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Recursive forecasts

Let yt denote the series to be forecast and yt+h|t = E(yt+h|t |It) denote the
out-of sample forecasts of yt+h based on It , the information available up
to time to t. Out-of-sample forecasts are typically computed using one of
two methods:

Recursive (expanding window) forecasts: An initial sample using data
from t = 1, ...,T is used to estimate the models, and h-step ahead
out-of sample forecasts are produced. The sample is increased by one,
the models are re-estimated, and h-step ahead forecasts are produced

[1, 2, ...,T ]→ T + h

[1, 2, ...,T + 1]→ T + h + 1

...

[1, 2, ...,T +M]→ T + h +M
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Rolling forecasts

Rolling (moving window) forecasts. An initial sample using data from
t = 1, ...,T is used to estimate the models, and to form h-step ahead
out-of-sample forecasts. Then the window is moved ahead one time
period, the models are re-estimated using data from t = 2, ...,T + 1
and h-step ahead out-of-sample forecasts are produced. T is the
window width

[1, 2, ...,T ]→ T + h

[2, ...,T + 1]→ T + h + 1

...

[M + 1, ...,T +M]→ T + h +M
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Forecast Evaluation Statistics

Define the forecast error as et+h|t = yt+h − yt+h|t . Common forecast
evaluation statistics based on M h-step ahead forecasts are

Mean Square Forecast Error: MSFE = 1
M

∑T+M−1
t=T e2t+h|t

Mean Absolute Forecast Error: MAFE = 1
M

∑T+M−1
t=T |et+h|t |

Mean Absolute Percentage Forecast Error:

MAPFE = 1
M

∑T+M−1
t=T

|et+h|t |
|yt+h|
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Forecast Evaluation Statistics

Remarks:

For h > 1 the forecast errors {et+h|t ; t = T , ...,T +M − 1} are
serially correlated and follow an MA(h − 1) process.

A model which produces small values of the forecast evaluation
statistics is judged to be a good model.

The forecast evaluation statistics are random variables and a formal
statistical procedure should be used to determine if the difference
among different models are "small".

Gianluca Cubadda Università di Roma "Tor Vergata" ()Macroeconomic Forecasting 15th May 2018 5 / 15



Diebold-Mariano Test for Equal Predictive Accuracy (EPA)

Let {e(1)t+h|t} and {e
(2)
t+h|t} be the h-step forecast errors associated with

two competing models, e.g. an AR(p) model vs. a VAR(p) model.

The accuracy of each forecast is measured by a particular loss
function L(e(i)t+h|t) for i = 1, 2. Popular choices are:

L(e(i)t+h|t) = e2t+h|t ; squared error loss

L(e(i)t+h|t) = |et+h|t |; absolute error loss

To determine if one model predicts better than another we may
compare the set of hypotheses

H0 : E [L(e(1)t+h|t)] = E [L(e(2)t+h|t)]

H1 : E [L(e(1)t+h|t)] 6= E [L(e(2)t+h|t)]
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Diebold-Mariano Test for EPA

The null hypothesis of equal predictive accuracy (EPA) is then

H0 : E [dt+h|t ] = 0

where dt+h|t = L(e(1)t+h|t)− L(e(2)t+h|t) is defined as the loss differential.

The Diebold-Mariano test statistic is

DM = d
/

[LRV (dt+h|t)/M]1/2

where

d =
1
M

T+M−1∑
t=T

dt+h|t

LRV (dt+h|t) = γ̂0 + 2
h−1∑
k=1

γ̂k , γk = Cov(dt+h+k |t+t , dt+h|t)
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Diebold-Mariano Test for EPA

Under the null of EPA, DM is asymptotically distributed as N(0, 1).
One sided test can also be performed.

Remarks:

The long-run variance is used in the test statistic because the loss
differentials {dt+h|t} are serially correlated for h > 1.
When the competing models are nested and an expanding window is
used, the limit distribution under H0 is no more N(0, 1). The reason
is that, as T grows, the denominator of DM goes to 0.

However, when T remains finite and M grows, parameter estimates do
not reach their probability limits and the DM test remains valid even
for nested models. This is the case when a rolling window is used.
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The Model Confidence Set (MCS)

The DM test is suited to compare either two competing models or a
given model vs. a benchmark model (e.g., several multivariate models
vs. a univariate model). However, a forecaster may need to compare
a large variety of models.

The Model Confidence Set (MCS, Hansen et al., 2011) selects a set
of models that contains the best-performing model with a probability
that is no less than 1− α, with α being the size of the test.
The MCS does not necessarily select a single model; instead the
number of models in the superior set will depend on how informative
are the data.
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The MCS

Define a set M0 that contains the set of models under evaluation
indexed by i = 0, 1, ...,m0.

Define the loss differential between models (i , j) as

d (i ,j)t+h|t = L(e(i)t+h|t)− L(e(j)t+h|t)

The set of superior models is defined as

M∗ =
{
i ∈ M0 : E(d (i ,j)t+h|t) ≤ 0, for any j ∈ M0

}
The MCS uses a sequential testing procedure to determine M∗

The set of hypotheses to be compared is

H0,M : E(d (i ,j)t+h|t) = 0 for any i , j ∈ M ⊂ M0

H1,M : E(d (i ,j)t+h|t) > 0 for some i , j ∈ M ⊂ M0
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The MCS

When the test rejects the null hypothesis, at least one model in the
set M is considered inferior and the model that contributes the most
to the rejection of the null is eliminated from the set M.

This procedure is repeated until the null is accepted and the remaining
models in M equal M̂∗1−α i.e. the (1− α)% model superior set.

Several test statistics can be used for the sequential testing of the null
hypothesis, see Hansen et al. (2011) for details.

Since the distributions of the test statistics depend on unknown
parameters, a bootstrap procedure is used to estimate the distribution.
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Factor Models

The exact factor model is defined as

Xt = Λft + εt

where Xt is a N-vector of stationary time series, ft is a q-vector of
unobserved common factors, Λ is N × q loading matrix, and εt is a
N-vector of idiosyncratic (possibly autocorrelated) errors such that:
(i) E(f ′ttεt−j ) = 0; (ii) E(ε′tεt−j ) is a diagonal matrix ∀j .
When assumption (ii) is relaxed, the model above is defined as the
approximate factor model. Additional conditions are needed to ensure
that the cross-correlation among elements of εt is mild.
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Factor Models

When both N and the sample size T diverge, the factors ft can be
consistently estimated by the first q principal components of Xt . In
general, the speed of convergence for this estimator is
min

{√
N,
√
T
}
. When

√
T/N → 0, then the factor estimation error

is asymptotically irrelevant (Bai and Ng, 2006).

The diffusion index approach by Stock and Watson (2002a, 2002b) is

δh(L)yt+h = β′hft + εt+h

where yt is a stationary scalar time series, δh(L) is a polynomial of
order p in the lag operator L, and εt+h is an innovation w.r.t the past
of [yt , f ′t ]′, and h ≥ 1.
Under some technical conditions, the model above can be estimated
by OLS having estimated the factors ft with the PC’s of Xt . Bai and
Ng (2002) offer some information criteria for the choice of q.
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Other approaches

De Mol et al. (2008) consider ridge regression as a forecasting method
for high-dimensional time series. They show that ridge regression
provides consistent forecasts as both N and T diverge. Empirically,
they show that ridge regression perform equally well as PCR.

C. and Guardabascio (2012) consider methods for forecasting
macroeconomic time series in a "medium N" framework where Their
interest is motivated by a body of empirical research suggesting that
popular data-rich prediction methods perform best when N ranges
from 20 to 40.They resort to PLS and PCR to consistently estimate a
stable dynamic regression model with many predictors as T only
diverges. They show that PLS compare well to other popular models
in macroeconomic forecasting.

Macroeconomic and financial forecasting is a very active research
area, and new methods are continuously proposed.
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