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Filtering theory: Linear filters

Signal extraction is carried out by performing linear operations on yt .

Cycle estimates are often obtained in this way. The constructive
principle may differ (band-pass filtering - nonparametric; Wiener
-Kolmogorov filter - parametric; penalised least squares -
semiparametric).

We aim at characterising such linear estimators



A linear time invariant filter is represented as follows:

w(L) =
∞∑
j=1

wjL
j

w(L)yt = · · ·+ w1yt−1 + w0yt + w−1yt+1 + · · ·

The filter is said to be symmetric if wj = w−j .

w(L) = w0 +
∞∑
j=1

wj(L
j + L−j).



The sequence of weights {wj , j = −h1, . . . , h2} is known as the impulse
response of the filter (wj is the partial derivative with respect to yt−j).

Finite Impulse Response (FIR) filters: h1, h2 are finite.

Infinite Impulse Response (IIR) filters: either h1 or h2, or both, are
infinite.

Obviously, an IIR filter is not realisable, as it requires infinite observations,
but it can be approximated or projected onto the finite available sample.



Examples

Differencing filter : w(L) = 1− L: w0 = 1,w1 = −1 , (asymmetric FIR)

Seasonal Differences : w(L) = 1− Ls : w0 = 1,ws−1 = −1 (asymmetric
FIR)

Summation filter : w(L) = 1 + L + · · ·+ Ls−1, also denoted S(L)
(asymmetric FIR )

Arithmetic Moving Average : w(L) = 1
3L
−1 + 1

3 + 1
3L (symmetric FIR)



Integration filter (asymmetric IIR)

w(L) = 1/(1− L) : wj = 1, j ≥ 0

(1− L)−1 = 1 + L + L2 + · · ·

Ideal band-pass filter (symmetric IIR)

w(L) =
ω2 − ω1

π
+
∞∑
j=1

sin(ω2j)− sin(ω1j)

πj
(Lj + L−j).

EMWA filter (symmetric IIR)

w(L) =
1

1 + λ[(1− L)(1− L−1)]



Gain and Phase

The effects of a linear filter applied on a series yt , give zt = w(L)yt , are
twofold:

Amplitude effect : the filter alters the amplitude of the fluctuations.

Phase effect : the cyclical components of the original series are displaced
in time.



Figure: U.S. monthly unemployment rate. Series yt and linear filters
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The polar representation of the FRF, w(e−ıω) = G (ω)e−ıPh(ω), is written
in terms of two crucial quantities:

The gain: G (ω) = |w(e−ıω)| =
√

wR(ω)2 + wI(ω)2,
The gain measures the amplitude effect of the filter, so that if at
some frequencies the gain is less than one, then those frequency
components will be attenuated in the filtered series.

The phase: Ph(ω) = arctan(−wI(ω)/wR(ω)).
The phase measures the displacement, or the phase shift, of the
signal.



If fy (ω) denotes the spectrum of yt , the spectrum of w(L)yt is equal
to |w(e−iω)|2fy (ω), and therefore the square of the gain function
(also known as the power transfer function) provides the factor by
which the spectrum of the input series is multiplied to obtain that of
the filtered series.

In the important special case when w(L) is symmetric, the phase
displacement is zero, and the gain is simply
G (ω) = |w0 + 2

∑m
j=1 wj cos(ωj)|.



Example: the differencing filter

Take this simple filter w(L) = 1− L.

The frequency response function of the filter is

w(e−ıω) = 1− e−ıω = 1− cosω + ı sinω

The gain is

G (ω) =

√
(1− cosω)2 + sin2 ω =

√
2(1− cosω)

and the squared gain is

|w(e−ıω)|2 = 2(1− cosω).



Nonparametric approach to cycle measurement: Band-Pass
filters

A low-pass filter is a filter that passes low frequency fluctuations and
reduces the amplitude of fluctuations with frequencies higher than a
cutoff frequency ωc (see e.g. Percival and Walden, 1993).

The frequency response function of an ideal low-pass filter takes the
following form for ω ∈ [0, π]:

wlp(ω) =

{
1 if ω ≤ ωc

0 if ωc < ω ≤ π

The notion of a high-pass filter is complementary, its frequency
response function being whp(ω) = 1− wlp(ω).



The band-pass filter

The notion of a band–pass filter is relevant to business cycle
measurement: the traditional definition, ascribed to Burns and
Mitchell (1946), considers all the fluctuations with a specified range
of periodicities, namely those ranging from one and a half to eight
years. Thus, if s is the number of observations in a year, the
fluctuations with periodicity between 1.5s and 8s are included.

Baxter and King (1999, BK henceforth) argue that the ideal filter for
cycle measurement is a band-pass filter.



Now, given the two business cycle frequencies, ωc1 = 2π/(8s) and
ωc2 = 2π/(1.5s), the band-pass filter is

wbp(L) =
ωc2 − ωc1

π
+
∞∑
j=1

sin(ωc2j)− sin(ωc1j)

πj
(Lj + L−j). (1)

Notice that wbp(L) is the contrast between the two low–pass filters
with cutoff frequencies ωc2 and ωc1.



The ideal band-pass filter exists and is unique, but as it entails an
infinite number of leads and lags, an approximation is required in
practical applications.

BK show that the K -terms approximation to the ideal filter (1), that
is optimal in the sense of minimising the integrated mean square
approximation error, is obtained from (1) by truncating the lag
distribution at a finite integer K . They propose using a three years
window, i.e. K = 3s.

They also constrain the weights to sum up to zero, so that the
resulting approximation is a detrending filter: denoting the truncated
filter wbp,K (L) = w0 +

∑K
1 wj(L

j + L−j), the weights of the adjusted
filter will be wj − wbp,K (1)/(2K + 1).

BK do not entertain the problem of estimating the cycle at the
extremes of the available sample; as a result the estimates for the first
and last three years are unavailable. Christiano and Fitzgerald (2003)
provide the optimal finite-sample approximations for the band pass
filter, including the real time filter, using a model based approach.
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Figure: Baxter and King quarterly cycle filter


