
Chapter 3 - Debt sustainability: primary balance,
interest and growth

The purpose of this chapter is to present and discuss some stylized results on
debt sustainability and growth developed in the last two Sections 6 and 7.
Since these results rest on the architecture of Solow�s growth model, if the
reader is already familiar with it he may go directly to those last two sections.
If he is not familiar, or has been given only a few cursory notions and formulas,
he may �rst give a brief look at the last two sections just to taste the ground,
but then, before returning to them to absorb them properly, he may �nd useful
to go through Sections 1-5 in order to gain, or renew, a su¢ cient working
knowledge of this classic piece of theory of long-run economic dynamics.

1 - Preliminary de�nitions and assumptions

We summarize here some standard concepts, formulas and notations of dynamic
economic analysis (a similar useful summary is found in Jones & Vollrath
2013, Appendix A).

Notation for time dynamics

Following customary notation, we use the dot for the time derivative and the
prime for derivatives over other variables

_x(t) is the derivative of the variable x over time, i.e. its time rate of change

lnx(t) !
�

(lnx(t)) =
_x(t)

x(t)
= gx is the percentage rate of change of x over

time, i.e. its time rate of growth (R 0, constant or variable)
f 0x(�) is the derivative of f over any non-time variable x

Some basic time variables

We de�ne
P (t) population ! gP =

�
lnP

LF (t) labour force ! gLF =
�

lnLF . This is the number of people who are
�objectively�capable of working (broadly: healthy adults)
LS(t) labour supply. Not all of the above need be willing to work at the

existing conditions (broadly: wages)

L(t) natural employment ! gL =
�
lnL. This is the number of people actu-

ally working, or, more precisely, the number of natural physical units of labour
actually used in production.
LD(t) labour demand. The amount (and types) of work demanded at the

existing conditions may not coincide with actual employment. The di¤erence
LD � L are vacancies: jobs on o¤er but not yet taken up.
E(t) e¤ective employment = A(t)L(t). Multiplying L(t) by A(t) converts

labour input measured in natural units into labour input measured in e¤�ciency
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(or e¤ective) units, and the growth rate of A(t) =
�

lnA(t) = gA is known
as labour-augmenting technical progress. Conceptually, such technical progress
is de�ned as something that over time increases the physical productivity of
labour input measured in natural units. Given a natural unit of labour input
at time zero, over time - thanks to technical progress - that same natural unit
becomes the same as A(t) e¤ective units. In other words, if we measure labour
input in e¢ ciency (or e¤ective) units, and start at time zero with natural and
e¢ ciency units being the same, at time t one unit natural unit of labour has
become equivalent to A(t) e¤ective units of labour. As a result the growth rate
of e¤ective employment gE is equal to the growth rate of natural employment
gL plus the growth rate of the labour augmenting technical progress gA
lnA(t)L(t) = lnA(t) + lnL(t)

!
�

(lnA(t)L(t)) = (
�

lnA(t) + lnL(t)) =
�

lnA(t) +
�

lnL(t) = gA + gL = gE

Equality assumptions (equal growth rates)

We assume
gP = gLF = gL
This means assuming a constant share of the labour force in the population

and a constant share of employment in the labour force. The second assumption
means assuming a constant rate of unemployment. This includes the special case
of full employment, more precisely de�ned as the �natural�rate of unemployment
(the vertical long-run aggregate supply in the AD � AS diagram of standard
macroeconomics). Assuming a constant rate of unemployment means assuming
that the AD � AS adjustment mechanism keeps all the time the economy at
that (constant, possibly though not necessarily �natural�) level of unemployment.
The rationale of these equality assumption is to put the theoretical analysis of
growth in the perspective of the (very) long-run.
Figure 1 shows how to visualize the evolution of employment L, labour

demand LD, labour supply LS, labour force LF , and population P , over time.

Constancy assumptions (of growth rates and saving ratio)

In general gx, the rate of growth of a variable x over time, will not be constant.
If it is constant the equation

_x(t)

x(t)
= gx constant has the general solution x(t) = aegt. In other words

gx constant () x(t) = aegt ! lnx(t) = ln aegt = ln a+ ln egt = ln a+ gt
We now assume constant growth rates for our variables and a constant saving

ratio
gP = gLF = gL = n

gA =
_A(t)

A(t)
= � ! A(t) = e�t a constant (labour-augmenting) technical

progress (with natural and e¤ective units being the same at time zero)
! gE = n+ � = g
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gE = g is the constant growth rate of e¤ective employment,
s = saving ratio out of disposable income
The rationale of these constancy assumptions is di¤erent from that of the

equality assumptions. They are used to describe how the economy would evolve
under such constant growth rates, and how changes in the constant rates would
a¤ect its dynamics.

A digression on the special mathematical properties of the real num-
ber e and the exponential function ex

1. Consider the real function ax; a � 0; x 2 R and its graph. The very special
mathematical properties of the real number e are highlighted by any of the
following facts:
The shape of the graph changes as a changes from a > 1 to a = 1 to a < 1.

When the value of a becomes e(> 1) the function (a = e)x acquires the peculiar
interpretation of representing the path over x of a variable with a continuous
rate of growth of 100% over x, with x standing normally for time t.
In addition we have (ax)0x = (ln a)ax = ax () a = e. When a = e,

and only then, the function (a = e)x is the derivative of itself (and thus all
successive derivatives remain the same original function). For all values a 6= e
this remarkable and powerful property vanishes.
2. The above derivative property is obviously not accidental! It is embedded

in the de�nition of the number e as the limit of the following sequence/function
Limit of a sequence

lim
n!1

�
1 +

1

n

�n
= e = lim

n!1
f(n) where f(n) =

�
1 +

1

n

�n
for n positive

integer
limit of a function

lim
x!1

�
1 +

1

x

�x
= e = lim

x!1
f(x) where f(x) =

�
1 +

1

x

�x
de�ned 8x 6= 0

3. Interpretation of e in terms of continuous (interest or growth) compound-
ing

! lim
n!1

�
1 +

r

n

�nt
= lim

n!1

26664
0@1 + 1

n

r

1A
n

r

37775
rt

= ert

If we think of r as a rate of interest (or growth) per unit of time t (measured
in any conventional unit, such as day, month, year, etc.), and of n as the number
of times that r is computed in the given time unit, then we see that the above
formula gives us the value that 1e placed at time 0, and earning an interest r
(or growing at a growth rate r, which is the same thing) compounded n times
in the time unit, attains at time t.
4. The number e is also obtained using the de�nition of the real exponential

function as the following convergent series over the real �eld R
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E(x) � exp(x) =
P1

n=0

xn

n!
= ex, absolutely convergent 8x 2 R and uni-

formly convergent over all bounded subsets of R
=
P1

n=0

1

n!
= e for x = 1

5. The (real) logaritmic function lnx is simply the inverse of the (real)
exponential ex

(for proofs of the above statements see Chiang 2005, Chapter10)
To get a feeling of the great power of the exponential function the math-

ematically inclined reader may be reminded that that function needs not be
restricted to the real �eld. The complex exponential function, similarly de�ned
as the convergent series over the complex �eld C
E(z) � exp(z) =

P1
n=0

zn

n!
= ez

absolutely convergent 8z 2 C and uniformly convergent over all bounded
subsets of C, is the most important function in mathematics (Rudin 1986,
Prologue).

2 - Constant returns to scale (CRS), marginal products,
output elasticities, distribution

We start with a standard CRS pf (constant return to scale production function)
Q = F (K;E)
We recall the de�nition of homogeneous functions (Chiang 2005, Chapters

12.6 and 12.7)
h(
yi) = 


rh(yi); 8
 2 R
A CRS function is a homogeneous function where r = 1
h(
yi) = 
h(yi)
Applying this property to Q = F (�) above we can rewrite it in intensive

form, i. e. choosing anyone of the variables, say E, as the intensity variable,
and expressing the other in per unit of E

CRS ! F (
K

E
; 1) = F (k; 1) = f(k) =

1

E
F (�) = Q

E
= q, where k and q are

capital and output per e¤ective worker, respectively
! q = f(k)
Q = F (�) = Ef(k)

Marginal products & competitive rate of return on capital and real
wage

MPK = F 0K(�) = (Ef(k))
0
K = Ef 0(k) � k0K = f 0(k): competitive rate of return

on capital (using k =
1

E
K ! k0K =

1

E
)

MPE = F 0E(�) = (Ef(k))
0
E = f(k)+Ef

0(k)�k0E = f(k)�f 0(k)k: competitive
real wage (using k =

1

E
K ! k0E = �

K

E2
= � 1

E
k)
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Output elasticities and competitive shares

The Euler property of homogeneous functions states
F 0KK + F 0EE = rF (�) = F (�) = Q under CRS
so that
F 0KK

Q
+
F 0EE

Q
= 1

F 0KK

Q
= "FK(K;E) is the output elasticity with respect to K, and under

CRS it coincides with the competitive share of capital in output (i. e. the share
of capital income in output when capital earns its competitive rate of return
F 0K(�))

F 0EE

Q
= "FE(K;E) is the output elasticity with respect to E, and also -

under CRS - the competitive share of e¤ective employment in output (i. e. the
share of labour income in output when labour earns its competitive wage rate
F 0E(�))
Using the above de�nitions of MPK = F 0K(�) and MPE = F 0E(�) we can

express output elasticities and competitive shares in intensive form
Output/capital elasticity :
F 0KK

Q
= "FK(K;E) = F

0
K

K=E

Q=E
= f 0(k)

k

f(k)
= "fk(k)

It turns out to be notationally convenient to use
�(k) � "FK(K;E) = "fk(k) for the output/capital elasticity. Thus
!MPK = f 0(k) = �(k)

f

k
Output/labour elasticity :

F 0E
E

Q
� "FE(K;E) = (f(k)� f 0(k)k)

1

f(k)
= 1� f 0(k) k

f(k)
= 1� �(k)

!MPE = f(k)� f 0(k)k = (1� �(k))f(k)

A remark on elasticities in homogeneous functions

It is a simple matter to show that the above handy output-elasticity formulas for
our two-factor CRS pf are only a particular instance of another general useful
property of CRS pfs (in fact of homogeneous pfs of any degree). Let F (Xi) be
a homogeneous function of degree r. Choose some Xs as the intensity variable,

and write f(xi); xi =
Xi
Xs

= 8i 6= s for the intensive function relative to Xs.
Then it can be shown that:
"FXj

(Xi) = "fxj (xi);8j 6= s
"FXs(Xi) = r �

P
j "fxj (xi)

The elasticities relative to all variables di¤erent from the intensity variable,
calculated for the function in normal form, are the same as those calculated for
the function in intensive form. The elasticity relative to the intensity variable,
calculated for the function in normal form, is the complement to r of the sum
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of all other intensive form elasticities (the proofs are simple but notationally
cumbersome, and we leave them out).
Figure 2 is a graphical representation of the model�s relationships discussed

so far. We suggest to use the �gure as a kind of visual guide for reviewing the
formal results and derivations.

A remark on non-competitive distribution

It is relatively simple to introduce a non-competitive distribution between capital
and labour into the above theoretical framework. We start with
Q = F (�) = F 0KK + F 0EE
=MPK �K +MPE � E
= 'MPK �K + �MPE � E
where the two coe¢ cients ' and � converte the competitive distribution into

a non-competitive one
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Dividing by Q we obtain
1 = '�(k) + �(1� �(k))

! ' =
1

�(�) �
1� �(�)
�(�) �

The function '(�; �(�)) is represented in Figure 3. The coe¢ cient � > 0
applied to the MPE can be interpreted as a measure of market power by either
one of the two factors. When � = ' = 1 neither capital nor labour have
market power, and distribution is competitive. Values of � 6= 1 represent a
situation of non-competitive distribution. Values below 1 mean market power
by capital, and above 1 market power by labour. In the top-right corner of
Figure 2, starting from the curves representingMPK(k) (in red) andMPE(k)
(in black) respectively, the rising arrow (red) and descending arrow (black) are
meant to show that when MPK(k) shifts upwards (� falls below 1 indicating
a rise in capital�s market power) MPE(k) rotates downwards, according to the
relationship '(�; �(�)) which depends on technology. Such possibility, of a rate
of return on capital higher than MPK(k), is repeated also in Figure 4, in
order to place it in the dynamic context represented therein.

3 - Cobb-Douglas (CD) production functions

The CD-CRS production function

Cobb-Douglas pfs are a special kind of homogeneous functions, extensively uti-
lized in both theoretical and empirical work. The general expression is
Q = F (Xi) = A

Q
X�i
i ;

P
�i = r; where r R 1 means that the pf has

increasing, constant, decreasing returns to scale. Taking our simple capital &
labour case, the CD pf is
Q = F (K;E) = AK�E� ; with returns to scale equal to �+ �
Disregarding the productivity coe¢ cient A without loss of generality, the

proof of homogeneity is trivial:
(
K)�(
E)� = 
�K�
�E� = 
�+�K�E� = 
�+�F (K;E) �
If � = 1 � � the pf is CRS. Writing it in intensive form (and disregarding

again the coe¢ cient A) we obtain the intensive pf shown in Figure 2

Q = K�E1�� ! Q

E
=

�
K

E

���
E

E

�1��
=
1

E
K�E1�� = k� = q ouput per

unit of e¤ective emplyment. In short
q = f(k) = k�

The constancy of output elasticities and competitve shares

In the previous Section on the CRS pf f(k) we have derived its output elasticities
and competitive shares, denoting them as �(k) for capital and 1��(k) for labour.
In those expressions �(k) is a generic function of k of any shape, including
constancy as an �accidental�special case. We can now easily see that
�(k) = � = constant () f(k) = Ak�

Proof:
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Suppose f 0(k)
k

f(k)
= � = constant (see formulas in the previous Section).

Then we see that it must be f(k) = Ak�

f 0

f
= �

1

kR f 0
f
dk = �

R
1
kdk

ln f = c+ � ln k = c+ ln k�

f = e(c+ln k
�) = ec � eln k� = eck� = Ak�

Suppose f(k) = Ak�. Then we see that f 0(k)
k

f(k)
= � �

Warning. Let �(k) = f 0(k)
k

f(k)
be the output/capital elasticity, as previ-

ously de�ned, with �(k) a generic function of k. We want to highlight that we
are not allowed to write f(k) = k�(k). We see this by writing g(k) = k�(k)

and checking that it doesen�t yield the desired result g0(k) = �(k)
g(k)

k
. By

deriving g(k) we obtain g0(k) =
�
k�(k)

�0
= �(k)k(�(k)�1) + �0(k) ln k � k�(k) =

�(k)
k�(k)

k
+ �0(k) ln k � k�(k) 6= �(k)g(k)

k
�

4 - Elasticity of substitution

Elasticity of substitution in general

Consider an arbitrary pf Q = F (K;E). To any pair (K;E) there corresponds a
pair (MPE(K;E);MPK(K;E)). Now take an arbitrary isoquant, drawn on the
(K;E) space. Suppose we start at some point on the isoquant and then move
along it, downwards and rightwards. As the pair (K;E) along the isoquant
changes, also the pair (MPE(K;E);MPK(K;E)) changes. We thus obtain
an isoquant-based relationship between the two pairs. Now look at the rela-
tionship going from (K;E) to (MPE(K;E);MPK(K;E)), and suppose that
this relationship is a function, i. e. that every pair (K;E) maps into a corre-
sponding pair (MPE(K;E);MPK(K;E)). Then de�ne a new function, map-
ping the ratio (K=E) into the ratio (MPE(K;E)=MPK(K;E)), and assume
it to be increasing. This is a reasonable assumption. Over a given isoquant,
when the input ratio K=E increases it makes sense to assume that also the ratio
MPE(K;E)=MPK(K;E) increases. In other words, when the ratio of an input
X over an input Y increases it makes sense to expect the ratio of the marginal
productivity of Y over that of X to increase as well. Now invert this function,
i. e. take the function that maps the ratio MPE(K;E)=MPK(K;E) into the
ratio K=E

K

E
= h

�
MPE(K;E)

MPK(K;E)

�
This function has a particular economic meaning. If we assume pro�t maxi-

mizing competitive �rms, where inputs are paid their respective marginal prod-
ucts, then the function h(�) tells us by how much - at any point (K;E) on an
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isoquant - does the ratio of capital over labour change along the isoquant itself,
in response to a change in the inverted ratio of their respective prices, i. e.
in the ratio of the price of labour over that of capital. The elasticity of this
function h(�), which as we know is its log derivative

�KE(�) = h0(�)
MPE(�)=MPK(�)

K=E
=

d ln(K=E)

d ln(MPE(�)=MPK(�))
is called the elasticity of substitution (ES). It characterizes the above rela-

tionship expressed in % terms. The value of the ES at any point (K;E) on
an isoquant says by how many % points does the ratio K=E change along the
isoquant itself, when the ratio MPE(�)=MPK(�) changes by 1% point.
Now, it can be shown (Chiang 2005) that if the pf is homogeneous, of

any degree, then the function h(�) is scale-ivariant, i. e. it does not depend
on which isoquant we choose, and so is - of course - its ES (this is intuitive,
because the isoquants of homogeneous functions are radial expansions of one
another). More generally, with respect to their ES, homogeneous functions (of
any degree) can be partitioned into two subsets, those with non-constant ES,
and those with constant ES. Those with constant ES are called CES pfs, and
can in turn be distinguished according to whether the constant ES is R 1. The
special case ES=1 coincides with the set of Cobb-Douglas (CD) pfs.

The elasticity of substitution of a CRS pf

Consider our CRS pf expressed in intensive form
Q = F (K;E)! q = f(k)
The function h(�) relative to this pf can be immediately obtained using the

formulas derived in Section 2 above:
MPE(k) = (1� �(k)f(k)

MPK(k) = �(k)
f(k)

k
MPE(k)

MPK(k)
=
1� �(k)
�(k)

k

! k = h

�
MPE(K;E)

MPK(K;E)

�
=

�(k)

1� �(k) �
MPE(k)

MPK(k)
This is the formula for the curves in green shown in the bottom-left corner

of Figure 2. In the CD case we have a constant �, and the h(�) function is
represented by the straight thick green line. The elasticity of this straight line,
which rotates towards the horizontal axis when � rises, is the ES of the pf drawn
in the top-right corner, and it is by construction always unity, independently of
what the value of � happens to be. The thin green curves are instead meant
to represent cases of pfs where the term �(k) changes over k in such a way as
to produce functions h(�) with constant elasticity 6= 1. The ES of such pfs are
precisely the constant non-unitary elasticities of these thin curves, one higher
than 1 and the other lower.
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5 - Input-output dynamics

Growth rates and elasticities

Given a function f(xi), let each xi change by some% points. Then the% change
in f is equal to the sum of the % changes in each xi, times their respective
elasticities:
f(xi)! df =

P
i f

0
i(�)dxi

df

f
=
P

i f
0
i(�)

dxi
f

xi
xi
=
P

i f
0
i(�)

xi
f

dxi
xi

=
P

i "fxi(�)
dxi
xi

Let now all xi be functions of some independent variable, say time t. Then
we can rewrite the previous expressions in terms of growth rates (recall our
notational convention of using the dot for time derivatives, and gx for the growth
rate over time of a variable x):
f(t) = f(xi(t))
_f =

P
i f

0
i _xi

_f

f
=
P

i f
0
i

_xi
f
=
P

i f
0
i

_xi
f

xi
xi
=
P

i f
0
i

xi
f

_xi
xi
=
P

i "fxi(�)
_xi
xi
. In short

gf =
P

i "fxi(�)gxi
The growth rate of f(xi(t)) is equal to the sum of the growth rates of the

xi(t) times their respective elasticities

Dynamics of output, capital and labour.

Consider our pf as moving over time: Q(t) = F (K(t); E(t)). Then
_Q = F 0K

_K + F 0E
_E

_Q

Q
= F 0K

K

Q

_K

K
+ F 0E

E

Q

_E

E
As anticipated in Section 1, in our very long-run perspective we assume

a constant growth rate of e¤ective emplyment, gE = g. In short the above
becomes
gQ = "FK(�)gK + "FE(�)g
Under CRS this becomes (see Section 2)
gQ = �(k)gK + (1� �(k))g =
= �(k)(gK � g) + g
= �(k)gk + g = growth rate of output

gQ=E = gq = gQ � g = �(k)gk = growth rate of output q =
Q

E
= output per

e¤ective worker (per unit of e¤ective employment)
gQ=L = gQ � gL = gQ � n = gQ � (g � �)
= (gQ� g)+� = gq+� = �(k)gk+� = growth rate of output per head (per

natural worker = per unit of natural employment)

Steady state k

A constant k
The equation of motion of k is
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_k =

��
K

E

�
=

_KE �K _E

E2
=

_K

E
� gk

!
_K

E
= _k + gk

_K

E
is actual investment per unit of E, while

gk is the required investment per unit of E, needed to keep K=E = k con-
stant, because

_k =

��
K

E

�
=

_KE �K _E

E2
=

_K

E
� gk = 0 =)

_K

E
= gk

Fundamental Solow equation

Assume a given aggregate propensity to save s out of GDP, S = sQ.
Since in long-run economic dynamics actual saving = actual investment we

have
S = sQ = _K

s
Q

E
=

_K

E
= sf(k) = _k + gk
! _k = sf(k)� gk = _k(k)
This is the fundamental dynamic Solow equation.
In order to have a long-run, steady state (ss) equilibrium, the level of k, here

denoted by ssk, must be constant, so that
_k = 0! sf(k) = gk

! k

f(k)
=
K=E

Q=E
=
K

Q
=
s

g
ss capita/output ratio

For any given propensity to save, the ssk level of k is obtained where the
saving-investment curve sf(k) intersects the growth curve gk, and where this
happens the capital/output ratio is equal to the ratio of the saving rate over
the growth rate. By way of example, if these two rates were the same the ss
capital/ouptut ratio would be equal to unity. But of course we know that in
practice the saving rate is usually quite higher than the (real) growth rate.
The dynamic relationships formally derived above are represented graphi-

cally in Figure 4.

Sustainable consumption per head

As for consumption,
C = Q� _K = (1� s)Q is current aggretate consumption, and

cE =
C

E
=
Q

E
�

_K

E
= (1� s)Q

E
= (1� s)f(k) = f(k)� ( _k + gk) is current

consumption per e¤ective worker

(recall s
Q

E
= sf(k) =

_K

E
= _k + gk).
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In Figure 4 this is the vertical distance between the f(k) and sf(k) curves.
Clearly, for any given s consumption per head rises with k, but of course not
any level of cE is sustainable! Only those levels of consumption per head that
satisfy the steady state (long-run) equilibrium condition are sustainable. We
denote them by sscE . Since in ss _k = 0, the set of such feasible ss levels of
consumption per head is de�ned by the condition
sscE = f(k)� gk
i. e. by the vertical distance between the f(k) and gk curves.
Notice that for any constant level cE of consumption per e¤ective worker,

the level cL =
C

L
of consumtion per actual worker is not constant, but increases

at a rate of growth equal to the rate of technical progress gA.

The golden rule and dynamic e¢ ciency

We now ask: what is the saving propensity that maximizes the steady state
(long-run) consumption per head? The answer to this question is the so-called
golden rule of accumulation.
Since the sscE is the vertical distance between the f(k) and gk curves, we

see in the �gure that such distance is maximized where the slopes of the two
curves coincide. Formally
max
k
sscE = f(k)� gk ! (f(k)� gk)0k = 0

! f 0(k) = g

Since f 0(k) = �(k)
f(k)

k
, the condition can be restated as

�(k)f(k) = gk
In the �gure, the particular k satisfying the condition is denoted by grk

(golden rule k) and can be graphically determined in two di¤erent but equivalent
ways: either by �nding the k level where the curves f(k) and gk have the same

slope, or by �nding the intersection between the MPK(k) = f 0(k) = �(k)
f(k)

k
curve and the gk straight line. For brevity we shall denote this maximum sscE
by grcE .
But since the ss condition _k = 0 implies sf(k) = gk, there is another inter-

esting way to characterize the condition for maximizing sscE . The condition is
equivalent to requiring that s be equal to �(gkr): the intersection between the
saving-investment curve sf(k) and the growth line gk takes the economy to the
sscE maximizing grk () s = �(grk). When � is constant (the CD case) this
becomes more simply s = �.
In short, maximizing ss consumption per e¤ective worker requires (i) that

the competitive long-run (real) rate of return on capital be equal to the long-run
(real) rate of growth. A di¤erent but fully equivalent requirement is (ii) that the
aggregate saving propensity s (out of Q = GDP ) be equal to the competitive
share of pro�ts in GDP , here denoted by �(�). Stated in slightly di¤erent terms
it requires that an amount equal to all pro�ts that would be earned by capital
under competitive conditions be invested, and an amount equal to all wages
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that would similarily be earned under competitive conditions be consumed.
The golden rule of accumulation is also known as the rule ensuring dy-

namic e¢ ciency. We can use the �gure to show what this means. Suppose
the saving-investment propensity takes the economy to the steady state ssk0.
Ss consumption per head sscE is the vertical distance P0P1. We can see that
this economy saves-invests too much. By reducing saving-investment today to
the lower level required by the golden rule, k would decrease towards grk, the
present generations would increase their consumption per head, and also the
future generations would enjoy a consumption per head higher than before for
ever after. In other words, moving from ssk0 to grk through a reduction in the
saving-investment propensity amounts to an actual Pareto improvement because
it bene�ts all generations. This is the reason why a ss like ssk0, lying to the right
of grk, is said to be dynamically ine¢ cient. Now suppose the saving-investment
propensity takes the economy to the steady state ssk1. Ss consumption per
head sscE is the vertical distance P2P3. This economy saves-invests too little.
But in order to move from ssk1 to grk the presnt generations need to increase
their saving-investment. Their consumption per head would decrease, and only
later generations would enjoy a consumption per head higher than before for
ever after. In this case the economy can still �buy�a higher consumption per
head for all future generations, but only at the cost of a lower consumption per
head by the present generations. The move from ssk1 to grk does point towards
greater e¢ ciency, but it doesn�t amount to to an actual Pareto improvement
because it bene�ts some generations at the cost of others. However, and under
an admittedly highly questionable logical twist, it can still be classi�ed as a
potential Pareto improvement, because the future generations enjoying a higher
consumption are many more (indeed they are in�nite, so to speak), while the
present generations enjoying a lower consumption are only a few (a �nite num-
ber, so to speak), so that - in the abstarct - it would certainly be possible for
the future generations to compensate the present ones, and still retain some net
bene�t. The logical weakness of this proposition lies in the fact that in an in-
tertemporal context backward compensation, though conceivable in the abstarct,
is impossible even in principle: later generations could never actually compen-
sate earlier ones, even if they wanted! The impact over time on consumption
per head caused by the instantaneous changes in the saving-investment propen-
sity just described is represented here in Figure 5. In reading this �gure the
reader is reminded that we are considering consumption per e¤ective worker
cE , and that a constant cE corresponds to a consumption per natural worker
cL increasing at the constant rate of the (labour-augmenting) technical progress
gA = �:

cE(t) =
C(t)

A(t)L(t)
=
cL(t)

A(t)
! cL(t) = A(t)cE(t) = e

�tcE(t)

At this point we must ask ourselves whether, and if so to what extent,
these results do provide any substantial insight into the working of a capitalist
economy. In particular, the question comes to mind in view of, and possibly
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stimulated by, the recent weighty study by Thomas Piketty (Piketty 2014).
We leave it to the thoughtful reader to re�ect on his own on this general ques-
tion. For our part, elaborating on Solow 2000, pp. 53-70, we use the highly
stylized theoretical architecture developed so far to analize the problem of debt
sustainability, and we shall see that - at least as far as this particular analyt-
ical exercise is concerned - that architecture does provide some economically
meaningful results.

6 - The government budget and the Debt/GDP ratio

Some de�nitions

Using a stilized formulation of the government budget equation we obtain, after
a number of substitutions and rearrangements, the dynamic equation of the
ratio of public debt to GDP. First some de�nitions
Q = GDP is real output
g is the growth rate of Q
P is the (aggregate) price level
G is real public expenditure on goods and services, and 
 is the share of G

in Q, so that
G = 
Q
B is nominal government debt, which, divided by P , becomes

b =
B

P
the real government debt, which in turn, divided by Q, becomes

� =
b

Q
the government debt as a percentage of output

_B(t) is the government nominal de�cit, i.e. the rate of change of B per unit
of time
R is the nominal rate of interest on B, and

� =
_P

P
is the rate of in�ation, so that

r = R� � is the real interest on B, with r = R when � = 0
T is total nominal tax revenues

� =
T

PQ+RB
is the average ratio of tax revenues over incomes, so that

T = �(PQ+RB)

Total and primary de�cits

The total de�cit (or surplus, when negative) is the excess of total public expen-
ditures over total public revenues. The primary de�cit is the same less the net
interest payments on the net outstanding debt. The total interest bill may in
turn be R 0 depending on whether the net outstanding debt is R 0, and on the
possible di¤erences in returns between assets and liabilities. Using the above
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notations the aggregate equations are

PG+RB � T =
�
B

P
Q+RB � �PQ� �RB =
�
B

(
 � �)PQ+ (1� �)RB =
�
B

The last equation is the total nominal de�cit, which is more conveniently ex-
pressed in real terms by dividing it by P

(
 � �)Q+ (1� �)Rb =
_B

P
; where b =

B

P
(1)

The primary de�cit is the �rst term in the left side of the equation

From the de�nitions of nominal and real debt B = bP we obtain the rela-
tionship between the nominal and real total de�cits, either directly

_B = _bP + b _P

_b =
_B

P
� b

_P

P
=

_B

P
� b�; where � =

_P

P
(2)

_B

P
= _b+ b�

or by applying the standard formula of the time rate of change (time derivative)
of a ratio

��
x

y

�
=

_xy � x _y
y2

=
_x

y
� x
y
gy !

_x

y
=

��
x

y

�
+
x

y
gy

��
B

P

�
= _b =

_BP �B _P

P 2
=

_B

P
� �b

Nominal and real total de�cits are di¤erent economic and statistical concepts,
which coincide if and only if there is zero in�ation. The total real de�cit is
equal to the total nominal de�cit less the loss of value of the debt stock due to
in�ation (by reducing the real value of a �nancial asset in�ation damages the
creditor, who owns of the asset, and favours the debtor, who owes it). Again,
the relationship is more conveniently expressed in terms of ratios to GDP

_b

Q
=

_B

PQ
� ��; where � = b

Q

because then, using the previous standard formula for the rate of change of a
ratio we obtain a useful expression relating the real total de�cit ratio to the debt
ratio and real growth, and the nominal total de�cit ratio to the debt ratio and
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nominal growth
��
b

Q

�
= _� =

_bQ� b _Q
Q2

=
_b

Q
� b

Q

_Q

Q
=
_b

Q
� g�

!
_b

Q
= _� + g� (3)

!
_B

PQ
= _� + (g + �)�

7 - The dynamics of the debt/GDP ratio

Basic assumptions

In order to focus on the most basic relationships we make three convenient
assumptions: (i) a closed economy, (ii) no debt monetization: public debt is
held entirely by the (private) economy in the form of interest bearing securities,
and (iii) an exogenous real rate of interest r. A general discussion of whether,
and to what extent, the real interest may be treated as exogenous in an economy
integrated into a liberalized world capital market lies outside the scope of these
lectures. In the long-run model at hand, of a closed economy, the real interest
r is usually identi�ed with the competitive rate of return on capital, in which
case it is clearly not exogenous, but a decreasing function - depending on the

properties of the production function - of capital per e¤ective worker
K

E
= k,

or equivalently of the capital/output ratio
K

Q
= v (see Figure 2). However

this identi�cation is not a necessary feature of the model, which can easily
accomodate 1) an exogenous rate of return on capital, determined for instance
by non-competitive conditions or by the world market, or 2) more generally, a
separation between a �nancial interest charged by lenders of capital (to business
and governments) and the real rate of return on business investment.

In�ation and the actual tax burden on real interest

Since we want to concentrate on real, not nominal, variables we also need to
clarify the di¤erence between gross real interest and net (of taxes) real interest.
Speci�cally, assuming that the tax on interest income is a tax rate applied to
nominal interest, we want to see what is what kind of tax wedge between gross
and net real interest is inserted by such a tax, for any given level of in�ation.
The following are the relevant eqs

�Rb = �(r + �)b

rb� �(r + �)b = [r � �(r + �)]b (4)

= [(1� �)r � ��]b

Given an in�ation �, and a tax rate � on R = r + �, the net real interest
received by the holders of public debt (and paid by the debtor) is (1� �)r� ��.
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Predictably, with a positive in�ation, the tax burden on real interest is higher
than � , by an amount precisely equal to the second order term ��. For any
given � , the higher is in�ation, the higher is the tax burden, because in�ation
raises the excess of the tax base R above r. With this our analysis expressed in
real variables becomes in�ation-independent. We do not need to assume zero
in�ation and R = r. However, for simplicity we may leave out the term ��
because we assume either that it is negligible, or that the tax rate applies to
real interest, or that in�ation is zero.

The dynamic equations

We procede with the following steps
Substitute R = r + � and (2) into (1)

(
 � �)Q+ (1� �)(r + �)b =
_B

P
= _b+ b�

(
 � �)Q+ ((1� �)r � ��)b = _b

Divide by Q

(
 � �) + ((1� �)r � ��)� =
_b

Q
(5)

Substitute (3) into (5)

(
 � �) + ((1� �)r � ��)� =
_b

Q
= _� + g�

(
 � �) + (1� �)r� =
_b

Q
= _� + g�; when � = 0

This yields the equation of the dynamics of � as a function of � itself and
the parameters 
; � ; g; r; �

(
 � �) + ((1� �)r � ��)� = _� + g�

_� = (
 � �)� [g � ((1� �)r � ��)]� ! _�(�; 
; � ; g; r; �) (6)
_� = (
 � �)� (g � (1� �)r)� ! _�(�; 
; � ; g; r), with � = 0

giving the steady state debt/GDP ratio �ss as a function of the parameters

_� = 0! � =
(
 � �)

[g � ((1� �)r � ��)] = �ss(
; � ; g; r; �) (7)

_� = 0! � =
(
 � �)

g � (1� �)r = �ss(
; � ; g; r)

The numerator 
� � R 0 is the primary de�cit/GDP ratio, the denominator
g � ((1 � �)r � ��) R 0 is the di¤erence real growth rate minus net of tax real
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interest (we�ve already explained above, in eq (4) the economic rationale of the
second order term ��). As already noted above the simpler expression in (4)
applies when either � = 0, or the tax rate � is calculated on real interest, or
�� is negligible. Thus the formulas do not - strictly - depend on assuming zero
in�ation. Using real growth and real interest they describe the dynamics of the
debt/GDP ratio for whatever level of (constant) in�ation. The numerator and
denominator are the two factors a¤ecting the dynamics of the debt/GDP ratio.
This dynamics is graphically illustrated in the phase diagram of Figure 6, with
� on the horizontal axis and _�, the time rate of change of �, on the vertical one
(on phase diagrams the reader is referred to Chiang 2005, Chapters 15.6 (one
variable) and 19.5 (two variables))
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The instability of the debt/GDP ratio when net interest exceeds real
growth

Consider �rst the thick red line, which corresponds to what may be regarded as
the most likely case g < (1� �)r, a net of tax real interest higher than the real
rate of growth of GDP. The slope of the red line, equal to � (g � (1� �)r) > 0,
is positive, and at � = 0 the line intersects the vertical _� axis at point P0,
a positive height 
 � � > 0. We see that under such conditions - a positive
primary de�cit and a net real interest higher than real growth - the steady state
level �ss where the red line intersects the horizontal axis is negative, at point
P1, and is unstable. In words, with a net interest higher than real growth a
primary de�cit can only be sustained if the government holds a positive net
�nancial position with respect to the economy, i.e. if the net debt/GDP ratio
� is negative. Given a primary de�cit, in order for � to remain constant the
government needs to supplement taxes with an extra net interest revenue, which
brings the total real de�cit down to zero. If � lies to the left of P1 it will keep
decreasing inde�nitely. If � lies to the right of P1 it will keep rising inde�nitely
(changing from negative to positive at some point in time), at a speed that
depends on the height of the primary de�cit 
 � � and the excess of the net
interest over real growth � (g � (1� �)r). The economics of this dynamics is
perfectly intuitive. The other two - thin - red lines serve to point out two other
economically intuitive facts. Given a net interest higher than real growth, the
intersection at P2 means that a zero debt/GDP ratio is sustainable only with
a zero primary balance. A positive debt/GDP ratio (here at P3) is sustainable
only with a primary surplus (here at P4), whose level depends - of course - on
the excess of net interest over real growth (i.e. on the slope of the line going
through P3).
From the point of view of stability, the excess of net interest over real growth

� (g � (1� �)r) implies always insatbility. If � is at points such as P1, P2, P3
it stays there, but as long as 
� � remains unchanged, if it�s to the left, it keeps
decreasing and if it�s to the right it keeps increasing. Suppose it�s to the right.
Then if the government wants the ratio � to stop increasing it must reduce the
value of 
 � � . The red line shifts downwards, so that its intersection with the
horizontal axis moves to the right. The intersection point and the actual level
of � move both to the right. As the intersection point draws closer to � its
speed of increase of slows down, untill it stops altogether if and when the former
catches up with the latter.

The stability of the debt/GDP ratio when real growth exceeds net
interest

The thick blue line represents the opposite case. Here net interest is less than real
growth. The line has negative slope equal to � (g � (1� �)r) < 0. A primary
de�cit at P0 is sustainable, in the sense that, whatever the initial level of the
debt/GDP ratio, this tends to the ss level at P5. The reader can easily work
out the economic interpretation of the thin blue lines crossing the horizontal
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axis at points P2 and P6, respectively. In particular, with real growth higher
than net interest a primary surplus, say, at P4 would cause a positive debt to
�rst vainsh, and then to become negative (a public credit) and tend to the ss
level P6.
The case of net interest equal to real growth is represented by the horizontal

green lines. Their interpretation in terms of primary de�cit and the dyanamics
of � is is left to the reader.

8 - The �burden of the debt�

The excess of real growth over net interest allows the government to run a
permanent primary de�cit. It allows for instance to run a positive 
 with a
zero � , i.e. to provide G without covering its cost with taxation. At �rst
sight this looks close to a refutation of the saying �There is no such thing as a
free lunch�(made popular in the economics profession by Milton Friedman)
because people may enjoy some G without having to pay for it, but on closer
inspection it is not. As shown in Figure 6, such policy generates in steady state
a (stable) positive debt/GDP ratio. If we regard the interest bill on public debt
as a redistributive social cost, or burden, on the economy, then any government
budget policy generating a positive �, with or without taxation, would involve
some such social cost. The redistributive burden of public debt is a complex
issue, whose in-depth treatment lies outside the scope of this chapter. We
therefore limit ourselves to three remarks giving a summary idea of the nature
of the problem.
First, interest payments on public debt are treated as transfers, as if they

were negative taxes. It is a fact that interest payments on public debt are by
general convention rergarded not as an income derived from market wealth cre-
ation but as a transfer of income from the government to debt holders. In other
words, just as taxes are regarded as transfers from the economy to the gov-
ernment (i.e. from the private (market) economy to the public (non-market)
economy), public debt interest payments are regarded as transfers in the op-
posite direction. The rationale for this lies precisely in the separation between
the market and non-market parts of the economy. In the market part, interest
payments on private debt are viewed as income from market wealth creation
because it is assumed that - at least in principle - such payments are covered
by the additional market wealth (pro�ts) created by the productive investments
�nanced by the private loans underlying private debt. And loans for market
consumption are similarily likened to investment loans because they also may
be thought of as creating market wealth, albeit indirectly, through their positive
impact on market demand. On the contrary, in the non-market �eld interest
payments on public debt do not - by de�nition - come out of market wealth
creation. By de�nition, they can only be covered by taxes, or by further public
indebtment, because public production, even when it has an exclusive or pre-
dominantly production-enhancing role, is by de�nition not sold in the market.
However, in the case of production-enhancing public expenditures, these in-
crease market output, and this increases automatically tax revenues, so that, to
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an extent, such expenditures may be regarded as self-�nancing, though always
through taxation and not through the market. As mentioned above, a proper
treatment of production-enhancing public expenditures and their implications
for assessing the merits and demerits of de�cit �nancing lies outside the scope
of this chapter.
Second, being transfers, like (negative) taxes, interest payments on public

debt perform in general a redistribution of income (wealth) relative to the income
(wealth) distribution that would prevail without them. Suppose person A, with
income equal to 100, owns 10% of debt, while person B, with income equal to
50, owns 5%, then the transfer interest payments on this 15% of debt exercise a
regressive impact on income (re) distribution from B to A because they increase
A0s income proportionally more than B0s. If this state of a¤airs is general, in the
sense that whenever somebody is wealthier than somebody else the former owns
a larger share of debt than the latter, then we may state the general proposition
that the existence of public debt exercises always a regressive impact on income
distribution, and that this regression increases with the size of the debt and/or
the interest rate (Dernburg & Dernburg 1969, p. 124).
Third, Domar�s aggregate measure of the debt burden. In his classic 1944

paper Evsey Domar uses as an aggregate measure of this redistributive social
cost or burden of the debt the ratio of the gross interest bill on public debt,
over GDP plus the the gross interest bill itself. Using the notations introduced
so far, Domar�s ratio in nominal terms is given by

� =
RB

PQ+RB
(8)

which we denote by � because it can also be interpreted as the average tax
rate on all incomes required to service the debt. But what Domar �wants to
know is whether the redistributive burden of national debt will grow larger or
diminish�over time (Dernburg & Dernburg 1969, p. 124). The �rst step
in the analysis is to assume that the government borrows a constant fraction of
GDP. To avoid confusion we see here the importance of the distinction, carefully
introduced above (see eq (3)), between nominal and real de�cits. Let us �rst
choose the nominal de�cit. Dividing both numerator and denominator in (8),
�rst by P , then by Q, and then by �, the measure of the debt burden becomes
a function of the debt/GDP ratio � and the nominal interest R

� =
RB

PQ+RB
=

Rb

Q+Rb
=

R�

1 +R�
=

R
1

�
+R

= �(�;R)

Assuming that the government borrows a constant nominal de�cit/GDP frac-

tion
_B

PQ
= H yields, from (3), the following elementary dynamic eq for �

_� + (g + �)� = H
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whose general solution is

�(t) = Ae�(g+�)t +
H

g + �

with initial value equal to �(0) = A +
H

g + �
, and ss value at t ! 1

equal to �ssH =
H

g + �
.

But for conformity with our previous primary de�cit study of the debt/GDP
dynamics we prefer to work with the real de�cit and the real interest. We thus
rewrite the debt burden measure � using the real interest

� =
rB

PQ+ rB
=

rb

Q+ rb
=

r�

1 + r�
=

r
1

�
+ r

(9)

= �(�; r)

and assume a constant real de�cit/GDP fraction
_b

Q
= �, obtaining from (3) the

formally similar eq and solutions for �

_� + g� = �

�(t) = Ae�gt +
�

g

�(0) = A+
�

g

�ss� =
�

g

For the sake of completeness we may easily check that the same nominal and
real de�cit/GDP ratios H = � yield the same ss values �ssH = �ss� () � = 0
because

H

g + �
=
�

g
! H = �(1 +

�

g
)

To avoid having to distinguish between nominal and real de�cits we may assume
for simplicity a zero in�ation.
Now, substituting �ss� =

�

g
into (8) we obtain the ss measure of the debt

burden associated to a constant real de�cit/GDP fraction

� ss =
r

g

�
+ r

As expected, the ss debt burden increases with � and r and decreases with g
(Dernburg & Dernburg 1969, p. 126). All these relationships are graphically
synthesized in Figure 7.
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9 - Combining the dynamics of the Debt/GDP and Capi-
tal/Output ratios

First we de�ne real disposable income adjusted for in�ation
PQ� T + rB
T = �(PQ+ (r + �)B)
T=P = �(Q+ (r + �)b)
(PQ� T + rB)=P = Q� T=P + rb
= Q� �(Q+ (r + �)b) + rb
= (1� �)Q+ ((1� �)r � ��))b
= (1� �)Q+ (1� �)rb = (1� �)(Q+ rb)
By assumption C is equal to (1� s) times the net real adjusted disposable

income
C = (1� s)[(1� �)Q+ ((1� �)r � ��)b]
G = 
Q
I = _K
The (closed economy) national accounting equation in real terms C+G+I =

Q becomes
(1� s)[(1� �)Q+ ((1� �)r � ��)b] + 
Q+ _K = Q
This yields

(1� 
)Q� (1� s)(1� �)Q� (1� s)((1� �)r � ��)b = _K

[s(1� �)� (
 � �)]Q� (1� s)((1� �)r � ��)b = _K

Dividing byQ and cancelling for simplicity (see above) the in�ation-dependent
term �� yields

[s(1� �)� (
 � �)]� (1� s)(1� �)r� =
_K

Q

Now, introducing a new notation for the capital/output ratio
K

Q
= v, we see

that
��
K

Q

�
= _v =

_KQ�K _Q

Q2
=

_K

Q
� K
Q

_Q

Q
=

_K

Q
� gv

!
_K

Q
= _v + gv

This yields the equation of the dynamics of the capital/output ratio v as a
function of v itself and �

_v + gv = [s(1� �)� (
 � �)]� (1� s)(1� �)r�
_v = [s(1� �)� (
 � �)]� (1� s)(1� �)r� � gv = _v(v; �)

which in turn yields the condition for the constant (steady state) capital/output
ratio vss

_v = 0! � =
s(1� �)� (
 � �)
(1� s)(1� �)r � g

(1� s)(1� �)r v ! �(v)
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Since we want to investigate the relationship between the dynamics of the
capital/output ratio and the dynamics of the debt/GDP ratio we add here the
already explained dynamic eq of the latter, which, for comparability with the
former, we represent not only as a function of � but also as a constant function
of v

_� = (
 � �)� (g � (1� �)r)� ! _�(v; �)

with its associated condition for tha constant (steady state) debt/GDP ratio
�ss

_� = 0! � =
(
 � �)

(g � (1� �)r)
The combined dynamics of the Debt/GDP and Capital/Output ratios de�ned

by these eqs is represented graphically in Figure 8.

The intercepts with the v; � axes of this linear phase diagram are

� = 0! v =
s(1� �)� (
 � �)

g

v = 0! � =
s(1� �)� (
 � �)
(1� s)(1� �)r

The intercepts with the v; � axes of this linear phase diagram are

� = 0! v =
s(1� �)� (
 � �)

g

v = 0! � =
s(1� �)� (
 � �)
(1� s)(1� �)r

References and readings

Chiang A. C. 2005. Fundamental methods of mathematical economics. 4th ed.
Dernburg Thomas F. & Judith D. Dernburg 1969. Macroeconomic analysis.

An introduction to comparative statics and dynamics. Addison-Wesley
Domar Evsey David 1944. "The �Burden of the debt� and the national

income", American Economic Review, december. Reprinted in Essays in the
theory of economic growth, 1960(1957) Oxford U. P.
Jones C. I. & D. Vollrath 2013. Introduction to economic growth, Norton,

3rd ed.
Piketty Thomas 2014(13). Capital in the twenty-�rst century, Harvard U.

P.
Rudin W. 1986. Real and complex analysis, McGraw-Hill
Solow R. 2000. Growth theory. An exposition, Oxford U. P., 2nd ed.

29



30



Sections 1-5 of this chapter are a summary of the analytical architecture of
what is known in the literature as the neoclassical one-sector model of economic
growth, or Solow model. They bring together into an organic framework parts
from Solow 2000, Chiang 2005, Jones & Vollrath 2013. The �nal Sections 6-7
apply that framework to the speci�c subject of the chapter. They are our own
elaboration from Solow 2000 Chapter 4: �A model with two assets�.
Jones & Vollrath 2013 is a recommended comprehensive introduction to the

modern theory of long-run economic dynamics.
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