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1 Introduction

Structural time series models are formulated directly in terms of unob-
served components, such as trends, cycles and seasonals, that have a nat-
ural interpretation and represent the salient features of the series under
investigation.

An explicit link with other approaches such as the ARIMA approach
and the regression methodology can usually be made. As far as the for-
mer is concerned, linear univariate structural models have a reduced form
ARIMA representation, but the latter is subject to restrictions on the param-
eter space, which play a relevant role for forecasting and signal extraction,
providing a sensible way of weighting the available information. More-
over, structural models can easily be extended to handle any frequency of
observation (weekly, daily, hourly) and specific features of the series that
are difficult to deal with in the ARIMA framework (heteroscedasticity, non-
linearity, non-Gaussianity). From the second standpoint, structural mod-
els are set up as regression models in which the explanatory variables are
functions of time and the coefficients are allowed to vary over time, thereby
encompassing the traditional decomposition of a time series into determin-
istic components. A thorough presentation of the main ideas and method-
ological aspects underlying structural time series models is contained in
Harvey (1989); other important references are West and Harrison (1997)
and Kitagawa and Gersch (1996).

The material presented in this chapter is organised as follows: the next
three sections deal with the specifications of time series models respectively
for the trend, the cycle, and the seasonal component, and how they can
be combined into the main univariate structural models; multivariate ex-
tensions are discussed in section 5. The disturbances driving the different
components are assumed independent and this can be viewed as an iden-
tification restriction. However, models with correlated disturbances can be
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specified and they are briefly discussed in section 6. Central to the statis-
tical treatment of structural time series models is the state space represen-
tation (sec. 7). The Kalman filter is an essential tool for inferences about
the unobserved components and for evaluation of the likelihood function.
The algorithm is presented along with the modifications that have to be in-
troduced in the presence of nonstationary components. Section 8 explains
how explanatory variables can be included in a structural model. The es-
timation of the unobserved components based on the full sample of obser-
vations is called smoothing and is considered in section 9.

Structural time series models are used not only for providing a descrip-
tion of the salient features of the series, but also for forecasting its future
values. Forecasting provides the means of projecting the past into the fu-
ture by attaching suitable weights to the past and current observations of
the variable under investigation. It is the topic of section 10, where par-
ticular attention is posed on the relation with forecasting with ad hoc tech-
niques and ARIMA models. Section 11 presents some non-linear and non-
Gaussian extensions. Finally, in section 12 two illustrations of modelling
and forecasting with structural time series models are provided.

2 Trend models

The specification of a time series model for the trend component varies
according to the features displayed by the series under investigation and
any prior knowledge. The most elementary structural model deals with
a series whose underlying level changes over time, like in the situation
depicted in the first panel of figure 1. The data generating process can be
thought of consisting of a trend, µt, evolving according to a random walk,
with a superimposed irregular component, εt:

yt = µt + εt, t = 1, 2, . . . , T, εt ∼ NID(0, σ2
ε )

µt+1 = µt + ηt, ηt ∼ NID(0, σ2
η)

(1)

where NID denotes normally and independently distributed. This is known
as the local level model (LLM) and is a straightforward generalisation of the
constant level model: yt = µ + εt, arising when σ2

η = 0. On the other hand,
when σ2

ε = 0, (1) reduces to a pure random walk and the trend coincides
with the observations.

The stationary representation of the LLM model is obtained by taking
first differences: ∆yt = ηt−1 + ∆εt. It follows immediately that E(∆yt) = 0,
and that the autocovariance function of ∆yt, denoted c(τ) = E(∆yt∆yt−τ ),
has non zero values c(0) = σ2

η +2σ2
ε , c(1) = −σ2

ε , and c(τ) = 0, τ > 1. Thus,
the autocorrelation function, %(τ) = c(τ)/c(0), exhibits a cut-off at lag one,
with %(1) = −σ2

ε /(σ2
η + 2σ2

ε ) taking values in [0,−1/2]. The ARIMA, or
reduced form, representation corresponding to (1) is ∆yt = (1 + θL)ξt, ξt ∼
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Figure 1: (i) U.S. Consumer Price Index for Durables, Seasonally adjusted,
monthly growth rates, January 1990 - April 2000 (Source: Bureau of Labor
Statistics). (ii) Index of Industrial Production, Seasonally adjusted, Ireland,
January 1990 - July 1997 (Source: OECD Statistical Compedium). The dot-
ted line are the smoothed estimates of the trend, see section 9 for details.

NID(0, σ2); equating the autocorrelations at lag 1 we can express the MA
parameter as a function of the signal to noise ratio, q = σ2

η/σ2
ε : θ = [(q2 +

4q)1/2 − 2− q]/2; it can be seen that the MA parameter is constrained to lie
in the range [-1,0].

Consider now the situation depicted in panel (ii) of fig. 1, concerning
the monthly seasonally adjusted index of industrial production for Ireland.
The series displays a steady upward movement, suggesting that we have to
bring a slope, or a drift, into the model for the trend. A deterministic linear
trend model, µt = α + βt, is likely to be inadequate, but further flexibility
can be introduced. The motivation for the extension is as follows: note that
such trend would be generated by the recursive formulae µt+1 = µt + βt

and βt+1 = βt, t = 1, . . . , T − 1, respectively for the level and the slope,
with starting values µ0 = α and β0 = β; then, we allow for time variation
by introducing random disturbances on the right hand side of the recursive
formulae.

The resulting model, known as the local linear trend model (LLTM), is
written as:

yt = µt + εt, εt ∼ NID(0, σ2
ε ), t = 1, 2, . . . , T,

µt+1 = µt + βt + ηt, ηt ∼ NID(0, σ2
η),

βt+1 = βt + ζt, ζt ∼ NID(0, σ2
ζ ),

(2)

where ηt, ζt, εt are independent of one another. For σ2
ζ = 0 the trend reduces

to a random walk with constant drift (µt+1 = µt + β + ηt), whereas for
σ2

η = 0 the trend is an integrated random walk (∆2µt+1 = ζt−1). The latter
is referred to as a smoothness prior specification, as the resulting trend varies
very smoothly over time (see Kitagawa and Gersch, 1996, ch. 3,4,8, and the
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references therein); a special case is the Hodrick and Prescott (1997) filter,
which fixes qζ = σ2

ζ/σ2
ε to predetermined value (eg. 1/1600 for quarterly

data). Finally, when σ2
η = σ2

ζ = 0 we fall back on the deterministic linear
trend.

The time and frequency domain properties of the LLTM can be ascer-
tained from its stationary representation: ∆2yt = ∆ηt−1 + ζt−2 + ∆2εt. The
autocovariance function of ∆2yt takes the values c(0) = 2σ2

η + σ2
ζ + 6σ2

ε ,
c(1) = −σ2

η − 4σ2
ε , c(2) = σ2

ε , and c(τ) = 0 for τ > 2. Hence %(1) and %(2)
lie respectively in [-2/3,0] and [0,1/6], and %(τ) displays the cut-off at lag
2 that is characteristic of an MA(2) process. Therefore, the reduced form
is yt ∼ ARIMA(0, 2, 2), with severe restrictions on the parameter space of
the MA parameters.

3 Cyclical models

In economics, the term business cycle broadly refers to the recurrent, though
not exactly periodic, deviations around the long term path of the series. A
model for the cyclical component should be capable of reproducing com-
monly acknowledged essential features, such as the presence of strong au-
tocorrelation, determining the recurrence and alternation of phases, and
the dampening of the fluctuations, or zero long run persistence.

A time series model accounting for these stylised facts can be derived
by a stochastic extension of the deterministic cycle model ψt = α cosλct +
α∗ sinλct, where λc is the angular frequency measured in radians, λc ∈
[0, π]. This defines a perfectly periodic function of time, repeating itself
every p̄ = 2π/λc time units, where p̄ is the period, with constant amplitude
(α2 + α∗2)1/2 and phase tan−1(α∗/α).

A stochastic cycle can be obtained by letting the coefficients α and α∗

follow an AR(1) process with coefficient ρ, 0 ≤ ρ ≤ 1, that is responsible
for the dampening of the fluctuations: hence, αt+1 = ραt + κ̃t, α∗t+1 =
ρα∗t + κ̃∗t , where κ̃t and κ̃∗t are mutually independent NID disturbances with
zero mean and common variance σ2

κ.
Equivalently, recognising that a deterministic cycle can be generated

recursively by ψt+1 = ψt cosλc +ψ∗t sinλc and ψ∗t+1 = −ψt sinλc +ψ∗t cosλc,
with starting values ψ0 = α and ψ∗0 = α∗, a stochastic cycle is constructed
multiplying the right hand side of these two equations by ρ (damping factor),
and adding stochastic disturbances in the form of NID sequences, giving:

[
ψt+1

ψ∗t+1

]
= ρ

[
cosλc sinλc

− sinλc cosλc

] [
ψt

ψ∗t

]
+

[
κt

κ∗t

]
, (3)

where again κt ∼ NID(0, σ2
κ) and κ∗t ∼ NID(0, σ2

κ), are mutually indepen-
dent. The reduced form of (3) is the ARMA(2,1) process:

(1− 2ρ cosλcL + ρ2L2)ψt+1 = (1− ρ cosλcL)κt + ρ sinλcLκ∗t ;
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when ρ is strictly less than one the cycle is stationary with E(ψt) = 0 and
σ2

ψ = Var(ψt) = σ2
κ/(1 − ρ2); the autocorrelation at lag τ is ρτ cosλcτ . For

λc ∈ (0, π) the roots of the AR polynomial are a pair of complex conju-
gates with modulus ρ−1 and phase λc; correspondingly, the spectral den-
sity displays a peak at λc. When λc = 0, ψt collapses to the AR(1) process
ψt+1 = ρψt + κt, whereas in the case λc = π, ψt+1 = −ρψt + κt.

4 Seasonal models

Seasonal fluctuations account for a major part of the variation of a wide
spectrum of economic, social and environmental phenomena. Hylleberg
(1992, p. 4) defines seasonality as “the systematic, although not necessarily
regular, intra-year movement caused by the changes of the weather, the cal-
endar, and timing of decisions”. A more operational definition is given by
Harvey (1989, p. 301) in terms of prediction, as the “part of the series which,
when extrapolated, repeats itself over any one-year time period and aver-
ages out to zero over such a time period”. There are several specifications
of a seasonal component, γt, satisfying this requirement; nevertheless, the
stochastic process for γt complying with the above definition is such that
that S(L)γt ∼ MA(q) with q ≤ s − 2, where S(L) = 1 + L + · · · + Ls−1

denotes the seasonal summation operator and s the number of seasons in a
year (e.g. s is equal to 4 and 12 respectively for quarterly and monthly time
series).

In the time domain, a fixed seasonal pattern is modelled as: γt = z′tχ,
where z′t = [D1t, . . . , Dst] is a vector containing the values of s seasonal
dummies, Djt, taking value 1 in season j and 0 otherwise, and χ is an s× 1
vector containing the effects associated with the different seasons, which
are restricted to sum up to zero in order to enhance identifiability when the
level of the series in nonzero. Denoting is = [1, 1, . . . , 1]′, an s × 1 vector
of ones, the zero sum constraint is expressed as i′sχ = 0 and ensures that
S(L)γt = 0.

A simple way of allowing the seasonal pattern to evolve over time is let-
ting the sum of the seasonal effect be equal to a random disturbance term,
that is S(L)γt = ωt, ωt ∼ NID(0, σ2

ω); this is referred to as the the dummy
seasonal model. A richer class of models of stochastic seasonality is derived
letting the coefficients χ change over time according to a multivariate ran-
dom walk:

γt = z′tχt, χt+1 = χt + ωt, ωt ∼ NID(0,Ω) (4)

The stochastic counterpart of the zero sum constraint is enforced by i′sΩ =
0′s. This implies i′sχt = i′sχt−1, which for i′sχ0 = 0 implies in turn that
S(L)γt is a stationary zero mean process. As a matter of fact, by repeated
substitution from (4) it is possible to show that S(L)γt ∼ MA(q), with q ≤
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s− 2. A special case of (4) is the Harrison and Stevens (1976) model, which
arises for the specification Ω = σ2

ω∗ [Is−(1/s)isi
′
s], and is such that S(L)γt ∼

MA(s−2). As Ω has rank s−1, one of the elements of χt is redundant and
can be dropped.

Representation (4) is amenable since the disturbances ωt are season-
specific. In Proietti (1998) it is argued that it can account for seasonal het-
eroscedasticity in a simple fashion. Moreover, the time-varying periodic
cubic spline specification, adopted by Harvey and Koopman (1993) to par-
simoniously model daily and weekly seasonality, arises imposing an ap-
propriate reduced rank structure on Ω.

In the frequency domain, a fixed seasonal pattern is modelled by the
sum of [s/2] cycles defined at the seasonal frequencies λj = 2πj/s, j =
1, 2, . . . , [s/2], where [s/2] = s/2 for s even and (s− 1)/2 if s is odd:

γt =
[s/2]∑

j=1

γjt, γjt = αj cosλj + α∗j sinλj .

When s is even the sine term disappears for j = s/2, so the number of
trigonometric terms is always s− 1.

A possible stochastic extension of the trigonometric seasonal model is
such that the seasonal effect at time t arises from the combination of [s/2]
stochastic cycles formulated as in (3), setting ρ = 1 to allow for a persistent
pattern:

γt =
[s/2]∑

j=1

γjt,

[
γj,t+1

γ∗j,t+1

]
=

[
cosλj sinλj

− sinλj cosλj

] [
γj,t

γ∗j,t

]
+

[
ωj,t

ω∗j,t

]
, (5)

For s even, the last component, defined at λs/2 = π, reduces to γ s
2
,t+1 =

−γ s
2
,t + ω s

2
,t. The disturbances ωjt and ω∗jt are assumed to be normally and

independently distributed with common variance σ2
ωj

; it is often assumed
that the latter is constant across j: σ2

ωj
= σ2

ω. In the latter case the trigono-
metric model can be shown to be equivalent to the Harrison and Stevens
model with σ2

ω∗ = (s/2)σ2
ω; however, when s is even the equivalence holds

if σ2
ωj

= σ2
ω, for j = 1, . . . , (s− 1)/2, and σ2

ωs/2
= σ2

ω/2. The reduced form is
S(L)γt ∼MA(s− 2), as can be established by aggregating the [s/2] nonsta-
tionary ARMA(2,1) reduced forms for each γjt.

A comparison of the various representations of a seasonal component
and a discussion of the implications for forecasting are given in Proietti
(2000). The model yt = µt + γt + εt, where µt is the local linear trend in
(2) and γt has one of the specifications above, is referred to as the basic
structural model (BSM). The terminology alludes to the fact that it is suc-
cessfully fitted to economic time series for which the airline model, ∆∆syt =
(1 + θL)(1 + ΘLs)ξt, with negative MA parameters, is appropriate.
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5 Multivariate models

Let us suppose that time series observations are available on a cross sec-
tion of N units and are gathered in the vector yt = [y1t, . . . , yit, . . . , yNt]′.
A multivariate structural time series model for yt is formulated so that
each of the individual time series follows a univariate model, say yit =
µit + ψit + γit + εit, i = 1, . . . , N , and is linked to the other series via the
contemporaneous correlation among the disturbances driving the compo-
nents. This specification is called a Seemingly Unrelated Time Series Equa-
tion (SUTSE) system; it is tailored for variables that are subject to the same
overall environment and are not causally related, although cause and ef-
fect relationships can be introduced, for instance, by modelling the short
run dynamics as a stationary vector autoregression.

The most relevant specification issues raised by the multivariate frame-
work are discussed with reference to the multivariate LLM:

yt = µt + εt, t = 1, 2, . . . , T, εt ∼ NID(0,Σε)
µt+1 = µt + ηt, ηt ∼ NID(0,Ση)

(6)

where Σε and Ση are N×N non-negative definite matrices, and E(εtηt−τ ) =
0, ∀τ .

A first special case arises when the covariance matrices of the distur-
bances are proportional, that is there exists a scalar q such that Ση = qΣε.
This restriction is relevant for it leads to a parsimonius model and can be
tested as in Fernandez and Harvey (1990); it implies that each component
series and any linear combination thereof follow the same time series pro-
cess.

Common components arise when the covariance matrices of the rele-
vant disturbances have reduced rank. When rank(Ση) = K < N in (6) we
can write Ση = ΘDηΘ′, where Θ is N ×K with elements Θij = 0, j > i,
Θii = 1, and Dη is a diagonal K ×K matrix. The trend component can be
then reformulated in terms of a set of K common trends, giving

yt = Θµ†
t + µθ + εt, t = 1, 2, . . . , T, εt ∼ NID(0,Σε)

µ†
t+1 = µ†

t + η†t , η†t ∼ NID(0,Dη)
(7)

where µθ = [0′K µ̄′]′ and µ̄ is an (N −K)×1 vector. The matrix Θ contains
the standardised factor loadings, which can be rotated to enhance interpre-
tation. The important feature of the common trends model is that although
each component of yt is integrated of order 1, N−K linear combinations of
yt are stationary, so the system is cointegrated (Engle and Granger, 1987).
In other words, there exist an (N − K) × N matrix C, with the property
CΘ = 0, so that Cyt is stationary. Further details and extensions to com-
mon cycles and common seasonals, along with economic applications, can
be found in Harvey and Koopman (1997).
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Finally, a dynamic error component model is obtained specifying Σε =
σ2

ε ii
′ + σ2

ε∗I , Ση = σ2
ηii

′ + σ2
η∗I , where i is an N × 1 vector of 1s. Hence, for

each component, the correlation between the disturbances in any two units
is the same and is accounted for by a time specific common effect, whereas
unit specific effects are mutually independent. Marshall (1992) shows that
the model can be trasformed to a system of time series equations consisting
of a LLM for the cross sectional mean, ȳt, and a homogeneous LLM for the
N − 1 series in deviation form yit − ȳt, i = 1, . . . , N − 1.

6 Correlated disturbances

The reader may wonder why the specification of structural models assumes
independent disturbances. Actually, this is a restriction which has to im-
posed to achieve identifiability; take for instance the LLM (1) and assume
E(εtηt−τ ) = σεη if τ = 0, and zero otherwise; matching the nonzero autoco-
variances of ∆yt yields a (nonlinear) system of two equations in three un-
knowns (σ2

ε , σ
2
η, σεη) which has infinite solutions. Imposing σεη = 0 gives

a unique solution, provided c(1) is negative. An identifiable model can
also be obtained by assuming perfectly correlated disturbances as in Sny-
der (1985, p. 273), who poses ηt = αεt.

Thus, structural time series models usually achieve identification as-
suming that the disturbances driving the components are independent; this
is known to place severe constrains on the ARIMA reduced form parame-
ter space (for instance, in the LLM example above, θ is restricted between
-1 and 0, so that half of the MA parameter range is admissible). It is a mat-
ter of debate whether they are overly restrictive and whether they can be
meaningfully relaxed assuming correlated disturbances.

Models with correlated components have been considered by Godol-
phin (1976) with the explicit intent of extending the parameter range yield-
ing decomposable models. Snyder (1985) and Ord, Koehler and Snyder
(1997) propose unobserved components models with only one source of
random disturbances, arguing that models with multiple disturbances are
unnecessarily complex. Another very popular result, the Beveridge and
Nelson (1981) decomposition, is formulated with perfectly correlated dis-
turbances, and is commonly viewed as providing a structural interpreta-
tion to any ARIMA model (see also section 10).

On the contrary, West and Harrison (1997, sec. 7.3.4) argue against cor-
related components on the grounds of parsimony in parameterising a fore-
casting model, whereas Harvey and Koopman (2000), looking at the im-
plications on the weighting patterns for trend extraction by a local level
model, conclude that the scope for such extensions is very limited.

Notice also that the unobserved components have been specified in fu-
ture form; often (Harvey, 1989, West and Harrison, 1996) the contempo-
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raneous form of the model is used, eg. in the LLM case yt = µ∗t + ε∗t ,
µ∗t = µ∗t−1 + η∗t , with ε∗t and η∗t mutually and serially independent. Set-
ting µt = µ∗t−1, we can rewrite the model in future form as yt = µt + εt,
µt+1 = µt + ηt, where the disturbances εt = η∗t + ε∗t and ηt = η∗t are now
correlated.

7 Statistical treatment

The structural time series models considered in the previous sections are
special cases of state space models (SSM). A SSM consists of a measurement
equation and a transition equation: the former relates the N × 1 vector time
series yt to an m×1 vector of unobservable components or state vector, αt:

yt = Ztαt + Gtεt, t = 1, 2, . . . , T, (8)

where Zt is an N ×m matrix, Gt is N × g and εt is a g × 1 vector of ran-
dom disturbances that we assume NID(0, Ig). The transition equation is a
dynamic linear model for the states αt, taking the form of a first order vec-
tor autoregression:

αt+1 = T tαt + Htεt, (9)

where T t and Ht are m×m and m× g matrices, respectively.
Example 7.1: The state space representation of the LLTM (2) has αt = [µt, βt]′,
εt = [εt/σε ηt/ση ζt/σζ ]′ (hence εt contains the standardised disturbances),
and

Zt = [1 0], Gt = [σε, 0 0] T t =

[
1 1
0 1

]
, Ht =

[
0 ση 0
0 0 σζ

]
.

The system matrices, Zt, Gt, T t, and Ht, are non stochastic, i.e. they
are allowed to vary over time, but in a deterministic fashion, and are func-
tionally related to a set of parameters, θ, which usually will have to be
estimated. The SSM is time invariant if the system matrices are constant,
that is Zt = Z, Gt = G,T t = T and Ht = H , as occurs in Example
7.1. Moreover, structural time series models are usually specified in a way
that the measurement and transition equation disturbances are indepen-
dent, i.e. HtG

′
t = 0; nevertheless, in the derivation of the Kalman filter

and smoother we will use the general representation with HtG
′
t not neces-

sarily equal to a zero matrix, since this representation encompasses other
structural models with correlated disturbances (see section 6).

The SSM is completed by the specification of initial conditions, con-
cerning the distribution of α1: this turns out to be a relevant issue when
nonstationary components are present (see section 7.2). When the system
is time-invariant and αt is stationary (an instance is provided by the cycle
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plus irregular model, yt = ψt + εt), and the stochastic process governing αt

started in the indefinite past, then E(α1) = 0 and Var(α1) = P , satisfying
the matrix equation P = TPT ′ + HH ′. Hence, the initial conditions are
provided by the unconditional mean and covariance matrix of the state vec-
tor. A time invariant SSM is stationary if the eigenvalues of the transition
matrix, T , are inside the unit circle.

7.1 The Kalman filter and the prediction error decomposition

The Kalman filter (KF) is a fundamental algorithm for the statistical treat-
ment of a SSM. Under the Gaussian assumption it produces the minimum
mean square estimator (MMSE) of the state vector along with its mean
square error (MSE) matrix, conditional on past information; this is used
to build the one-step-ahead predictor of yt and its mean square error ma-
trix. Due to the independence of the one-step-ahead prediction errors, the
likelihood can be evaluated via the prediction error decomposition.

Denoting Y t = {y1, . . . ,yt} the information set available at time t,
α̃t|t−1 = E(αt|Y t−1) and P t|t−1 = E[(αt−α̃t|t−1)(αt−α̃t|t−1)′|Y t−1], the KF
for a standard state space model with initial conditions α1 ∼ N(α̃1|0, P 1|0),
where α̃1|0 and P 1|0 are known and finite, consists of the following recur-
sive formulae for t = 1, . . . , T :

νt = yt −Ztα̃t|t−1, F t = ZtP t|t−1Z
′
t + GtG

′
t,

Kt = (T tP t|t−1Z
′
t + HtG

′
t)F

−1
t ,

α̃t+1|t = T tα̃t|t−1 + Ktνt, P t+1|t = T tP t|t−1T
′
t + HtH

′
t −KtF tK

′
t;

(10)
as ỹt|t−1 = E(yt|Y t−1) = Ztα̃t|t−1, νt represent the one-step-ahead pre-
diction error, also known as the innovation at time t because it represents
the part of yt that cannot be predicted from the past, and F t is its variance
matrix.

A proof of the KF is found in Anderson and Moore (1979) and in the
appendix. When the Gaussianity assumption is removed the KF still yields
the minimum mean square linear estimator (MMSLE) of the state vector.

For a time-invariant model, the recursions for F t, Kt and P t+1|t become
redundant when the KF has reached a steady state, which occurs if, for
some t, P t|t−1 = P . The conditions under which limt→∞P t|t−1 = P are
given in Harvey (1989, sec. 3.3.3 and 3.3.4), and, when they are met, the
matrix P is the solution of the Riccati equation

P = TPT ′ + HH ′ −KFK ′, (11)

with K = (TPZ ′ + HG′)F−1 and F = ZPZ ′ + GG′.
The updated estimates of the state vector, α̃t|t = E(αt|Y t), and their

10



MSE matrix are:

α̃t|t = α̃t|t−1 + P t|t−1Z
′
tF

−1
t νt, P t|t = P t|t−1 − P t|t−1Z

′
tF

−1
t ZtP t|t−1.

(12)
Also, when HtG

′
t = 0, the KF recursions for the states can be broken up

into an updating step, (12), followed by a prediction step:

α̃t+1|t = T tα̃t|t, P t+1|t = T tP t|tT ′
t + HtH

′
t (13)

As the KF filter provides yt|Y t−1 ∼ NID(ỹt|t−1,F t), it enables the likeli-
hood function to be written in prediction error decomposition form. Apart
from a constant term the log-likelihood of the observations is computed as
follows:

L(Y T ; θ) =
T∑

t=1

L(yt|Y t−1; θ) = −1
2

(
T∑

t=1

ln |F t|+
T∑

t=1

ν ′tF
−1
t νt

)
. (14)

The likelihood function can be maximised numerically by a quasi-Newton
optimisation routine. Analytical expressions for the score vector, with re-
spect to the parameters in Gt and Ht (Koopman and Shepard, 1992), and
for the information matrix (Harvey, 1989, pp. 140-143) are available. The
dimension of the problem can be reduced by concentrating one of the vari-
ance parameters out of the likelihood function: if we write θ = [θ∗

′
, σ2]′,

and Gt = σG∗
t , Ht = σH∗

t , α1 ∼ N(α̃1|0, σ2P 1|0) the recursions (10), run
with Gt and Ht replaced by G∗

t and H∗
t , yield yt|Y t−1 ∼ NID(ỹt|t−1, σ

2F t).
Maximising the corresponding likelihood with respect to σ2 gives σ̂2 =∑

ν ′tF
−1
t νt/(NT ) and the concentrated likelihood Lσ2(Y T ; θ∗) = −0.5[NT (ln σ̂2+

1) +
∑

ln |F t|].

7.2 Initial conditions and nonstationary models∗

When there are d nonstationary elements in the state vector, we write in
general α1 = a + Bη + Dδ, where a and B are respectively an m × 1
known vector and an m × (m − d) known matrix that may depend on θ,
and D is a m×d selection matrix assigning the appropriate elements of δ to
the states. The vectors η ∼ N(0, IN ) and δ are used to initialise the station-
ary and nonstationary elements of αt and are mutually independent and
independent of εt, ∀t. Two assumptions can be made: (i) δ is considered
as a fixed, but unknown vector; (ii) δ is a diffuse random vector, i.e. it has
an improper distribution with a mean of zero and an arbitrarily large vari-
ance matrix: δ ∼ N(0, κId), κ → ∞. The first assumption is suitable if it
is deemed that the transition process (9) governing the states has started at
time t = 1; the second if the process has started in the remote past. For in-
stance, if one of the state components is a random walk, as for LLM model,

0This section is more technical and can be omitted on first reading.
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then its starting value is the cumulative sum of infinite NID disturbances,
so its variance will go to infinity. The use of a diffuse prior amounts to
leaving the distribution of initial conditions unspecified.
Example 7.2: The model yt = µt + γt + ψt + εt, for quarterly data, with the
components specified as in (2), (3) and (5), has αt = [µt βt γ1t γ∗1t γ2t ψt ψ∗t ]′,
Z = [1, 0, 1, 0, 1, 1, 0], G = [σε, 0, 0, 0, 0], T = diag(T µ, T γ , T ψ), where

T µ =

[
1 1
0 1

]
, T γ =




0 1 0
−1 0 0

0 0 −1


 , T ψ = ρ

[
cosλ sinλ

− sinλ cosλ

]
,

H = [0 H̃], H̃ = diag(ση, σζ , σω, σω, σω, σκ, σκ), and, as regards initial
conditions,

a = 0, B =

[
0

σψI2

]
, D =

[
I5

0

]
.

The case when δ is fixed and unknown has been considered by Rosen-
berg (1973), who shows that it can be concentrated out of the likelihood
function. As a matter of fact, the innovations and the conditional mean
of the state vector delivered by the the KF with initial conditions α̃1|0 =
a + Dδ and P 1|0 = BB′, denoted KF(δ), can be written respectively as
νt = ν∗t − V tδ and α̃t+1|t = α̃∗

t+1|t − At+1|tδ. The starred quantities, ν∗t
and α̃∗

t+1|t, are produced by the KF run with δ = 0, i.e. with initial condi-
tions α̃∗

1|0 = a and P ∗
1|0 = BB′; we denote this filter by KF(0). Note that it

produces the matrices F ∗
t and P ∗

t+1|t, t = 1, . . . T , which, being invariant to
δ, equal the corresponding matrices F t and P t+1|t produced by KF(δ). The
matrices V t and At+1|t are generated by the following recursions, that are
run in parallel to KF(0):

V t = −ZtAt|t−1, At+1|t = T tAt|t−1 + KtV t, t = 1, . . . , T, (15)

with initial value A1|0 = −D. Then, replacing νt = ν∗t − V tδ and F t = F ∗
t

into (14), yields:

L(Y T ; θ, δ) = −1
2

(
T∑

t=1

ln |F ∗
t |+

T∑

t=1

ν∗′t F ∗−1
t ν∗t − 2δ′sT + δ′ST δ

)
(16)

where sT =
∑T

1 V ′
tF

∗−1
t ν∗t and ST =

∑T
1 V ′

tF
∗−1
t V t. Hence, the maxi-

mum likelihood estimate of δ is δ̂ = S−1
T sT and the concentrated likelihood

is

Lδ(Y T ; θ) = −0.5(
T∑

t=1

ln |F ∗
t |+

T∑

t=1

ν∗′t F ∗−1
t ν∗t − s′T S−1

T sT ) (17)

When δ is diffuse, δ ∼ N(0, κId), κ → ∞, the definition of the likeli-
hood needs to be amended; in particular, de Jong (1991) shows that only
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L(Y T ;θ, δ) + d
2 lnκ is a proper likelihood and that its limiting expression

for κ →∞ is

L∞(Y T ; θ) = −1
2

(∑
ln |F ∗

t |+ ln |ST |+
∑

ν∗′t F ∗−1
t ν∗t − s′T S−1

T sT

)
.

(18)
Also, the limiting expressions for the mean and variance of δ, conditional
on Y t are S−1

t st and S−1
t , st =

∑t
i=1 V ′

iF
∗−1
i ν∗i and St =

∑t
i=1 V ′

iF
∗−1
i V i,

provided the latter matrix is invertible. All the relevant quantities are avail-
able by the run of KF(0), augmented by the recursions (15). Furthermore,
de Jong shows that the limiting expressions for the innovations, the one-
step-ahead prediction of the state vector and the corresponding covariance
matrices are

νt = ν∗t − V tS
−1
t−1st−1, F t = F ∗

t + V tS
−1
t−1V

′
t,

α̃t|t−1 = α̃∗
t|t−1 −At|t−1S

−1
t−1st−1, P t|t−1 = P ∗

t|t−1 + At|t−1S
−1
t−1A

′
t|t−1.

(19)
Usually, the augmented recursions can be dropped after processing d ob-
servations provided Sd is invertible, in which case E(δ|Y d) = S−1

d sd, and
a collapse can be made to the standard KF.

The notion of a diffuse likelihood is close to that of a marginal like-
lihood, being based on a rank T − d linear transformation of the series
that eliminates dependence on δ. Comparing (18) with (17), it turns out
that L∞(Y T ;θ) differs from Lδ(Y T ; θ) because of the presence of the term
ln |ST |, which could bear relevant effects on the estimation of θ, especially
when the data generating process is close to nonstationarity and noninvert-
ibility. In this situation, as shown by Tunnicliffe-Wilson (1986) and Shep-
hard and Harvey (1990), the latter referring to the estimation of the signal to
noise ratio for the LLM when the true value is close to zero, the estimators
based on (18) exhibit better small sample properties.

Recently, Koopman (1997) has provided an exact analytic solution to
the initialisation problem that is computationally more efficient than aug-
menting the KF by the matrix recursions (15). His approach entails the
derivation of a modified KF, hinging on the fundamental idea, adopted by
Ansley and Kohn (1985, 1989), of expressing the KF quantities explicitly in
terms of κ and letting κ →∞ to get the exact solution.

A simple illustration is provided with reference to the LLM (1), whose
state space space representation has αt = µt, εt = [εt/σε ηt/ση]′, Z = T =
1, G = [σε 0], H = [0 ση], and initial conditions µ̃1|0 = 0, P1|0 = κ
(i.e. a = 0, B = 0, and D = 1). The run of the KF at time t = 1 gives:
ν1 = y1, F1 = κ + σ2

ε , K1 = κ/(κ + σ2
ε ), µ̃2|1 = y1κ/(κ + σ2

ε ) and P2|1 =
σ2

ε κ/(κ + σ2
ε ) + σ2

η . Letting κ →∞, we get the limiting expressions K1 = 1,
µ̃2|1 = y1 and P2|1 = σ2

ε + σ2
η . Note that P2|1 does not depend on κ and

ν2 = y2 − y1 has a proper distribution, ν2 ∼ N(0, F2), with F2 = σ2
η + 2σ2

ε .
In general the innovations at subsequent times can be written as a linear
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combination of past and current changes of the series, and therefore have a
proper distribution.

Suppressing dependence on θ = [σ2
ε σ2

η]
′, the diffuse log-likelihood

is L(YT ) + 0.5 lnκ = L(ν1) + 0.5 ln κ +
∑T

t=2 L(νt), but L(ν1) + 0.5 lnκ =
−0.5 ln(κ/(κ + σ2

ε )) − 0.5y2
1/(κ + σ2

ε ) vanishes as κ → ∞ Hence the usual
KF can be started at t = 2 with µ̃2|1 and P2|1 as given. The log likelihood
is computed as in (14) with the summation starting at t = 2. These calcu-
lations confirm the fact that the diffuse likelihood is based on a rank T − 1
linear transformation of the series that makes it invariant to δ.

In closing this section, we hint that a simple expedient to obtain an ap-
proximation to the diffuse likelihood is to run the standard KF with κ re-
placed by a large number, such as 107. Although this solution is practical,
it is theoretically unsatisfactory and prone to numerical inaccuracies.

8 Explanatory variables

Explanatory variables can be brought into the model so as to capture exoge-
nous effects and various types of interventions. If we let Xt and W t denote
fixed and known matrices of dimension N × k and m× k, respectively, the
state space model is written

yt = Ztαt + Xtβ + Gtεt, αt+1 = T tαt + W tβ + Htεt. (20)

When the SSM is stationary, β can be estimated by generalised least
squares, which amounts to apply the same KF to yt and each of the ex-
planatory variables in the columns of Xt, and perform a weighted least
squares regression (with weights provided by F−1

t ); see Harvey (1989), pp.
130-133 for details.

When the SSM is nonstationary (see section 7.2), the vector β can be in-
corporated in the vector δ that is redefined as the d + k vector δ = [δ′α β′]′,
with δα being associated to the nonstationary elements in the state vector.
The matrix D in this context is the m×(k+d) matrix [Dα 0] where the first
block is associated with δα. The treatment under fixed and diffuse assump-
tion is the same as in the previous subsection, with the matrix recursions
(15) replaced by

V t = [0 Xt]−ZtAt|t−1, At+1|t = T tAt|t−1 − [0 W t] + KtV t

and initialised with A1|0 = −D.
An alternative equivalent approach consists in inserting β in the state

vector and redefining the SSM accordingly:

yt = Z†
tα

†
t + Gtεt, α†

t+1 = T †
tα

†
t + H†

tεt

14



where

α†
t =

[
αt

βt

]
, Z†

t = [Zt Xt], T †
t =

[
T t W t

0 Ik

]
, H†

t =

[
Ht

0

]
.

9 Smoothing

Once the parameters of a structural model have been estimated, interest lies
on estimation of the components based on the full sample of observations,
Y T . This operation is referred to as smoothing (see Anderson and Moore,
1979, ch. 7, for a comprehensive account of the classic algorithms). The
time series plot of the smoothed components against time is also a valu-
able diagnostic tool to check if the components extracted provide a suitable
representation of the stylised facts concerning the series.

In the Gaussian case smoothing provides the MMSE of αt using Y T ,
ãt|T = E(αt|Y T ), along with its MSE matrix P t|T = E[(αt − ãt|T )(αt −
ãt|T )′|Y T ]. It can be performed efficiently by the algorithm proposed by
de Jong (1989), consisting of the following backwards recursions starting at
t = T , with initial values rT = 0 and NT = 0:

α̃t|T = α̃t|t−1 + P t|t−1rt−1, P t|T = P t|t−1 − P t|t−1N t−1P t|t−1

rt−1 = Z ′
tF

−1
t νt + L′trt, N t−1 = Z ′

tF
−1
t Zt + L′tN tLt

(21)
where Lt = T t−KtZt. A preliminary forward KF pass is required to store
the quantities α̃t|t−1, P t|t−1, νt, F t and Kt. The proof of (21) is found in
De Jong (1989), who also deals with the modifications to introduce under
diffuse initial conditions. These involve storage of V t (15) and extra matrix
recursions. Alternatively, using the exact initial KF of Koopman (1997),
(21) still apply for t = T, . . . , d+1 and a straightforward adjustment can be
made for the initial stretch t = d, . . . , 1. When Gaussianity does not hold,
the smoother still delivers the MMSLE of αt.

The estimation of the disturbances εt associated with the the various
components in a SSM, referred to as disturbance smoothing, is built upon the
smoothing errors (De Jong, 1988) ut = F−1

t νt − K ′
trt, with variance Dt =

F−1
t + K ′

tN tKt. Koopman (1992) shows that ε̃t|T = E(εt|Y t) = G′
tut +

H ′
trt and Var(ε̃t|T ) = G′

tDtGt + H ′
tN tHt. The standardised smoothed

estimates of the disturbances are known referred to as auxiliary residuals.
When HtG

′
t = 0, the irregular auxiliary residual is GtG

′
tut, standardised

by the square root of the diagonal elements in GtG
′
tDtGtG

′
t, whereas the

auxiliary residuals associated with the unobserved components in αt are
the elements of HtH

′
trt, scaled by the square root of the diagonal elements

of HtH
′
tN tHtH

′
t. They provide test statistics for outliers and structural

change in the state components (Harvey and Koopman, 1992, De Jong and
Penzer, 1998). Unlike the innovations, the auxiliary residuals are serially
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correlated; Harvey and Koopman (1992) derive their autocorrelation struc-
ture and show how they can be employed to form appropriate tests of nor-
mality.

10 Forecasting

For a SSM without regression effects, the update of the KF at time t pro-
duces α̃t+1|t and P t+1|t, which are used to yield the one-step-ahead forecast
ỹt+1|t = Zt+1α̃t+1|t, along with its MSE matrix F t+1 = Zt+1P t+1|tZ ′

t+1 +
Gt+1G

′
t+1.

For multistep prediction, taking the expectation of both sides of the
measurement equation (8) conditional on Y t, gives ỹt+l|t = Zt+lα̃t+l|t;
moreover, MSE(ỹt+l|t) = F t+l|t = Zt+lP t+l|tZ ′

t+l + Gt+lG
′
t+l, where the

l-step-ahead forecast of the state vector, α̃t+l|t = E(αt+l|Y t), and its MSE,
P t+l|t = E[(αt+l− α̃t+l|t)(αt+l− α̃t+l|t)′|Y t], are built up recursively by the
chain rule:

α̃t+l|t = T t+l−1α̃t+l−1|t, P t+l|t = T t+l−1P t+l−1|tT ′
t+l−1 + Ht+l−1H

′
t+l−1.

These expressions are initialised by α̃t+1|t and P t+1|t delivered by the KF
at time t. Two things should be noticed: first, multi-step-ahead prediction
errors are correlated and, secondly, the MSE matrices do not take into ac-
count the uncertainty arising from estimation of the parameters in θ. When
regression and diffuse initial effects are present, ỹt+l|t = Zt+lα̃t+l|t+Xt+lβ̂

and α̃t+l|t = T t+l−1α̃t+l−1|t + W t+l−1β̂ where β̂ = E(β|Y t) = S−1
t st and

the initialisation for α̃t+l|t and P t+l|t is provided by the second row of (19).
In such case the MSE matrices will reflect the uncertainty associated with
the regression and the initial diffuse effects, the same holding when β is
incorporated into the state vector.

Writing ỹt+l|t = Zt+lT t+l,t+1α̃t+1|t, where T j,s = T j−1T j−2 · · ·T s for
j > s and T j,s = I for j = s, the forecasts can be expressed as a weighted
linear combination of past and current innovations:

ỹt+l|t = Zt+lT t+l,t+1

t−1∑

j=0

[T t+1,t+1−jKt−jνt−j ] .

Also, writing α̃t+1|t = Ltα̃t|t−1 + Ktyt, where Lt = T t −KtZt, repeated
substitution allows the forecast function to be written as a weighted aver-
age of past and current observations:

ỹt+l|t = Zt+lT t+l,t+1

t−1∑

j=0

[
Lt+1,t+1−jKt−jyt−j

]
,

where we have set Lj,s = Lj−1Lj−2 · · ·Ls for j > s and Lj,s = I for j = s.
Once new information, yt+1, becomes available the forecast of yt+l can be
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updated by the formula ỹt+l|t+1 = ỹt+l|t + Zt+lT t+l,t+2Kt+1νt+1, which
stresses that the forecast revision depends on the innovation at time t + 1.

Example 10.1: The forecast function of the LLM (1) is a horizontal straight
line, being given by ỹt+l|t = µ̃t+1|t, l = 1, 2, . . ., where µ̃t+1|t = µ̃t|t−1 +Ktνt;
moreover, MSE(ỹt+l|t) = Pt+1|t +(l−1)σ2

η +σ2
ε . When the KF has reached a

steady state, Kt = K = P/(P + σ2
ε ) so that the previous forecast is revised

according to a fraction of the one-step-ahead forecast error. This fraction
measures the persistence of the innovations and is always between 0 and
1. The constant P can be obtained as the only admissible solution of (11):
P = σ2

ε (q +
√

q2 + 4q)/2, where q = σ2
η/σ2

ε is the signal to noise ratio.
Furthermore, the forecasts are generated as an exponentially weighted moving
average of the available observation, since ỹt+l|t = Kyt+(1−K)Kyt−1+(1−
K)2Kyt−2 + · · ·+(1−K)jKyt−j + · · ·. The discounting of past observations
varies with q: the larger q is, the greater the weight placed on the most
recent observations.

For a time invariant model with uncorrelated measurement and transi-
tion disturbances (HG′ = 0), it is also useful to write the multistep fore-
casts in terms of α̃t|t, as ỹt+l|t = ZT lα̃t|t. This formulation can be em-
ployed to evaluate the shape of the forecast function: for instance, for the
structural model yt = µt + ψt + γt + εt, with µt as in (2) and trigonometric
seasonality,

ỹt+l|t = µ̃t|t+lβ̃t|t+ρl[ψ̃t|t cos(lλc)+ψ̃∗t|t sin(lλc)]+
[s/2]∑

j=1

[γ̃t|t cos(lλj)+γ̃∗t|t sin(lλj)];

it should be noted that the trend forecasts are linear in the forecast horizon,
l, with intercept and slope that are adaptive in the forecast origin, the cycle
and the seasonal contribute via sine and cosine waves, the former vanish-
ing as l → ∞. Moreover, writing α̃t|t = T α̃t−1|t−1 + P t|t−1Z

′F−1
t νt, we

can view forecasting with structural time series models as an “error learn-
ing” process or generalised exponential smoothing. The weights attached
to the observations by the components can be obtained recursively from
α̃t|t = (I − P t|t−1Z

′F−1
t Z)T α̃t−1|t−1 + P t|t−1Z

′F−1
t yt.

Example 10.2: For the LLTM of example 7.1 the forecast function is ỹt+l|t =
µ̃t|t+ lβ̃t|t; the steady state recursions for µ̃t|t and β̃t|t are equivalent to those
of the Holt-Winters’ forecasting technique:

µ̃t|t = µ̃t−1|t−1 + β̃t−1|t−1 + λ0νt

β̃t|t = + β̃t−1|t−1 + λ0λ1νt

with λ0 = p11/(p11 + σ2
ε ) and λ1 = p12/p11, where P = {pij} satisfies

(11). The smoothing constants λ0 and λ1, both in the range (0,1), as σ2
η ≥ 0
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implies 0 < p12 < p11, are functionally related to the signal to noise ratios
qη = σ2

η/σ2
ε and qζ = σ2

ζ/σ2
ε (see Harvey, 1989, p. 175-177). The forecast

MSE is a quadratic function of the forecast horizon: MSE(ỹt+l|t) = p11 +
2(l−1)p12+(l−1)2p22+(l−1)σ2

η+l(l−1)σ2
ζ/2+σ2

ε . The steady state weights
attributed to the observations can be derived from replacing PZ ′F−1 =
[λ0 λ0λ1]′ in α̃t|t = [I − (I − PZ ′F−1Z)TL]−1PZ ′F−1yt. This gives
µ̃t|t = θ(L)−1λ0[1 − (1 − λ1)L]yt and β̃t|t = θ(L)−1λ0λ1∆yt, where θ(L) =
1− [2− λ0(1 + λ1)]L + (1− λ0)L2. Note that the weights are less than 1 in
modulus and sum up to 1 and to 0 respectively for the level and the slope.

In the ARIMA framework the forecast function can be decomposed into
components associated to the roots of the autoregressive polynomial (Box
et al., 1994, ch. 5). It would appear that for any ARIMA model a structural
interpretation can be provided (i.e. in terms of trends, cycles, and so forth),
but this is unwarranted. This point can be illustrated with respect to the
ARIMA(1,1,1) model (1 − ρL)∆yt = (1 + θL)ξt, with ρ, θ ∈ (−1, 1) and
ξt ∼ NID(0, σ2): the forecast function can be written ỹt+l|t = mt + ρlct,
where the updating equations for the components are:

mt = mt−1 + [(1 + θ)/(1− ρ)]ξt, ct = ρct−1 − [(ρ + θ)/(1− ρ)]ξt, (22)

The sequence {mt, ct} is also known as the Beveridge and Nelson (1981)
decomposition of yt into a permanent and a transitory component, and the
constant [(1+ θ)/(1− ρ)] is referred to as persistence, since it represents the
scalar multiple of the innovation determining the amount of revision in the
long-run forecast of the series.

It is easily shown that the trend is related to the observations via mt =
[(1+θ)/(1−ρ)](1−ρL)(1+θL)−1yt, so that the weights attributed to yt−j are
geometrically decreasing from time t− 1 on and sum up to one. However,
they can be greater than 1 if persistence is greater than 1. For instance,
when θ = .8, ρ = 0.5, the weights attributed to yt−j , j = 0, 1, 2, 3, are 3.60, -
4.68, 3.74, -3.00, respectively. In this situation the trend is, loosely speaking,
more volatile than the series itself, since the innovations are not discounted,
but their effect is amplified (in the example above by a factor of 3.60), and
its time series plot will have a very uneven appearance. It is questionable
whether this can be called a trend.

The structural time series model with ARIMA(1,1,1) reduced form is
the trend plus AR(1) model yt = µt + ψt, µt+1 = µt + ηt, ψt+1 = ρψt + κt,
with independent disturbances ηt ∼ NID(0, σ2

η) and κt ∼ NID(0, σ2
κ), and

is such that persistence is constrained to be less than unity. As a matter of
fact, the stationary representation of the structural model is (1− ρL)∆yt =
(1 − ρL)ηt−1 + ∆κt−1, and equating the autocovariances of (1 − ρL)∆yt at
lags 0 and 1 yields σ2(1 + θ2) = (1 + ρ2)σ2

η + 2σ2
κ and σ2θ = −ρσ2

η − σ2
κ,

which can be solved for σ2
η and σ2

κ to give σ2
η = σ2[(1 + θ)/(1 − ρ)]2 and
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σ2
κ = −σ2[ρ(1 + θ)2/(1 − ρ)2 + θ]. Now, σ2

κ ≥ 0 requires θ ≤ −ρ, and
this amounts to constraining persistence to be not greater than one. The
state space representation has Z = [1 1], G = 0′, T = diag(1, ρ), H =
diag(ση, σκ), so that PZ ′F−1 = [(1+θ)/(1−ρ), −(ρ+θ)/(1−ρ)]′; therefore,
the steady state recursions for the components are exactly as in (22), with
mt, ct replaced by µ̃t|t, ψ̃t|t, and ξt = νt.

10.1 Post-sample predictive testing and model evaluation

Diagnostic checking is usually carried out using the standardised innova-
tions vt = F

−1/2
t νt, which play a role in detecting various types of mis-

specifications, such as serial correlation, heteroscedasticity, nonnormality
and structural change (see Harvey, 1989, sec. 5.4. and 8.4.2).

Assessing the goodness of fit of a structural model is closely bound up
with forecasting: a basic measure is the prediction error variance (pev), de-
fined as the variance of the one step-ahead prediction errors in the steady
state. For a time invariant SSM, the pev is the steady state matrix F =
limt→∞ F t, which can be approximated by F T (finite pev), and corresponds
to the variance of the ARIMA reduced form disturbances.

The definition of a scale free measure of goodness of fit, analogous to
the coefficient of determination in regression, varies according to the na-
ture of the series under investigation. A comparison is made with a cor-
responding näive forecasting model: for instance, if the BSM is fitted to a
univariate seasonal time series, the sum of squares of the one-step-ahead
prediction errors (SSE) is compared to the sum of squares of the first dif-
ferences of the series around the seasonal means (SSDSM); this is the sum
of the prediction errors arising from a random walk with seasonal drift
model, and the coefficient of determination is correspondingly defined as
R2

s = 1-SSE/SSDSM.
The availability of post-sample observations, yT+1, . . . , yT+l (for sim-

plicity we refer to the univariate case), can be exploited for assessing fore-
casting performance. Two types of prediction errors emerge: the one-step-
ahead prediction errors, νT+j , j = 1, . . . , l, and the extrapolative residuals
or j-steps-ahead prediction errors νT+j|T = yT+j − ỹT+j|T ; various mea-
sures of forecast accuracy can be built upon them, such as the sum of their
absolute values and of their squares, in order to compare rival models.

A test of predictive failure aims at comparing the model performance in
the future relative to its past performance. To assess whether the prediction
errors in the post-sample period are significantly greater than those within
the sample period the following post-sample predictive failure statistic is used:

ξ(l) =
T − d

l

(
l∑

h=1

v2
T+h

) 


T∑

t=d+1

v2
t



−1

,
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where vt = νt/
√

Ft are the standardised one-step-ahead prediction errors
and d the number of nonstationary elements. If the model is correctly speci-
fied, vt ∼ NID(0, 1) and the distribution of ξ(l) is F (l, T−d). The cumulative
sum (CUSUM) of the standardised prediction errors is useful for detecting
if the model is systematically over or underpredicting.

11 Non-linear and non-Gaussian models

The literature on non-linear and non-Gaussian structural models has been
growing very rapidly during the last decade, paralleling the advances in
computational inference using stochastic simulation techniques. This sec-
tion provides only an incomplete and non technical account, placing more
emphasis on applications in economics and finance; introductory material
can be found in Harvey (1989), sec. 3.7, 6.5 and 6.6, Kitagawa and Gersh
(1996), ch. 6, West and Harrison (1997), ch. 12-15.

An important class of non-linear models arises when the system matri-
ces are functionally related to the information available at time t− 1, that is
Zt = Zt(Y t−1),Gt = Gt(Y t−1), T t = T t(Y t−1), Ht = Ht(Y t−1). The re-
sulting SSM is conditionally Gaussian, as given Y t−1 the system matrices can
be regarded as fixed. The KF still delivers the MMSLE of the state vector,
but α̃t|t−1 is no longer coincident with E(αt|Y t−1), latter being non-linear
in y1, . . . ,yt−1; similarly, P t|t−1 represents only the conditional MSE ma-
trix of α̃t|t−1. The attractive feature is that the likelihood function can be
still obtained via the prediction error decomposition. Forecasting is dis-
cussed in Harvey (1989, p. 159). A conditionally Gaussian setup is used
in Harvey et al. (1992) in order to provide approximate filtering and quasi-
maximum likelihood estimation for structural models with ARCH distur-
bances (STARCH models). Another example is provided by the smooth
transition structural models used by Proietti (1999) to model business cycle
asymmetries, like that occurring when contractions are steeper, but shorter,
than expansions.

The general framework for handling non-linear and non-Gaussian mod-
els is such that the measurement equation is replaced by the observation
conditional density

f(y1, . . . , yT |α1, . . . ,αT ; θ) =
T∏

t=1

f(yt|αt; θ),

which specifies that αt is sufficient for yt, and the transition equation is re-
placed by the Markovian transition density, f(α1, . . . ,αT ;θ) = f(α0; θ)

∏T−1
t=1 f(αt+1|αt; θ).

A unified treatment of statistical inference via simulation in this framework
is provided in Shephard and Pitt (1997) and Durbin and Koopman (1997,
2000). Leaving aside further details, we highlight the following applica-
tions:
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Structural models with Markov switching This class of models, intro-
duced by Harrison and Stevens (1976) as a particular case of the multi-
process class, postulates that the system matrices vary according to the states
of a latent first order Markov chain. It is adopted in Kim (1993), who pro-
poses an approximate filter and smoother, to decompose the US inflation
rate into a random walk trend plus stationary AR(1) components with het-
eroscedastic disturbances, whose variances vary according to two indepen-
dent two-states (low and high uncertainty) Markov chain. Simulated in-
ference is considered in Shephard (1994) and the monograph by Kim and
Nelson (1999) provides a comprehensive treatment and illustrations.

Multiplicative models Multiplicative models arise in nonlinear seasonal
adjustment, when the trend and the seasonal component combine multi-
plicatively and the irregular variance depends on the underlying trend; see
Harvey (1989, p. 174) and Shephard (1994).

Dynamic generalised linear models This class of models arises for time
series observations originating from the exponential family, such as count
data with Poisson and binomial distribution and continuous data with skewed
distributions such as the exponential and the gamma distributions. A bi-
nomial application concerning advertising awareness is illustrated in West
and Harrison (1997, sec 14.4), whereas Durbin and Koopman (2000) present
a Poisson application with respect to monthly series of van drivers killed
in road accidents in the UK.

Outlier models Outlying observations and structural breaks in the com-
ponents can be handled as in section (8) by the inclusion of appropriate
dummy variables on the right hand side of the measurement and transi-
tion equations. This strategy has several drawbacks: for instance, when
a dummy is used to model an additive outlier, this amounts to consider-
ing the observation as missing, so that a weight of zero is assigned to it
in signal extraction and forecasting; on the contrary, the observation may
still contain some information, which could be elicited by downweighting
it suitably. Moreover, in some empirical applications it is not infrequent
to find out that the quest for a specification compatible with the Gaussian
assumption does lead to the detection of a relevant number of occurrences
of outliers and structural breaks, which should rather be taken as evidence
for departure from Gaussianity. The alternative strategy consists in allow-
ing the disturbances of a structural model to possess a heavy tailed density,
such as Students’ t-distribution, the general error distribution (Durbin and
Koopman, 1997), or a mixture of Gaussian (Harrison and Stevens, 1976).
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Stochastic variance models This class of models allows the variability of
the series to change over time. The basic univariate specification for a time
series of stock returns is yt = εt exp(ht/2), ht+1 = β + ρht + ηt, where
εt and ηt are independent Gaussian processes with variances 1 and σ2

η re-
spectively. This specification captures the empirical regularities found in
financial time series, such as leptokurtosis, volatility clustering, and the
fact that returns exhibit little or no serial correlation, whereas their squares
show pronounced serial dependence. A comprehensive review of the var-
ious approaches to inference for stochastic variance models is provided by
Shephard (1996); a freeware package (SVpack) linked to the Ox program-
ming language (Doornik, 1998) is also made available by the same author
(http://www.nuff.ox.ac.uk/users/shephard/ox/ ). A recent ad-
dition implementing the approach of Durbin and Koopman (1997) is Sand-
mann and Koopman (1998).

12 Illustrations

12.1 Italian Gross Domestic Product

The first illustration deals with the quarterly series of the Italian Gross Do-
mestic Product at 1995 prices (source: ISTAT, National Economic Accounts),
shown in panel (i) of fig. 2. The series displays a clear upward trend, with a
changing slope: in effect, average yearly growth declines from about 3.5%
at the beginning of the sample period to about 1.0% at the end. Moreover,
some there is some graphical evidence for the presence of some cyclical be-
haviour especially in the period between the two oil crises and from 1993
onwards.

When the local linear trend model (2) is fitted to the logarithms of the
series using STAMP 6.0, the interactive menu-driven programme for fitting
and forecasting structural time series models documented in Koopman et
al. (2000), the maximum likelihood estimates are σ̂2

ε = 0 (the irregular is
absent), σ̂2

η = 183×10−7, σ̂2
ζ = 347×10−7. Elaborating results from example

10.2 the forecast function implied by the model is ˜ln yt+l|t = µ̃t|t + lβ̃t|t
with µ̃t|t = yt (notice that σ̂2

ε = 0 implies λ0 = 1), so that the trend is
coincident with the observations, and β̃t|t = [1 − (1 − λ1)L]−1λ1∆ln yt -
the current estimate of the slope is an exponentially weighted moving average
of current and past growth rates. As far as goodness of fit is concerned,
the pev is 0.000065 and the coefficient of determination is 0.08. However,
the model is misspecified as the Ljung-Box test of residual autocorrelation,
Q(P ) = T ∗(T ∗ + 2)

∑P
τ=1(T

∗ − τ)r2
v(τ), where T ∗ = T − d and rv(τ) is the

autocorrelation coefficient of vt at lag τ , is significant at the 5% level for all
τ < 13.

Diagnostic checking and a priori considerations suggest to fit the trend
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Figure 2: Italy, Gross Domestic Product at constant 1995 prices (logarithms),
1970.1-1999.1. (i) Series with trend, µ̃t|T . (ii) Comparison of ψ̃t|T from the
model ln yt = µt+ψt, and the cycle resulting from the Hodrick and Prescott
(1997) detrending procedure.

plus cycle model ln yt = µt + ψt: the estimated parameters for the trend are
σ̂2

η = 2×10−7, σ̂2
ζ = 25×10−7, σ̂2

ψ = 1402×10−7, ρ̂ = 0.92, λc = 0.52, which
implies a period of 12 quarters (3 years). As a result the trend extracted,
µ̃t|T , has a fairly smooth appearance (see fig. 2, panel (i)), whereas ψ̃t|T
provides a good representation of the Italian business cycle. The latter is is
compared with the deviations from the Hodrick and Prescott trend, which
is the trend extracted by the model (2) with the following restrictions on
the parameters: σ2

η = 0 and σ2
ζ/σ2

ε = 0.000625. This is clearly a misspecified
model and the resulting cycle, although highly coherent with that extracted
by the trend plus cycle model, overemphasises the short run dynamics,
especially during the second decade which is commonly acknowledged as
a period of steady growth with little or no business cycle fluctuations.

The absence of residual autocorrelation (Q(P ) is never significant at the
5% level) and of departures from the normality assumption, coupled with
the better within sample performance (pev = 0.000052; the coefficient of
determination is 0.27), suggest that the trend plus cycle model is to be pre-
ferred.

12.2 BEA Auto Unit Sales

We now provide an example of univariate modelling and forecasting with
structural time series models with respect to the monthly domestic auto
unit sales made available by the US Bureau of Economic Analysis (BEA) at
the URL http://www.bea.doc.gov/bea/pn/ndn0207.exe . The se-
ries covers the sample period 1967.1-1998.6, and is an extension of that
studied in Findley et al. (1998), to compare a subjective pre-adjustment
made by an expert analyst and an objective one, based upon five user de-
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fined regressors and automatic outlier identification. These adjustments are
preliminary to the seasonal adjustment of the series and aim at removing
the effects of short-duration sales incentive programmes used by automo-
bile manufacturers, causing “a large increase in the month or two in which
they occur, followed by a substantial decrease in the subsequent month or
two” (Findley et al., 1998, p. 146).

The series, shown in panel (i) of figure 3, along with time-varying level
and seasonal components, contains also a relevant calendar component in
the form of trading days effects, since the level of sales varies with the day
of the week, eg. being higher than average in Thursday and Monday. This
effect is modelled including six trading days regressors measuring respec-
tively the number of Mondays, Tuesdays, . . . , Saturdays minus the number
of Sundays in every month. Actually, the treatment of this component is
less trivial than it appears at first sight, due to the reporting habits of the
manufacturers; see the comment by Cleveland on the paper by Findley et
al. (1998, p. 153).

The initial specification of a structural time series model for the logarith-
mic transformation of the series is the following: ln yt = µt + γt + x′tβ + εt,
where µt is a random walk, µt+1 = µt + ηt, γt has the trigonometric speci-
fication (5), εt ∼ NID(0, σ2

ε ), and xt contains 6 trading days regressors and
the 5 user-defined regressors employed by Findley et al. (1998).

This model is estimated using the package STAMP 6.0; diagnostic check-
ing highlights that the standardised innovations are affected by excess kur-
tosis and significant autocorrelation (as revealed by the Ljung-Box statis-
tic). Moreover, the shape of the autocorrelation function and the estimated
spectral density, which shows a peak around the frequency 0.9 correspond-
ing to a period of 6-7 months, seems to suggest the inclusion of a cyclical
component.

When the component ψt in (3) is added there is a considerable im-
provement in the fit: the prediction error variance is pev=0.006394 and the
coefficient of determination R2

s = 0.44 (for the previous specification we
had pev=0.006954 and R2

s = 0.39). Furthermore, the Ljung-Box statistic
is never significant and excess kurtosis is reduced. The maximum likeli-
hood estimates of the parameters are σ̂2

η = 13279 × 10−7, σ̂2
ω = 36 × 10−7,

σ̂2
ε = 4361× 10−7, σ̂2

κ = 16898× 10−7, ρ̂ = 0.6785, λ̂c = 0.8964.
The stochastic cycle, with variance σ̂2

ψ = 31316× 10−7 and period equal
to 7 months, captures the quasi-seasonal effect of short duration sales pro-
grammes. As a matter of fact, panel (ii) of figure 3 shows that the smoothed
estimates of the cycle are highly coherent with the subjective pre-adjustment
factors. Of course, the cycle extracted is no substitute for genuine external
information on the timing and extent of sales programmes, but structural
modelling appears to capture properly this feature of the series.

Forecasts up to 12 steps ahead are displayed in panel (iv) in the original
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Figure 3: BEA Domestic Unit Auto Sales, 1967.1-1999.6. (i) Series with
trend, exp(µ̃t|T ). (ii) Comparison of subjective pre-adjustment factors and
the cycle extracted, exp(ψ̃t|T ), for the period 1979.1-1983.12. (iii) Plot of sea-
sonal factors, exp(γ̃t|T ). (iv) l-step-ahead forecasts with upper and lower
95% confidence limits.

scale of the observations: if we denote zt = ln yt, and we write zT+l|z1, . . . , zT ∼
N(z̃T+l|T , FT+l|t), then by properties of the lognormal distribution, the fore-
cast in the original scale is obtained as ỹT+l|T = exp(z̃T+l|T + FT+l|T /2).

For comparison, a regression model with ARIMA errors was fitted to
the same series using the RegARIMA module included in X-12-ARIMA
package with GiveWin interface (see the URL http://www.nuff.ox.ac.uk/users/doornik/
for downloads and information about GiveWin. Documentation and down-
loads for X-12-ARIMA are available from http://www.census.gov/-
pub/ts/x12a/final/ ). The model selected according to various infor-
mation criteria is ARIMA (2,0,1) × (0,1,1):

(1−1.4007L+0.4382L2)∆12(ln yt−Ct) = (1−0.7180L)(1−0.7786L12)ξt, ξt ∼ NID(0, 0.006623)

where Ct represents the regression kernel, including six trading days re-
gressors and five user-defined regressors.

The reduced form of the structural model with a cyclical component has
the same autoregressive structure, but the implied representation of the sta-
tionary AR(2) polynomial is (1−0.8473L+0.4604L2), with a pair of complex
conjugates roots with modulus 1.4738 and phase 0.8964, whereas the roots
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Figure 4: BEA Domestic Unit Auto Sales: comparison of forecast accu-
racy of structural model without a cyclical component (Stsm), including
a cyclical component (StsmC) and the ARIMA(2,0,1)×(0,1,1) model, based
on rolling l-step-ahead forecasts (l = 1, . . . , 12) 1989.12-1999.5.

of (1− 1.4007L+0.4382L2) are real and equal 1.0614, 2.1500. Moreover, the
MA part is additive (with order 14) rather than multiplicative.

The comparison of the prediction error variance of the structural model
(0.006394) with that of the ARIMA model (0.006623) highlights that the
performance of the former is superior as far as one-step-ahead forecast er-
rors are concerned. Comparison of MSE of out-of-sample multistep fore-
casts can be based on the following rolling forecast exercise: starting from
1989.12, three alternative models, namely the structural model without (Stsm)
and including (StsmC) the cyclical component and the ARIMA(2,0,1)×(0,1,1)
model, are estimated using the observations through a given forecast ori-
gin; l-steps-ahead forecasts, l = 1, . . . , 12, are computed. The procedure
is repeated shifting the forecast origin by one month until the end of the
sample period is reached; this yields a total of 102 one-step-ahead forecast
errors and 91 twelve-steps-ahead forecast errors for the three models.

For this computationally demanding task we use the library of state
space function SsfPack 2.2 by Koopman et al. (1999), linked to the object
oriented matrix programming language Ox 2.1 of Doornik (1998). More-
over, a considerable simplification is obtained considering only one trading
days regressor (accounting for the number of weekdays in the month mi-
nus (5/2) times the number of Saturdays and Sundays in the month), and
dropping the 5 user defined regressors.

The main results are summarised in figure 4, which displays for the
three models the mean of the forecast errors at forecast horizons ranging
from 1 to 12 months (panel (i)) and the ratio of the mean square forecast
error of the Stsm and the ARIMA models to that of StsmC (panel (ii)). All
models present a negative bias at all forecast horizons, which is less pro-
nounced for StsmC. The best forecast performance is provided by StsmC,
which clearly outperforms the ARIMA model at horizons from 2-9, and the
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Stsm specification, particularly at longer horizons.
Further empirical evidence on the forecasting performance of structural

time series models is reported in Harvey and Todd (1983) and Andrews
(1994). The overall conclusion is that the latter is similar and often superior
to that of rival specifications.
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A Proof of the Kalman filter

The preliminary result which is used to determine the optimality of the KF
is that for any two random variables x and z, the MMSE of x given z is the
conditional expectation E(x|z). Assuming that at time t α̃t|t−1 and P t|t−1

are given, taking the expectation of both sides of the measurement equation
conditional on Y t−1 produces ỹt|t−1 = E(yt|Y t−1) = Ztα̃t|t−1. Denoting
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the one-step-ahead prediction error, yt−ỹt|t−1, by νt, and substituting from
(8), gives νt = Zt(αt− α̃t|t−1) + Gtεt. Then, Var(yt|Y t−1) = ZtP t|t−1Z

′
t +

GtG
′
t = F t, since αt − α̃t|t−1 is uncorrelated with εt (as a matter of fact,

repeated substitution from the transition equation shows that αt is linear
in ε1, . . . , εt−1).

The updating equations for the state and its covariance matrix are pro-
duced as follows: writing Y t = {Y t−1, yt}, by properties of the normal
distribution,

E(αt+1|Y t) = E(αt+1|Y t−1) + Cov(αt+1, yt|Y t−1)[Var(yt|Y t−1)]−1(yt − E(yt|Y t−1)),
Var(αt+1|Y t) = Var(αt+1|Y t−1)− Cov(αt+1, yt|Y t−1)[Var(yt|Y t−1)]−1Cov(yt,αt+1|Y t−1).

(23)
Now, the expectation and variance of both sides of (9) conditional on Y t−1

are E(αt+1|Y t−1) = T tα̃t|t−1 and Var(αt+1|Y t−1) = T tP t|t−1T t + HtH
′
t,

respectively; moreover, Cov(αt+1, yt|Y t−1) = T tP t|t−1Z
′
t +HtG

′
t. Replac-

ing into (23) and writing Kt = (T tP t|t−1Z
′
t+HtG

′
t)F

−1
t yields the last line

of (10).
The KF performs a Choleski transformation of the observations: if ν de-

notes the stack of the innovations and y that of the observations: then ν =
Cy, where C is a lower triangular matrix such that Cov(y) = C−1FC ′−1

and F = diag(F 1, . . . , F t, . . . ,F T ). Hence, νt is a linear combination of
the current and past observations and is orthogonal to the information set
Y t−1.
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