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Introduction(1)

One of the key issues economist have faced in characterising the
dynamic behaviour of macroeconomic variables, such as output,
unemployment and inflation, is separating trends from cycles.

The decomposition of economic time series has a long tradition,
dating back to the 19th century.

Along with providing a description of the salient features of a series,
the distinction of what is permanent and what is transitory in
economic dynamics bears relevant implications for monetary and fiscal
policy.



Introduction(2)

The underlying idea is that trends and cycles can be ascribed to
different economic mechanisms and an understanding of their
determinants helps to define policy targets and instruments.

This course focusses on structural time series analysis

The term structural time series refers to a class of parametric
models that are specified directly in terms of unobserved components
which capture essential features of the series, such as trends, cycles
and seasonality.



Introduction(3)

The approach is amenable to the analysis of macroeconomic time
series, where latent variables such as trends and cycles, and more
specialised notions, such as the output gap, core inflation and the
natural rate of unemployment, need to be measured.

The signal extraction problems relating to latent variables, such as
the output gap, core inflation and the NAIRU, can be consistently
formulated within a model based framework, and in particular within
the class of unobserved components time series models, formalising
the fundamental economic relationships with observable
macroeconomic aggregates.



Introduction: univariate Methods and Models

The course focuses on time series methods and models for signal
extraction.

In univariate analysis, the cycle can be identified as the stationary or
transitory component in a measure of aggregate economic activity,
such as gross domestic product (GDP).

Estimating the cycle thus amounts to detrending the series.

We shall confine our attention to the e.g. log-additive decomposition
of real output, yt , into potential output, µt , and the cycle (aka the
output gap), ψt :

yt = µt + ψt .



In the model–based approach a parametric representation for the
components is needed; furthermore, the specification of the model is
completed by assumptions on the covariance among the various
components.

The cycle is extracted by performing (possibly linear) operations on
the observed time series. The corresponding signal extraction filter is
the cycle estimator.

We set off by considering the properties of such an estimator.



Stationary processes and their second order properties

Def: Stationarity. A random process yt is (covariance/weakly) stationary if
∀t:

E(yt) = µ <∞
E(yt − µ)2 = γ(0) <∞

E[(yt − µ)(yt−h − µ)] = γ(h)

The autocovariance function, γ(h), is symmetric: γ(h) = γ(−h).
Autocorrelation function (ACF):

ρ(h) =
γ(h)

γ(0)

Properties:
i) ρ(0) = 1; ii) |ρ(h)| < 1; iii) ρ(h) = ρ(−h).



Definition of AR process

An autoregressive model is an ARDL model without DL part, i.e.
without regressors.

Autoregressive process of order p, AR(p) in brief:

yt = α0 + φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + εt , (1)

where εt is WN(0, σ2).

We can also include dummy variables (e.g. to capture a deterministic
seasonal component).

With the lag polynomial notations, the AR(p) is written

φp(L)yt = α0︸︷︷︸
φp(1)µ

+εt (2)

where φp(L) = 1− φ1L− φ2L2 − . . .− φpLp.



Stationarity of AR process

The AR(p) process is CS if φp(L) is stable.

AR(1): the stability condition is |φ1| < 1, so that after substitutions

yt = α0

∞∑
i=0

φi1 +
∞∑
i=0

φi1εt−i = α0

∞∑
i=0

φi1 +
∞∑
i=0

φi1L
iεt

=
α0

1− φ1
+

εt
1− φ1L

.

Stationarity corresponds to the fact that the impact multipliers (φi1)
of shocks tend to 0 quickly enough.



Stationarity of AR process

AR(p) process:

φp(L)yt = α0 + εt (3)

⇒ yt =
α0

φp(L)
+

εt
φp(L)

=
α0

φp(1)
+

εt
φp(L)

(4)

= µ + ψ(L)εt , (5)

where ψ(L) =
∑∞

i=0 ψiL
i = 1/φp(L).

The impact multipliers of shocks are the ψi coefficients.

From the last equality, E(yt) = µ <∞ (by stability). Also, we can
write the model as

φp(L)(yt − µ) = εt , (6)

instead of (2).



Autocorrelations of AR process (Jule-Walker), see
Hamilton (1994)

AR(1): ρj = φj1, for j = 0, 1, 2, . . . ⇔ ρj = φ1ρj−1 for j ≥ 1. (Left as
an exercise)

AR(p) process: it can be shown that:

1) ρ1, ρ2, . . . , ρp can be obtained from φ1, φ2, . . . , φp in a unique way.

2) ρj = φ1ρj−1 + φ2ρj−2 + . . .+ φpρj−p for j ≥ p.

3) By stability, ρj ↔ 0 as j ↔∞ (the decay is monotone or by
oscillations).

AR(2): ρ1 = φ1
1−φ2

, ρ2 = φ2 +
φ2
1

1−φ2
,

ρj = φ1ρj−1 + φ2ρj−2 for j ≥ 2.



Partial autocorrelation coefficients

AR(1) process: Corr(yt , yt−2) = φ21 6= 0 even though yt−2 does not
appear in the model. There is a ”transmission” effect:
Corr(yt , yt−2) = Corr(yt , yt−1)× Corr(yt−1, yt−2).
The autocorrelation coefficient ρj includes these transmission effects.

The PARTIAL AUTOCORRELATION COEFFICIENT (PAC)
between yt and yt−s , denoted by ass , eliminates this effect of
intervening variables yt−1, . . . , yt−s+1.
NB: a11 = ρ1 (no intervening variable).

The PAC ass for s ≥ 1 are defined as the regression coefficients of
yt−s in

yt = δ + as1yt−1 + as2yt−2 + . . .+ assyt−s + ut , (7)

where ut is an error term with zero mean.



Partial autocorrelations of AR processes

AR(1): a11 = ρ1 = φ1, ass = 0 for s ≥ 2.

AR(p) process:
- ass = 0 for all s ≥ p + 1: this is another distinctive property of AR
processes (cutoff of the PACF at p + 1).

- For s ≤ p, one can compute the PAC from the autocorrelations ρj
(thus indirectly from the parameters of the process).
In particular, app = φp.

In an AR(2):
a22 = ρ2 − φ1ρ1 = φ2: φ1ρ1 is the effect of yt−1 in
yt = δ + a21yt−1 + a22yt−2 + ut .

Each AR process has its distinctive ACF and PACF pair.

To estimate consistently ass , one can take the OLS estimate of ass in
(7).



ACF/PACF of AR processes
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ACF/PACF of AR processes
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Choice of p?

General to specific strategy:

Choose a high enough p to start (based on data frequency, and
ACF/PACF of data compared to typical ones of AR processes).

Estimate and test that the starting model has no significant
autocorrelation remaining in the residuals.

if yes: this defines the general unrestricted model (GUM), hence go to
step 3.
if no: restart at step 1 with a higher p (or another model).

Simplify the procedure drops insignificant lags, each time testing for
lack of autocorrelation in residuals, and the validity of the imposed
restrictions (with respect to the GUM). Stop with the most simple
acceptable model.



Dlog(USGDP): ACF and PACF
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Fit and residuals of AR(1,12)
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Definition of MA process

A moving average process of order q, MA(q) in brief, is defined by

yt = µ+ εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q, (8)

where εt ∼WN(0, σ2).

We can also include dummy variables (e.g. to capture a deterministic
seasonal component).

With the lag polynomial notations, the MA(q) process is written

yt = µ+ θq(L)εt , with (9)

θq(L) = θ0 + θ1L + θ2L
2 + . . .+ θqL

q, with (10)

θ0 = 1. (11)



Stationarity of MA process

The mean E(yt) = µ, the Var(yt) = σ2(1 + θ21), ρ1 = θ1
1+θ21

, ρj = 0 for

j ≥ 2. The process is CS without restricting θ1.

A MA(q) is CS without any restriction on the lag polynomial θq(L)
(NO need for stability), with

E(yt) = µ (12)

Var(yt) = σ2
q∑

i=0

θ2i (13)

Cov(yt , yt−j) =

{
σ2
∑q−j

i=0 θiθi+j if j ≤ q
0 if j > q

(14)



ACF and PACF of MA process

The ACF of a MA(q):
1) ρ1, ρ2, . . . , ρq can be obtained from θ1, θ2, . . . , θq in a unique way.

2) for j > q: ρj = 0 (cutoff of the ACF at j + 1).

The PACF has no cutoff: ass ↔ 0 as s ↔∞ (monotone decay or by
oscillations).

Each MA process has its distinctive ACF and PACF pair.

These ACF/PACF shapes are typical of MA processes. They mirror
the shapes of the PACF/ACF of AR processes.

Notice also that an AR(p) can be written as a MA with q infinite, see
(5): in the AR(1) case, the MA coefficients are φi1.



ACF/PACF of MA(1) process
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ACF/PACF of MA(2) process
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AR or MA?

Do not fit a MA if the data ACF suggest there is no cutoff in the ACF.

In the MA(1) process, ρ1 cannot be smaller than −0.5 (θ1 = −1) or
larger than 0.5 (θ1 = +1). In a stationary AR(1) process, ρ1 (= φ1)
can take any value between −1 and +1.

By increasing q, we can increase the range of ρ1 but not fully. For
example for q = 2, ρ1 is bounded between −0.66 (θ1 = −1, θ2 = 1)
and 0.66 (θ1 = θ2 = 1).

Do not fit a MA if the data first autocorrelation is high.



MA modelling Dlog(USGDP)

The ACF suggests maybe to include lag 12 ↔ try a MA(12).
No evidence for significant AC is found in the residuals of this model.

We simplify by elimination of all lags except lags 1, 2, 5: the LR test
for the 9 restrictions gives

χ2(9) = 9.73534 [0.3723] (ML estimation),

and this final MA model has no apparent residual AC:

Portmanteau(15): χ2(3) = 3.6665 [0.2998].



Fit and residuals of MA(1,2,5)
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