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1 Compute the maxima, minima or saddle points of the following functions

a. f(x, y) =
�
1 + x2 + y2,

b. g(x, y) = x
3 + y

3 + xy.

Solution

a. Since the function square root is strictly increasing on its domain we can study
the function f̃(x, y) = x

2+ y
2, where we left out the constant 1. The gradient

of f̃(x, y) is given by
∇f̃(x, y) = (2x, 2y).

Hence, setting ∇f̃(x, y) = (0, 0), we obtain the stationary point (0, 0). In or-
der to find the nature of the stationary point we have to compute the Hessian
matrix

Hf(x, y) =

�
2 0
0 2

�
.

The matrix is positive definite, thus the point (0, 0) is a local minimum for
the function f̃(x, y), so is for f(x, y).
Moreover, (0, 0) is an absolute minimum for f̃(x, y) because f(0, 0) = 0 and
f(x, y) ≥ 0 for every (x, y) ∈ R2, so is for f(x, y).

b. The gradient of g(x, y) is given by

∇g(x, y) = (3x2 + y, 3y2 + x).

Hence, setting ∇g(x, y) = (0, 0) we obtain two stationary points (0, 0) and
(−1

3 ,−
1
3). In order to figure out the nature of the stationary points we have

to compute the Hessian matrix

Hg(x, y) =

�
6x −1
−1 6y

�
,

which yields

Hg(0, 0) =

�
0 1
1 0

�

and

Hg(−1
3 ,−

1
3) =

�
−2 1
1 −2

�
.

The matrix is indefinite at (0, 0) and negative definite at (−1
3 ,−

1
3). Therefore

(0, 0) is a saddle point and (−1
3 ,−

1
3) is a local maximum for g.
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2 Find the stationary points of the following functions and discuss the behavior of
the functions in those points

a. f(x, y) = x
3 − 3xy2 + y

4,

b. g(x, y) = x
4 + x

2
y
2 − 2x2 + 2y2 − 8,

c. h(x, y) = x
2 + y

3 − xy.

Solution

a. The gradient of f(x, y) is given by

∇f(x, y) = (3x2 − 3y2,−6xy + 4y3).

Hence, setting ∇f(x, y) = (0, 0) we obtain the stationary points (0, 0), (32 ,
3
2)

and (32 ,−
3
2). In order to figure out the nature of the stationary points we have

to compute the Hessian matrix

Hf(x, y) =

�
6x −6y
−6y −6x+ 12y2

�
,

which yields

Hf(0, 0) =

�
0 0
0 0

�
,

Hf(32 ,
3
2) =

�
9 −9
−9 18

�
,

Hf(32 ,−
3
2) =

�
9 9
9 18

�
.

The matrix is positive definite at (32 ,
3
2) and (32 ,−

3
2), therefore they are local

minima for f . Since Hf(0, 0) = 0, by the Hessian criterion nothing can be
said about (0, 0). In this case we can study the sign of one of the partial
derivative of f , the one that is analytically simpler. Let us study the sign of

fx = 3x2 − 3y2.

We have that fx > 0 for x < −y and x > y, thus x = −y is a curve of maxima
and x = y is a curve of minima for y fixed. The function of one variable
φ1(y) = f(y, y) = y

3(y − 2) has a maximum in 0, while the function of one
variable φ2(y) = f(−y, y) = y

3(y + 2) has a minimum in 0. It follows that
(0, 0) is a saddle point for f . Indeed f(0, 0) = 0, f(y, y) < 0 and f(−y, y) > 0
for all y �= 0 sufficiently small.
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b. Leaving out the constant −8, the gradient of g(x, y) is given by

∇g(x, y) = (4x3 + 2xy2 − 4x, 2x2y + 4y).

Hence, setting ∇g(x, y) = (0, 0) we obtain the stationary points (0, 0), (1, 0)
and (−1, 0). In order to figure out the nature of the stationary points we have
to compute the Hessian matrix

Hg(x, y) =

�
12x2 + 2y2 − 4 4xy

4xy 2x2 + 4

�
,

which yields

Hg(0, 0) =

�
0 0
0 0

�
,

Hg(1, 0) =

�
8 0
0 6

�

and

Hg(−1, 0) =

�
8 0
0 6

�
.

The matrix is positive definite at (1, 0) and (−1, 0), therefore they are local
minima for g. Since Hg(0, 0) = 0, by the Hessian criterion nothing can be
said about (0, 0). We can proceed as in point a. Let us study the sign of

fy = 2x2y + 4y = 2y(x2 + 2).

fy > 0 for y > 0, thus y = 0 is a curve of minima for x fixed. The function
of one variable φ(x) = f(x, 0) = x

4 − 2x2 − 8 has a local maximum in 0. It
follows that (0, 0) is a saddle point for f . Indeed f(0, 0) = −8, f(x, 0) < −8,
f(0, y) > −8 for all x �= 0 and y �= 0 sufficiently small.

c. The gradient of h(x, y) is given by

∇h(x, y) = (2x− y, 3y2 − x).

Hence, setting ∇h(x, y) = (0, 0) we obtain the stationary points (0, 0) and
( 1
12 ,

1
6). In order to figure out the nature of the stationary points we have to

compute the Hessian matrix

Hh(x, y) =

�
2 −1
−1 6y

�
,
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which yields

Hh(0, 0) =

�
2 −1
−1 0

�

and

Hh( 1
12 ,

1
6) =

�
2 −1
−1 1

�
.

The matrix is indefinite at (0, 0) and positive definite at ( 1
12 ,

1
6). Therefore

(0, 0) is a saddle point and ( 1
12 ,

1
6) is a local minimum point.

3 Find the minima, maxima, or saddle points of the following functions

a. f(x1, x2, x3) = x1x2x3 s.t. x21 + x
2
2 + x

2
3 − 1 = 0,

b. f(x1, x2) = x
2
1 + 3x2 s.t.

x2
1
4 +

x2
2
9 − 1 = 0.

Solution

a. f(x1, x2, x3) = x1x2x3 s.t. x21 + x
2
2 + x

2
3 − 1 = 0.

Let us note first that the constraint

{(x1, x2, x3) ∈ R3 | x21 + x
2
2 + x

2
3 − 1 = 0} ≡ S((0, 0, 0); 1)

is a sphere of R3 with centre (0, 0, 0) and radius 1. Hence, it is a compact
subset of R3. Therefore, since the function f is continuos on R3, by the
Weierstrass theorem there exist a maximum and a minimum point for f on
S((0, 0, 0); 1). The Lagrangian of f is given by

L(x,λ) = x1x2x3 + λ(x21 + x
2
2 + x

2
3 − 1).

Thus, the FOCs are





∂L
∂x1

= x2x3 + 2λx1 = 0,
∂L
∂x2

= x1x3 + 2λx2 = 0,
∂L
∂x3

= x1x2 + 2λx3 = 0,
∂L
∂λ = x

2
1 + x

2
2 + x

2
3 − 1 = 0.

It follows that
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– if λ = 0 then 




x2x3 = 0,

x1x3 = 0,

x1x2 = 0,

x
2
1 + x

2
2 + x

2
3 − 1 = 0,

whose possible solutions are (±1, 0, 0), (0,±1, 0)(0, 0,±1).

– If λ �= 0 then subtracting the 2nd equation from the 1st

x2x3 + 2λx1 − x1x3 − 2λx2 = 0.

Therefore
(x1 − x2)� �� �

A

(2λ− x3)� �� �
B

= 0.

∗ CASE 1 A = 0 and B �= 0.
Subtracting the 3nd equation from the 2st we obtain as before

(x2 − x3)� �� �
C

(2λ− x1)� �� �
D

= 0.

· CASE 1.a A = 0 and C = 0.
We have x1 = x2 = x3. Substituting into the fourth equation
(the constraint) we obtain

x1 = x2 = x3 =
1√
3

or x1 = x2 = x3 = − 1√
3
.

· CASE 1.b A = 0 and D = 0.
We have x1 = x2 = 2λ. Substituting into the third equation we
obtain 4λ2 + 2λx3 = 0. Therefore 2λ(2λ+ x3) = 0. We do not
consider the solution λ = 0 for our initial assumption λ �= 0.
The only part that could be equal to zero is 2λ + x3 = 0, i.e.
x3 = −2λ. Substituting into the constraint x1 = x2 = x3 = 2λ
we obtain λ = ± 1√

12
. Substituting this value of λ in order to

obtain the values of x, we obtain the following solutions

x1 =
1√
3
, x2 =

1√
3
, x3 = − 1√

3

or

x1 = − 1√
3
, x2 = − 1√

3
, x3 =

1√
3
.
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∗ CASE 2 A �= 0 and B = 0.
In this case we have x3 = 2λ. Substitute this result into the second
equation we obtain 2λ(x1 + x2) = 0. The possible solutions are
λ = 0 (which we do not consider because we have impose λ �= 0) or
x1 = −x2.
Now substituting x1 = −x2 into the third equation, we obtain −x

2
1+

4λ2 = 0, i.e. x1 = ±2λ. We have the possible combinations x1 =
2λ, x2 = −2λ, x3 = 2λ or x1 = −2λ, x2 = 2λ, x3 = 2λ. As before,
substituting this result into the constraint, we obtain λ = ± 1√

12
.

This gives us the four possible solutions:
if λ = + 1√

12

x1 =
1√
3
, x2 = − 1√

3
, x3 =

1√
3

or

x1 = − 1√
3
, x2 =

1√
3
, x3 =

1√
3
,

if λ = − 1√
12

x1 = − 1√
3
, x2 =

1√
3
, x3 = − 1√

3

or

x1 =
1√
3
, x2 = − 1√

3
, x3 = − 1√

3
.

All the possible solutions are

(±1, 0, 0); (0,±1, 0); (0, 0,±1);

(
1√
3
,
1√
3
,
1√
3
); (− 1√

3
,− 1√

3
,− 1√

3
); (

1√
3
,
1√
3
,− 1√

3
); (− 1√

3
,− 1√

3
,
1√
3
);

(
1√
3
,− 1√

3
,
1√
3
); (− 1√

3
,
1√
3
,
1√
3
); (− 1√

3
,
1√
3
,− 1√

3
); (

1√
3
,− 1√

3
,− 1√

3
).

Computing the values of the function f in all the stationary points we have

f(
1√
3
,
1√
3
,
1√
3
) = f(− 1√

3
,− 1√

3
,
1√
3
) = f(

1√
3
,− 1√

3
,− 1√

3
) =

= f(− 1√
3
,
1√
3
,− 1√

3
) =

1

3
√
3
→ global maxima

f(− 1√
3
,− 1√

3
,− 1√

3
) = f(− 1√

3
,
1√
3
,
1√
3
) = f(

1√
3
,
1√
3
,− 1√

3
) =
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= f(
1√
3
,− 1√

3
,
1√
3
) = − 1

3
√
3
→ global minima

f(±1, 0, 0) = f(0,±1, 0) = f(0, 0,±1) = 0.

b. f(x1, x2) = x
2
1 + 3x2 s.t.

x2
1
4 +

x2
2
9 − 1 = 0.

Let us note first that the constraint
�
(x1, x2, x3) ∈ R3 | x2

1
4 +

x2
2
9 − 1 = 0

�
≡ E((0, 0, 0); 2, 3)

is an ellipsis of R3 with centre (0, 0, 0) and semi-axes 2 and 3. Hence, E((0, 0, 0); 2, 3)
is a compact subset of R3. Therefore, since the function f is continuos on R3,
by the Weierstrass theorem there exist a maximum and a minimum point for
f on E((0, 0, 0); 2, 3). The Lagrangian of f is given by

L(λ, x) = x
2
1 + 3x2 + λ

�
x
2
1

4
+

x
2
2

9
− 1

�
.

The FOCs are 




∂L
∂x1

= 2x1 +
1
2λx1 = 0,

∂L
∂x2

= 3 + 2
9λx2 = 0,

∂L
∂λ =

x2
1
4 +

x2
2
9 − 1.

It follows that

– if x1 �= 0, then λ = −4. Substituting λ = −4 into the second condition
we have x2 =

33

23 . Thus, the last constraint gives

x
2
1

22
+

36

2632
− 1 = 0

that is

x
2
1 =

26 − 34

24
= −17

16

which yield a non real root.

– if x1 = 0, then from the constraint we obtain

x2 = ±3.

Since f(0,−3) = −9 and f(0, 3) = 9, the point (0,−3) is a global minimum
and the point (0, 3) is a global maximum for f on E((0, 0, 0); 2, 3).
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4 Find the maxima points of the following functions

a. f(x, y) = xy s.t. x2 + y
2 = 1,

b. f(x, y) = x
α
y
1−α s.t. w = pxx+ pyy.

Solution

a. f(x, y) = xy s.t. x2 + y
2 = 1.

Since (x, y) satisfy the relationship x
2+ y

2− 1 = 0, on this curve the function
f can be rewritten as

f(x, y) = xy = xy +
1

2
(x2 + y

2 − 1) =
1

2
(x2 + y

2 + 2xy)− 1

2
=

1

2
(x+ y)2 − 1

2
.

In this way it is easy to check that the minimum is attained on the line x = −y,
that intersects the curve in the points (

√
2/2,−

√
2/2) and (−

√
2/2,

√
2/2), and

therefore these are the minima for f . Similarly,

f(x, y) = xy = xy − 1

2
(x2 + y

2 − 1) = −1

2
(x2 + y

2 − 1) = −1

2
(x− y)2 +

1

2
.

In this way it is easy to check that he maximum is attained on the line x = y,
that intersects the curve in the points (

√
2/2,

√
2/2) and (−

√
2/2,−

√
2/2),

and therefore these are the maxima for f .

b. f(x, y) = x
α
y
1−α s.t. w = pxx+ pyy.

L(x, y,λ) = x
α
y
1−α + λ(pxx+ pyy − w),






∂L
∂x = αx

α−1
y
1−α + λpx = 0

∂L
∂y = (1− α)xαy−α + λpy = 0
∂L
∂λ = pxx+ pyy − w = 0,





αx
α−1

y
1−α = −λpx

(1− α)xαy−α = −λpy

w = pxx+ pyy.

It follows that
αx

α−1
y
1−α

(1− α)xαy−α
=

px

py
,

that is,
α

1− α

y

x
=

px

py
.

8



Substitute y = x
px
py

1−α
α into the constraint to get

w =
xpx

α
.

Therefore
x(px, w) =

wα

px

y(py, w) =
w(1− α)

py

is a maximum point for f .

5 Compute the maxima , minima or saddle points of the following function

f(x, y) = x
2 + 3y

s.t
x
2

4
+

y
2

9
= 1.

Solution
The constraint is an ellipsis, thus is a compact set. Since the function f is con-

tinuous by the Weierstrass theorem it has a maximum and a minimum. Parametrize
the ellipsis as

�
x = 2 cos θ

y = 3 sin θ

with θ ∈ [0, 2π). It follows that

f(θ) = 4 cos2 θ + 9 sin θ = 4(1− sin2 θ) + 9 sin θ = −4 sin2 θ + 9 sin θ + 4,

f
�(θ) = −8 sin θ cos θ + 9 cos θ = cos θ(9− 8 sin θ).

Impose f
�(θ) = 0. We get

• cos θ = 0, therefore θ = π
2 , θ = 3

2π,

• 9− 8 sin θ = 0, that is sin θ = 9
8 > 1, therefore no solutions.
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Furthermore, since 9− 8 sin θ > 0 forall θ, we have

f
�(θ) > 0 iff cos θ > 0.

Therefore θ = π
2 is a global maximum, and θ = 3

2π is a global minimum point
for f . The global maximum correspond to the point (0, 3), and the global minimum
to the point (0,−3).

6 Find the (local) maxima and minima of the function

f(x, y) = xy − y
2 + 3

subject to the constraint
g(x, y) = x+ y

2 − 1 = 0

using:

1. a parametric representation of the constraint;

2. Lagrange multipliers.

Are they global?

Solution
First of all notice that, since the constraint set is not compact, we can-

not use the Weierstrass theorem to claim that the function f assumes global

maximum and minimum.

1. A parametrization of the parabola is

�
x = 1− t

2

y = t

for −∞ < t < +∞. It follows that

f(t) = (1− t
2
)t− t

2
+ 3 = −t

3 − t
2
+ t+ 3

is a function of one variable on the domain (−∞,+∞). Therefore solving

f
�
(t) = −3t

2 − 2t+ 1 = 0
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we get the stationary points t1 = −1 and t2 =
1
3 . Since f

�
(t) > 0 for

−1 < t <
1
3 , t1 = −1 is a relative minimum and t2 =

1
3 is a relative

maximum. Notice that this maximum and minimum are not global,

indeed

lim
t→+∞

f(t) = −∞

and

lim
t→−∞

f(t) = +∞.

In correspondence we have that (0,−1) is a relative minimum and
�
8
9 ,

1
3

�

is a relative maximum for f .

2. The Lagrangian for the problem is

L(x, y,λ) = f(x, y)− λg(x, y) = xy − y
2
+ 3 + λ(x+ y

2 − 1).

Solving the first order conditions






y + λ = 0

x− 2y + 2λy = 0

x+ y
2 − 1 = 0

we get the two critical points (0,−1, 1) and
�
8
9 ,

1
3 ,−

1
3

�
. In order to find

the nature of the stationary points we have to study the bordered Hessian

matrix

Hf(x, y,λ) =




0 1 2y

1 0 1

2y 1 −2 + 2λ





in such points.

Hf(0,−1, 1) =




0 1 −2

1 0 1

−2 1 0



 .

Since det(Hf(0,−1, 1)) < 0, (0,−1) is a relative minimum for f .

Hf

�
8

9
,
1

3
,−1

3

�
=




0 1

2
3

1 0 1
2
3 1 −8

3



 .
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Since det(Hf
�
8
9 ,

1
3 ,−

1
3

�
) > 0, (

8
9 ,

1
3) is a relative maximum for f . These

maximum and minimum are not global, because for example we have

lim
x→+∞

f(x, y) = +∞

and

lim
x→−∞

f(x, y) = −∞.
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