growth rates and lagged levels. This idea can be extended
to AR(p) models with p > 1.
Exercise (3): derive the ”Augmented Dickey-Fuller” test
regression when ut follows an AR(2), using the ”unit root”
factorisation of φ(z): φ(z) = φ(1)z + ρ(z)(1 − z), cf. Heij et
al. p. 598.
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Unit Root test for trending data, practice

Unit root testing using Dickey-Fuller regression for
trending data:

H0 : φ = 1 ⇔ ρ = 0 ST
H1 : −1 < φ < 1 ⇔ −2 < ρ < 0 DT
test-statistic : t : ρ = 0 or F : µ2ρ = 0 ∧ ρ = 0

critical value t : τct(α, n), τct(.05,∞) = −3.4,Exhibit 7.16

critical value F : Fct(0.05, 100) = 6.5, Exibit 7.16

conclusion : reject ST against DT when t < τct(α, n)

Power : t asymptotically normal under H1, and
P (t < τ(α)|H1) → 1, n→ ∞ : consistency
Inevitable: power low if φ close to 1 and
n small
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Example: DF test trending Log Dow Jones
Augmented Dickey-Fuller Unit Root Test on LOGDJIND

Null Hypothesis: LOGDJIND has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 2 (Fixed)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -1.899565  0.6546
Test critical values: 1% level -3.959678

5% level -3.410608
10% level -3.127081

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LOGDJIND)
Method: Least Squares
Date: 02/25/04   Time: 17:45
Sample(adjusted): 11/25/1896 1/27/2004
Included observations: 5593 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.  

LOGDJIND(-1) -0.001452 0.000764 -1.899565 0.0575
D(LOGDJIND(-1)) 0.020812 0.013367 1.556905 0.1195
D(LOGDJIND(-2)) 0.044448 0.013367 3.325219 0.0009

C 0.005362 0.002716 1.974263 0.0484
@TREND(11/04/1896) 1.49E-06 7.10E-07 2.092154 0.0365

R-squared 0.003154    Mean dependent var 0.001001
Adjusted R-squared 0.002441    S.D. dependent var 0.026108
S.E. of regression 0.026076    Akaike info criterion -4.454697
Sum squared resid 3.799650    Schwarz criterion -4.448771
Log likelihood 12462.56    F-statistic 4.420447
Durbin-Watson stat 2.001370    Prob(F-statistic) 0.001440
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Dickey-Fuller test for data without trend

Dickey-Fuller test for data without trend
In practice there might be theoretical reasons to exclude
the possibility of a drift in yt.
If µ2 = 0 both under H0 (no drift) and H1 (mean reversion),
one should omit the trend in D-F test regression and apply
τc instead of τct for critical values, to increase power of test.
See also table 7.6.
Another application of a D-F test regression without trend
in the test of I(2) vs. I(1), where ∆∆yt is the dependent
variable and we do not expect a trend in ∆yt.
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(A)DF test nontrending Returns Dow Jones
Augmented Dickey-Fuller Unit Root Test on D(LOGDJIND)

Null Hypothesis: D(LOGDJIND) has a unit root
Exogenous: Constant
Lag Length: 1 (Fixed)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -50.07399  0.0001
Test critical values: 1% level -3.431339

5% level -2.861862
10% level -2.566984

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LOGDJIND,2)
Method: Least Squares
Date: 02/25/04   Time: 17:44
Sample(adjusted): 11/25/1896 1/27/2004
Included observations: 5593 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.  

D(LOGDJIND(-1)) -0.936123 0.018695 -50.07399 0.0000
D(LOGDJIND(-1),2) -0.043745 0.013361 -3.274109 0.0011

C 0.000937 0.000349 2.684011 0.0073

R-squared 0.490468    Mean dependent var 4.53E-06
Adjusted R-squared 0.490286    S.D. dependent var 0.036532
S.E. of regression 0.026082    Akaike info criterion -4.454612
Sum squared resid 3.802691    Schwarz criterion -4.451057
Log likelihood 12460.32    F-statistic 2690.426
Durbin-Watson stat 2.001286    Prob(F-statistic) 0.000000
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Prediction DT+AR(1) log Dow Jones

Log Dow Jones Index Weekly 1896-2004, forecast
2004-2016
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Deterministic trend + AR(1)
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Prediction ST log Dow Jones

Log Dow Jones Index Weekly 1896-2004, forecast
2004-2016
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Prediction with an ARIMA model

In case yt is a nonstationary ARIMA(p, 1, q) model, implying
zt = ∆yt, is a stationary ARMA(p,q), we predict yt as an
(integrated) cumulated sum of forecasts for zt, i.e partial
sums of zt. If yt is ARIMA(1,1,0), then zt = φzt−1 + εt with
MA(∞) form: zt = εt + ψ1εt−1 + ψ2εt−2 + . . ., and
yn+1 = yn + zn+1, yn+2 = yn+1 + zn+2 etc.

Exercise (4): show optimal forecasts of yt are given by:

ŷn+h = yn + (ah − 1)∆yn,with forecast error variance:

Var(en+h) = σ2
ε

[
1 +

h−1∑

j=1

a2
h−j

]
.

where ah = 1 +
∑h

i=1 ψi = (1−φh+1)
(1−φ)

.
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Prediction error variance ARIMA(1,1,0)

In this case, as h increases, the variance increases
monotonically with h. The forecasts keep becoming more
imprecise as h increases. Var(en+h) eventually grows
proportionally to h and s.e.(en+h) grows proportionally to
h1/2, a square-root law often applied for standard
deviations of predictions of logs of stock prices.
This is another key difference between I(0) and I(1)
processes.
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Summary interval prediction ARIMA( p, 1, q)

Multistep interval prediction:

1. derive first h− 1 coeffients ψj in MA(∞) representation
of (1 − L)yt, ψ(L) = φ(L)−1θ(L)

2. construct partial sum series of ψj: aj = 1 +
∑j

i=1 ψi,
(a(L) = (1 − L)−1ψ(L))

3. Var(en+h) = σ2
ε(1 +

∑h−1
j=1 a

2
j)

Variance of long run prediction increases linearly in h, for
large h.
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ARIMA estimation in Eviews

NB: Eviews automatically deletes first p observations at the
beginning of the sample. Exact ML is not possible.
There are two ways to estimate ARMA(p,q) model. Beware
of the interpretation of the constant term.
Example:
ls y c y(-1) ’ c constant in regression (7.17)
ls y c AR(1) ’ c mean of y
To estimate ARIMA model use “Auto-Series”: an
Eviews-expression in place of a series. This allows
forecasting for “differenced” and “level” series using one
menu.
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ARIMA forecasting in Eviews

E.g. for (1 − L)n(1 − Ls)yt use:
Example:
ls d(y,n,s) c MA(1) SMA(s) ’c mean of d(y,n,s)
forecast(d) ’multistep forecast of d(y,n,s)
forecast(u) ’multistep forecast of y
forecast(s) ’forecast regression part only
Note: Eviews results are unreliable if θ(z) = 0 contains
roots near the unit circle.
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