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1 Compute the maxima, minima or saddle points of the following functions
a. f(z,y) = V1+2>+y?
b. g(x,y) =23+ 3 + 2y.

Solution

a. Since the function square root is strictly increasing on its domain we can study

the function f (x,) = 22+ y?, where we left out the constant 1. The gradient
of f(x,y) is given by

Vf(z,y) = (2z,2y).

Hence, setting V f(z,y) = (0,0), we obtain the stationary point (0,0). In or-
der to find the nature of the stationary point we have to compute the Hessian
matrix

Hi =[5 ).

The matrix is positive definite, thus the point (0,0) is a local minimum for
the function f(x,y), so is for f(x,y).

Moreover, (0,0) is an absolute minimum for f(z,y) because f(0,0) = 0 and
f(z,y) > 0 for every (z,y) € R?, so is for f(x,y).

. The gradient of g(x,y) is given by
Vy(z,y) = (32> +y,3y” + 2).

Hence, setting Vg(z,y) = (0,0) we obtain two stationary points (0,0) and
(—%, —%) In order to figure out the nature of the stationary points we have
to compute the Hessian matrix

Hy(z,y) = [Eﬁ _1} :

which yields

and
-2 1

The matrix is indefinite at (0,0) and negative definite at (—%, —%). Therefore
(0,0) is a saddle point and (—%, —3) is a local maximum for g.
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2 Find the stationary points of the following functions and discuss the behavior of
the functions in those points

a. f(z,y) = 2> — 3zy® + 9,
b. g(x,y) = o* + 22y — 222 + 2% — 8,
c. hz,y)=2%+1y>—xy.
Solution
a. The gradient of f(z,y) is given by
Vi(z,y) = (32 — 3y, —6zy + 49°).

Hence, setting V f(z,y) = (0,0) we obtain the stationary points (0,0), (3, 3)
and (%, —%) In order to figure out the nature of the stationary points we have
to compute the Hessian matrix

i) = | S o ]

—6y —6z + 1242

which yields
0 0

)= {—99 Is]’

o9

9 18]

The matrix is positive definite at (2,3) and (2, —3), therefore they are local
minima for f. Since Hf(0,0) = 0, by the Hessian criterion nothing can be

said about (0,0). In this case we can study the sign of one of the partial
derivative of f, the one that is analytically simpler. Let us study the sign of

HJ(

N
[][9V]

)

Y

Hf(

N[N}
\G][VN)

fo = 32% — 342

We have that f, > 0 for x < —y and x > y, thus x = —y is a curve of maxima
and x = y is a curve of minima for y fixed. The function of one variable
#1(y) = f(y,y) = y*(y — 2) has a maximum in 0, while the function of one
variable ¢2(y) = f(—y,y) = y>(y + 2) has a minimum in 0. It follows that
(0,0) is a saddle point for f. Indeed f(0,0) =0, f(y,y) <0 and f(—y,y) >0
for all y # 0 sufficiently small.



b. Leaving out the constant —8, the gradient of g(x,y) is given by
Vo(z,y) = (42> + 2xy® — 4z, 22%y + 4y).

Hence, setting Vg(z,y) = (0,0) we obtain the stationary points (0,0), (1,0)
and (—1,0). In order to figure out the nature of the stationary points we have
to compute the Hessian matrix

1222 + 22 -4 4z
Hg(a:,w:{ y y }

dzy 222 + 4

which yields
0 0

8 0
and

Hg(—1,0) = [g g} .

The matrix is positive definite at (1,0) and (—1,0), therefore they are local
minima for g. Since Hg(0,0) = 0, by the Hessian criterion nothing can be
said about (0,0). We can proceed as in point a. Let us study the sign of

= 202y + 4y = 2y(2? + 2).

fy > 0 for y > 0, thus y = 0 is a curve of minima for = fixed. The function
of one variable ¢(z) = f(z,0) = 2* — 222 — 8 has a local maximum in 0. It
follows that (0,0) is a saddle point for f. Indeed f(0,0) = =8, f(z,0) < —8,
f(0,y) > =8 for all z # 0 and y # 0 sufficiently small.

c. The gradient of h(x,y) is given by
Vh(z,y) = (22 — y,3y° — ).

Hence, setting Vh(z,y) = (0,0) we obtain the stationary points (0,0) and
(35, é) In order to figure out the nature of the stationary points we have to

compute the Hessian matrix

Hh(z,y) = [_21 gyl] :



which yields

-1 0

=127

The matrix is indefinite at (0,0) and positive definite at (75, %). Therefore
1

(0,0) is a saddle point and (g3, %) is a local minimum point.

Hh(0,0) = { 2 _1]

and

Hh(35,

—
[N

3 Find the minima, maxima, or saddle points of the following functions
a. f(r1,29,73) = r17973 8.t. 23 + 23+ 23 — 1 =0,

2 2
b. f(.’El,:EQ) :JE%+31‘2 s.t. %"—% —1=0.

Solution

a. f(r1,29,73) = T17973 8.b. 23 + 23+ 23 —1=0.

Let us note first that the constraint
{(w1, 29, 3) €R3 | 2 + 23 + 25 — 1 =0} = S((0,0,0); 1)

is a sphere of R? with centre (0,0,0) and radius 1. Hence, it is a compact
subset of R3. Therefore, since the function f is continuos on R®, by the
Weierstrass theorem there exist a maximum and a minimum point for f on
S5((0,0,0);1). The Lagrangian of f is given by

L(z,\) = z12073 + M2t + 22+ 23 — 1).
Thus, the FOCs are

gTﬁ = xox3 + 2Axz1 =0,
8%‘62 =x123 + 2 19 = 0,
% = x129 + 2 x3 =0,
g—f :a:%—l—wg—i—a:%—l:().

It follows that



— if A =0 then

xox3 =0,
Tr1x3 = 0,
1T = 0,

p?+a3+22-1=0,
whose possible solutions are (+1,0,0), (0,41,0)(0,0,+£1).
— If A # 0 then subtracting the 2"¢ equation from the 1%

Toxs + 2Ax1 — T3 — 2A20 = 0.

Therefore

(3?1 — xg) (2)\ — xg) =0.
A B

x* CASE1 A =0 and B # 0.
Subtracting the 3"¢ equation from the 25¢ we obtain as before

(xQ — $3) (2/\ — xl) = 0.
H(;_/\T/

- CASElaA =0and C = 0.
We have 1 = x9 = x3. Substituting into the fourth equation
(the constraint) we obtain

1 1
— Or ] =Tg=1T3=———.
\/§ ! 2 s \/§

- CASE1bA =0and D = 0.
We have 1 = 22 = 2\. Substituting into the third equation we
obtain 4\% + 2\z3 = 0. Therefore 2\(2)\ + x3) = 0. We do not
consider the solution A = 0 for our initial assumption A # 0.
The only part that could be equal to zero is 2\ + xz3 = 0, i.e.
r3 = —2A\. Substituting into the constraint x1 = x92 = x3 = 2\
we obtain A = +£——. Substituting this value of A in order to

V12
obtain the values of x, we obtain the following solutions

Ir1 = X9 = T3 =

1 1 1
1= —F/—=,T2 = —F—=,T3 = ——F—=
VT BT B
or
1 \/g, 2 \/g, 3 \/3



x*x CASE2 A # 0 and B = 0.
In this case we have x3 = 2. Substitute this result into the second
equation we obtain 2\(x; + z2) = 0. The possible solutions are
A = 0 (which we do not consider because we have impose A # 0) or
xr1 — —X9.
Now substituting 1 = —z2 into the third equation, we obtain —x2+
4)\? = 0, i.e. 1 = +£2)X. We have the possible combinations z; =
2M\, 10 = =2\, x3 = 2\ or 1 = —2\, 9 = 2\, 23 = 2A. As before,
substituting this result into the constraint, we obtain A = :l:\/%.

This gives us the four possible solutions:

. _ .1
if A—-i-ﬁ
1 \/§7 2 ﬁ? 3 \/3
or
1 \/g? 2 \/g? 3 \/§7
if )\——ﬁ
1 1 1
X =——F7=,090=—=,T3 = ———=
RV RRVE e
or
PR NI S
1 \/g? 2 \/37 3 \/g'
All the possible solutions are
(£1,0,0); (0,£1,0); (0,0, £1);
RIS ISP WS NS NP S NS SN BN B U
3V3' VBT VBT VB VBTIVEIVE VBT VB VBB
PRI U SIS S SN NPINS I S NP S S O
R R RV MRV MRV RV RV VS VE M VE VA
Computing the values of the function f in all the stationary points we have
11 1 1 1 1 1 1 1
f(%773)73) f(_73’_73’73)_f(\f _%7_\/3)_
1 1 1 1
= f(——=,—=,———=) = —= — global
f( =7 3) S5 7 global maxima
1 1 1 1 1 1 1 1 1
f(_737_737_73)_f(_ﬁ773773)_f(737737_ﬁ)_



1 1 1
,——, —=) = ——— — global minima

1
V3 V3 V3 3v/3
F(£1,0,0) = £(0,£1,0) = £(0,0,£1) = 0.

2 3 I% ‘T% 1=0
- f(w, ) =2 +3x2 88, G +F —1=0.
Let us note first that the constraint

{(er,m2,m5) € B3| 5+ 5 —1=0} = B((0,0,0);2,3)

is an ellipsis of R? with centre (0,0, 0) and semi-axes 2 and 3. Hence, F((0,0,0);2, 3)
is a compact subset of R?. Therefore, since the function f is continuos on R3,

by the Weierstrass theorem there exist a maximum and a minimum point for

f on E((0,0,0);2,3). The Lagrangian of f is given by

2 2
ﬁ()\,x):x%+3x2+)\<x41+i;— >

The FOCs are

oL 1 _
oz1 —2$1+2)\x1—0,
JL =3+ 2 =0,
oL _ 7 | 23

on — a1t :

It follows that

— if 1 # 0, then A = —4. Substituting A = —4 into the second condition
3 . .
we have x9 = 3—3 Thus, the last constraint gives

2 6
x] 3 B
2 T =0

that is
, 263 17
xl = = — —
24 16
which yield a non real root.

— if z1 = 0, then from the constraint we obtain
T = +3.

Since f(0,—3) = —9 and f(0,3) = 9, the point (0,—3) is a global minimum
and the point (0,3) is a global maximum for f on E((0,0,0);2,3).



4 Find the maxima points of the following functions
a. f(z,y) = zyst. 22 +y? =1,
b. f(x,y) = 2%y~ s.t. w = px + pyy.
Solution

a. f(z,y) = xys.t. 22 +y? = 1.

Since (x,y) satisfy the relationship 22 4 y? — 1 = 0, on this curve the function
f can be rewritten as

1 1 1 1 1
flay) =ay=ay+S(@® +y* = 1) = S+ + 22y) — 5 = S(x+y)* — 5.

2 2 2 2 2
In this way it is easy to check that the minimum is attained on the line x = —y,

that intersects the curve in the points (v/2/2, —v/2/2) and (—v/2/2,v/2/2), and
therefore these are the minima for f. Similarly,

1 1 1 1
f(x,y)za:y::z:y—i(x2+y2—1)=—§(£2+y2—1)=—i(ﬂc—y)2+§.

In this way it is easy to check that he maximum is attained on the line x = y,
that intersects the curve in the points (v/2/2,v/2/2) and (—v/2/2, —v/2/2),
and therefore these are the maxima for f.

b. f(x,y) = 2%y s.t. w = px + pyy.

L(z,y,\) = 2y ™% + Mpox + pyy — w),

% — ama—lyl—a + )\paz =0

% =1 -a)zy >+ Ap, =0

85 = pez +pyy —w =0,

ar®lyl=v = _\p,
(1 —a)z®y™ = —Apy
W = P + Pyy.

It follows that
az®"lylm* p,

(1 - a)xay—a py7
that is,




; __ Pz 1—
Substitute y = Ty =

- into the constraint to get

TP
w = )
o
Therefore
2(peyw) =
v Da
w(l — «
Y(py, w) = ( )
Dy

is a maximum point for f.

5 Compute the maxima , minima or saddle points of the following function

f(:U,y) :$2+3y

2 2
x Y
st —+4+=—=1.
4 * 9
Solution
The constraint is an ellipsis, thus is a compact set. Since the function f is con-

tinuous by the Weierstrass theorem it has a maximum and a minimum. Parametrize
x = 2cosf
y = 3sinf

f(0) =4cos? 0 +9sinh = 4(1 — sin?0) + 9sinf = —4sin 0 + 9sin 6 + 4,

the ellipsis as

with 6 € [0,27). It follows that

f'(0) = —8sinfcosf + 9cosf = cos (9 — 8sin ).
Impose /() = 0. We get
e cosf = 0, therefore 6 = 7, 0 = %77,

e 9 —8sinf =0, that is sinf = % > 1, therefore no solutions.



Furthermore, since 9 — 8sin 6 > 0 forall 0, we have

(0 >0 iff cosf > 0.

Therefore § = 7 is a global maximum, and 6 = %ﬂ' is a global minimum point

for f. The global maximum correspond to the point (0, 3), and the global minimum
to the point (0, —3).

6 Find the (local) maxima and minima of the function

flzy)=zy—y*+3

subject to the constraint
gz y) =r+y*—1=0

using;:
1. a parametric representation of the constraint;
2. Lagrange multipliers.

Are they global?

Solution

First of all notice that, since the constraint set is not compact, we can-
not use the Weierstrass theorem to claim that the function f assumes global
maximum and minimum.

1. A parametrization of the parabola is

r=1—¢
y=1

for —oo <t < +o0. It follows that
fO=Q—tHt—t*+3=—1>—t>+t+3
is a function of one variable on the domain (—oo, +00). Therefore solving

fl(t)=-3t2 -2t +1=0
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we get the stationary points ¢; = —1 and ¢, = 3. Since f'(t) > 0 for
“1<t< %, ty = —1 is a relative minimum and ¢y = % is a relative

maximum. Notice that this maximum and minimum are not global,
indeed

and
lim f(t) = 4o0.

t——o00

In correspondence we have that (0, —1) is a relative minimum and (3, §)
is a relative maximum for f.

. The Lagrangian for the problem is
L(z,y,A) = fz.y) = Aglw,y) = 2y — y* + 3+ Mz +y* - 1).

Solving the first order conditions

y+A=0
x—2y+2\y=0
r+y*—1=0

we get the two critical points (0, —1,1) and (g, %, —%) In order to find

the nature of the stationary points we have to study the bordered Hessian
matrix

0 1 2y
Hf(x,y,A\)=1]1 0 1
2y 1 =242\
in such points.
0 1 =2
Hf(0,-1,1)={(1 0 1
-2 1 0

Since det(H f(0,—1,1)) < 0, (0,—1) is a relative minimum for f.
81 1
Hf[2.= -2 =
/ (9’ 3 3)

11
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Since det(H f (3,4, —%)) > 0, (3,3) is a relative maximum for f. These

maximum and minimum are not global, because for example we have

lim f(z,y) =+o0

Tr—+00
and

lim f(z,y) = —oc.

T—r—00
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