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Where does the name ‘Bayesian’ come from?

Reverend Thomas Bayes (1702–1761)
(Bayes Theorem 1763)

For two events A and B : p(A,B) = p(A|B)p(B)
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Your first mountain-bike trip

Possible outcomes:

FUN with probability p,

HOSPITAL with probability 1− p.

Before the trip what do you think p is?

p < 0.5 → do not go to the trip

p ≥ 0.5 → go to the trip.

You did go to that trip! Ended up in the HOSPITAL
Will you go again?

Not a Bayesian → You will not go again.

pr(y |p) = p0(1− p)1 = 1− p

Maximize your likelihood:
p = 0

You will definitely end up in the HOSPITAL next time.



Your first mountain-bike trip

You did go to that trip! Ended up in the HOSPITAL
Will you go again?

Bayesian version
Prior for p: pr(p) = 2p

pr(p|y) ∝ pr(y |p)pr(p) = p0(1− p)1 × 2p = 2(1− p)p

You still have a choice to make.
Note: ∝ denotes that the right hand side is a probability density kernel

(pdf apart from a scaling constant).



Bayes’ rule

Stochastic model Prior density
l(y |θ) p(θ)

ց ւ

Compute joint density
↓

p(θ|y) ∝ l(y |θ)p(θ)
↓

Dual decomposition of the joint density

ւ ց
Predictive density Posterior density

p(y) =
∫
p(y , θ)dθ p(θ|y) = l(y |θ)p(θ)

p(y)



Bayes’ rule

p(y) plays the role of normalizing constant (just like
√
2π in the case

of the normal distribution).

Focus on the posterior kernel p(θ|y) ∝ l(y |θ)p(θ).

p(y) is very relevant for model selection and forecasting.



Helicopter Tour Comparison

Frequentist inference Bayesian inference

Parameters θ are fixed Parameters θ are
unknown constraints. stochastic variables.
There is a true value One defines a priori
θ = θ0 distribution on the

parameter space.

Data y are used to Data y are used as
estimate θ and check evidence to update the
validity of postulated state of the mind: data
model, by comparing transform the prior into
data with data set the posterior distribution
from model by the likelihood.



Helicopter Tour Comparison

Frequentist inference Bayesian inference

Objective concept of Subjective concept of
probability: a prob. is the probability: a prob. is a
fraction of occurrences degree of belief that an
when a process is event occurs.
repeated infinitely often.

One can use the One uses Bayes’
maximum likelihood theorem to obtain the
estimator as an estimator posterior distribution of

θ̂ML of θ. θ.



A gentle introduction to Bayesian Econometrics(1)

Take a linear regression model

yt = θxt + ǫt , ǫt ∼ NID(0, σ2)

equivalently,
y = xθ + ǫ, ǫ ∼ N(0, σ2I ).

Example:

xt is (log) net income at time t,
yt is (log) consumption at time t

Model parameters: θ, σ2



A gentle introduction to Bayesian Econometrics (2)

What do we know from standard econometrics?

Use OLS θ̂ = (x ′x)−1x ′y

Use confidence intervals to address uncertainty in estimation.

α% confidence interval for OLS estimate

includes the true value θ with probability α

Main message: There is a true value θ!!

We are getting an estimate of this true value.



A gentle introduction to Bayesian Econometrics(3)

How ‘many people’ explain Bayesian philosophy:

There is no true/fixed value for parameters θ, σ2, these are random
parameters.

The above statement is actually PARTIALLY TRUE:

Parameters can be random or constant, but Bayesians treat any
uncertainty, including parameter uncertainty, using

probabilistic measures.
(θ, σ2) may have a true value, but it is unknown, hence the need to

define a probability distribution to account for this uncertainty.



A gentle introduction to Bayesian Econometrics(4)

Implication for a statistician/econometrician:
Define a probability measure for (θ, σ2) based on your subjective view.

Then let the data talk: update your subjective view.

Back to the example:

My subjective view on θ: θ ∈ [0, 1].

I know people do not decrease their consumption when they have more
money:

θ ≥ 0

I know people spend responsibly (not more than the amount they get)

θ ≤ 1

I am quite uncertain about what the exact value is: define a

uniform distribution on θ ∈ [0, 1].



A gentle introduction to Bayesian Econometrics(5)

Implication for a statistician/econometrician:
Define a probability measure for (θ, σ2) based on your subjective view.

Then let the data talk: update your subjective view.

Back to the example:

My subjective view on θ:

a uniform distribution on θ ∈ [0, 1].

p(θ) ∼ Unif(0,1).



A gentle introduction to Bayesian Econometrics(6)

Implication for a statistician/econometrician:
Define a probability measure for (θ, σ2) based on your subjective view.

Then let the data talk: update your subjective view.

Back to the example:

How do the ‘data talk’: Famous Bayes’ rule for two events A and B

p(A,B) = p(A|B)p(B)



Difference between frequentist an Bayesian



Bayes’ Theorem (1763)

Consider a model with:
- data y = (y1, . . . , yN),
- parameter vector θ = (θ1, . . . , θN), consisting of random elements.

Two ways of writing the joint density of y and θ:

p(y , θ) = p(θ|y)p(y) = p(y |θ)p(θ)

Rewriting yields Bayes’ theorem:

p(θ|y) = p(y |θ)p(θ)
p(y)

∝ p(y |θ)p(θ)

where

p(θ|y) = posterior density of θ given y
p(y |θ) = likelihood function
p(θ) = prior density of θ
p(y) = marginal density of y .



Principles of Bayesian econometrics (1)

Basic idea: prior and posterior density are subjective evaluations of
possible states of nature and/or outcomes of some process (or action).

Famous quote from De Finetti:

PROBABILITIES DO NOT EXIST

That is, probabilities are not physical quantities that one can measure
in practice, but they are states of the mind.

Different priors p(θ) lead to different posterior densities p(θ|y)...
One may have a fundamental problem with this:

‘I don’t like the idea of subjective outcomes!’

But: Choice of size level (5%, 10%, ?%), model, data sample may
also be subjective.



Principles of Bayesian econometrics (2)

Interpretation of Bayes’ rule:

p(θ|y) = p(y |θ)p(θ)
p(y)

- One starts with the prior density p(θ); this contains intuitive,
theoretical or other ideas on θ through.

- Then one learns from (new) data through the likelihood function
p(y |θ). This yields the posterior p(θ|y).

- Briefly stated, Bayes’ paradigm is a learning principle.

- Note that we can apply this rule sequentially.



Principles of Bayesian econometrics (3)

Using the symbol ∝ (‘is proportional to’), one can write Bayes’
theorem

p(θ|y) = p(y |θ)p(θ)
p(y)

as

p(θ|y) ∝ p(y |θ)p(θ) p(y |θ)p(θ) is the ‘kernel’ of p(θ|y)

because p(y) =
∫
p(y |θ)p(θ)dθ only serves as a scaling constant, i.e.

it does not depend on θ. Just like integrating constant
√
2π in normal

density.

In words:
posterior density ∝ likelihood function × prior density

beliefs after data ⇐ influence of data & beliefs before data



General note on conjugacy

Conjugacy: Case in which posterior density has the same shape as the
prior density. E.g. Normal prior applied to normal DGP results in
normal posterior.

Advantage: Conjugacy simplifies Bayesian analysis.

Disadvantage: Conjugacy priors often more driven by convenience
than by realism.

DGP(likelihood) Prior Posterior

normal normal normal
binomial binomial binomial
Poisson Gamma Gamma



Simple Example, classical inference

Let the data generating process be

yt = µ+ ǫt ǫt ∼ N(0, 1)

Look for the estimator that minimizes the Residual Sum of the
Squares

µols = argmin
T∑

t=1

ǫ2 = argmin
T∑

t=1

(yt − µ)2



Simple Example, classical inference

Look for the estimator that maximizes the probability (likelihood) of
having observed the sample y1, ..., yT

µml = argmax (2π)−T/2 exp

{
−1/2

T∑

t=1

(yt − µ)2

}

Classical estimators

µml = µols = yT = 1/T
∑

yt

are consistent and unbiased.

Since yt is a gaussian white noise, CLT (it hold also under stationarity
and ergodicity)

(
lim

T→∞

)√
T (µols − µ) ∼ N(0, 1)



Simple Example, Bayesian inference

Let the data generating process be (Zellner, 1971)

yt = µ+ ǫt ǫt ∼ N(0, 1)

Assume a normal prior for µ

p(µ) = (2πσ2)−1/2 exp

{
−1/2

(
µ−m

σ

)2
}

The posterior distribution is given by

p(µ|yT ) =
p(µ)p(yT |µ)

p(yT )

After some algebra ( link ), you get

p(µ|yT ) = (2πσ2)−1/2 exp

{
−1/2

(
µ− µ̂

σµ

)2
}

where

σ2
µ =

σ2

Tσ2 + 1
µ̂ =

Tσ2

Tσ2 + 1
y +

1

Tσ2 + 1
m



Simple Example, Bayesian inference

The posterior is normal
p(µ|yT ) ∼ N(µ̂, σ2

µ)

where

σ2
µ =

σ2

Tσ2 + 1
µ̂ =

Tσ2

Tσ2 + 1
µols +

1

Tσ2 + 1
m

See how prior information enters elegantly into the analysis
Tight priors: when σ → 0, µ̂ → m

Loose priors: when σ → ∞, µ̂ → µols

As T gets large the sample information prevails over prior assumptions: when T → ∞,
µ̂ → y

Asymptotically √
T (µ− µ̂)|yT ∼ N(0,Tσ2

µ) → N(0, 1)



Linear regression model under the natural conjugate

prior for β given σ2

Consider again the linear regression model with k exogenous variables:

yt = θxt + ǫt , ǫt ∼ NID(0, σ2)

Splitting up the prior into two parts:

p(σ2) ∝ 1/σ2, p(β|σ2) = N(b, σ2B)(conjugateprior)

p(β, σ2) = p(β|σ2)p(σ2) ∝ N(b, σ2B)× (1/σ2)

∝ (σ2)
−
k + 2

2 |B |
−
1

2 exp

(
1

2σ2
(β − b)

′

B−1(β − b)

)



Posterior density

p(β, σ2|y) = p(β|σ2)p(σ2)p(y |β, σ2)

∝


 1

σ2

T

2


 exp

(
−(y − Xβ)

′

(y − Xβ)

2σ2

)

× (σ2)
−
k + 2

2 |B |
−
1

2 exp

(
− 1

2σ2
(β − b)

′

B−1(β − b)

)



Marginal posteriors

After some tedious algebra, posterior density is also a normal density
(conjugacy):

β|y ∼ N(β̄, σ̄2(X
′

X + B−1)−1)

where

β̄ = (X
′

X + B−1)−1(X
′

y + B−1b)

σ̄2 =
1

T

(
(y − Xβ)

′

(y − Xβ) + (b − B̄)
′

B−1(b − B̄)
)

if prior variance B is small (large) the influence of the prior on the
posterior mean and posterior variance is high (low).

A conjugate prior with a very large variance is uninformative.

If the number of observations T is large, the influence of the prior
becomes less as X

′

X =
∑T

i=1 x
′

i xi and X
′

y =
∑T

i=1 x
′

i yi become
large.



Monte Carlo integration

For (more) complicated models (than the previous linear ones), it’s
usually impossible to find analytical solution.

Integration is not feasible.

Monte Carlo integration.



Monte Carlo integration: Motivation

The importance of Monte Carlo integration in Bayesian inference

Several simulation methods useful for Monte Carlo integration:

Direct sampling: inversion method.
Indirect sampling: rejection sampling, importance sampling.
Markov Chain Monte Carlo: Metropolis-Hastings algorithm, Gibbs
sampling, data augmentation

Due to the use of Monte Carlo integration, Bayesian inference is also
called simulation based inference.



Monte Carlo integration: Motivation (continued)

Bayes’ theorem: p(θ|y) = p(y |θ)p(θ)
p(y) = p(y |θ)p(θ)∫

p(y |θ)p(θ)
where:

- p(θ|y): posterior density of θ given y

- p(y |θ): likelihood function

- p(θ): prior density of θ

- p(y): predictive density of y .

Note: integral in denominator (predictive density)
⇒ integration needed to obtain exact posterior density.
Posterior mean of θ (expectation of θ given y):

E [θ|y ] =
∫

θp(θ|y)dθ

Note: again an integral has to be evaluated.



Monte Carlo integration: Motivation (continued)

So, one needs integration in order to know:

- (exact) posterior density
- posterior mean, variance, etc. of θ
- posterior odds ratio (for model comparison)

Note: In linear models these integrals can be computed analytically.

For more complicated models, it is usually impossible to find
analytical solutions.

In general, we need numerical integration methods for Bayesian
inference.

Two options:

- deterministic integration
- Monte Carlo (MC) integration



Monte Carlo integration: Motivation (continued)

Suppose we want to evaluate: E [g(θ)] =
∫
g(θ)p(θ|y)dθ

Deterministic integration

1 Evaluate integrand f (θ) = g(θ)p(θ|y) in many fixed points θ1, . . . , θn.
2 Use weighted sum of evaluations as approximation to integral:

∫
f (θ)dθ ≈

n∑

i=1

wi f (θ
i )

where w1, . . . ,wn are weights.

Examples of deterministic integration methods

- trapezoid rule;
- Simpson’s rule;
- Gaussian integration rules.



Monte Carlo integration: Motivation (continued)

m-dimensional deterministic integration with n evaluation points in
each direction:∫

. . .

∫
f (θ1, . . . , θm)dθ1 . . . dθm

≈
n∑

k=1

wmk . . .




n∑

j=1

w2j

[
n∑

i=1

w1i f (θ1i , θ2j , . . . , θmk)

]


Note: nm function evaluations needed.

‘Curse of dimensionality’: The number of function evaluations nm

increases exponentially with m, the dimension of θ.
Deterministic integration infeasible for high-dimensional integration
problems!Example: 50 evaluation points for each dimension of a
6-dim. integral:

506 = 15625000000 > 15 billion

function evaluations.



Monte Carlo integration: Motivation (continued)

Deterministic integration infeasible for high-dimensional integration
problems

For Bayesian analysis of θ with ‘high’ dimension, a different
integration method is needed that does not suffer from the ‘curse of
dimensionality’

Solution: Monte Carlo integration!



Monte Carlo integration: Motivation (continued)

Basic difference becomes clear from:

E [θ|y ] =
∫

θp(θ|y)dθ

Deterministic integration evaluates the right-hand integral explicitly

Monte Carlo integration focuses on the left-hand posterior
expectation:

draw θ’s from the posterior density p(θ|y)
use this sample of θ’s to investigate characteristics of the posterior
distribution.



Monte Carlo integration: Motivation (continued)

1) Collect a sample θ1, . . . , θn from posterior distribution with density
p(θ|y).

2) Estimate expectation E [g(θ)|y ] by corresponding sample mean:

E [g(θ)|y ] ≈ 1

n

n∑

i=1

g(θi)

Examples:

- estimate posterior mean of θ by sample mean of θ’s;

- estimate posterior Prob [θ ∈ D] by fraction of θ’s in D, etc.

Advantage: CLT: convergence at rate 1/
√
n, independent from m

⇒ No ‘curse of dimensionality’ in Monte Carlo integration!!



Monte Carlo integration: Sampling methods

In Monte Carlo integration methods one typically needs to draw from the
posterior distribution. We group the sampling methods according to two
characteristics:

Direct/indirect sampling:
Do we directly draw from the posterior, or do we need a
correction mechanism (e.g. acceptance-rejection step, weighting of
draws)?

Independence/dependence sampling:
Are the obtained draws independent from each other?



Direct Sampling

In the ideal situation, we can directly draw from the posterior distribution
(without requiring an acceptance-step or weighting the draws).

Some direct sampling methods:

1 uniform sampling;

2 inversion method.

[1] Uniform sampling

Any sampling algorithm is based on collecting draws from the uniform
U(0, 1) distribution!!



Independence Sampling vs. Dependence sampling

We also group the sampling methods according to the following question:

Are the obtained draws independent from each other?

Answer Yes ⇒ Independence sampling (Law of Large Numbers & Central Limit Theorem apply)
Answer No ⇒ Dependence sampling: Markov chain Monte Carlo (Metropolis-Hastings algorithm, Gibbs sampling.

These methods rely on Markov chain theory).



Indirect Independence Sampling

Recall: In ideal situation, we can directly draw from posterior
distribution. However: Direct sampling is mostly very difficult or very
slow. Solution: Indirect Sampling methods.

Principle of indirect sampling methods:

(1) Draw points from a certain ‘candidate’ distribution.
(2) Use ‘correction mechanism’ to get characteristics of posterior

distribution of interest (the ‘target’ distribution).

‘candidate’ distribution: easy to sample from, and (hopefully) a
reasonable approximation to the ‘target’ distribution.

Possible ‘correction mechanisms’:

- acceptance-rejection step
- weighting of draws.



Indirect Independence Sampling (continued)

Two indirect independence sampling methods:

I. Rejection sampling (alias ‘the acceptance-rejection method’): draw
points from ‘candidate’ distribution, and accept with a certain
probability.

II. Importance sampling: draw points from ‘candidate’ distribution,
and give all draws certain weights.



Rejection sampling (acceptance-rejection method)

An attempt to sample one x from target distribution with density
p(x):

I) Generate y from candidate distribution with density q(y).

II) Accept y with probability p(y)
cq(y)

(by generating u from Y (0, 1) and accepting if u ≤ p(y)
cq(y) )

Here: c is a constant such that p(x) ≤ cq(x), ∀x so we must have

0 ≤ p(y)
cq(y) ≤ 1 (necessary condition for a probability) Note: the

number of draws from the candidate necessary to obtain a certain
number N of draws from the target density p(x) is itself random.

The higher the probability of an acceptance, the less ‘attempts’ are
required to obtain N draws from the target density

The faster the Monte Carlo integration algorithm works.



Rejection sampling example: good and bad candidates

Target density p(x): p(x) =




3/2 if 0 < x ≤ 1/2
1/2 if 1/2 < x < 1
0 else

good candidate: q(x) = unif(0, 1)

0.0 0.2 0.4 0.6 0.8 1.0

acceptance rate = 0.65
- Higher acceptance rate is important (indication of success)

- Still, very high acceptance rate is possible although the candidate is
bad!

- In more complicated models this becomes a real issue.



Rejection sampling (continued)

The probability of an acceptance is:

Pr

[
U ≤ p(Y )

cq(Y )

]
=

∫
Pr

[
U ≤ p(y)

cq(y)

]
q(y)dy

=

∫
p(y)

cq(y)
q(y)dy

=
1

c

∫
p(y)dy =

1

c



Rejection sampling (continued)

The larger the probability of acceptance, the faster we get a sample
of x ’s. Choose c as small as possible (such that restriction
p(x) ≤ cq(x)∀x):

optimal c = max
x

p(x)

q(x)
.

Optimal c is small (and probability of acceptance is high) if variation
in the ratio p(x)/q(x) is small.

Candidate distribution should be a ‘good approximation’ to target
distribution.



Rejection sampling (continued)

Disadvantages of rejection sampling:

We accept y with probability p(y)
cq(y) where c = maxx

p(x)
q(x) :

(1) maximization required: this may take a lot of time;

(2) maxx
p(x)
q(x) may not even exist

⇒ in that case rejection sampling is impossible with this ‘candidate’
distribution.

(3) c = maxx
p(x)
q(x) may be very small

⇒ many draws may be required from the ‘candidate’ to generate a
draw from the target.



Importance Sampling

Importance sampling: Difference with rejection sampling:

- Rejection sampling: draws get either full weight (acceptance) or no
weight at all (rejection).

- Importance sampling: draws get weights that can take any possible
non-negative value, reflecting the relative importance of draws.

Advantages of Importance Sampling over Rejection Sampling:

- We do not need to find x = maxx
p(x)
q(x) .

- We do not throw away draws (information), but give them certain
weights.
⇒ In general, IS yields better estimates than Rejection Sampling.



Importance Sampling - Basic idea

We want to evaluate the expectation E [g(X )], with g(·) a function -
e.g. g(x) = x for the mean, where X is a random variable with
(target) density kernel p.

Importance Sampling is based on:

E [X ] =

∫
g(x)

p(x)∫
p(x)dx

dx =

∫
g(x)p(x)dx∫
p(x)dx

=

∫
g(x)[w(x)q(x)]dx∫
[w(x)q(x)]dx

=

∫
[g(x)w(x)]q(x)dx∫

w(x)q(x)dx
=

E [w(Y )g(Y )]

E [w(Y )]

where:
- Y is a random variable with (candidate) density q;
- w(x) ≡ p(x)/q(x) is the weight function.

Note: If exact density p known, then we also have:
E [X ] = E [w(Y )g(Y )].



Importance Sampling (continued)

Simulation is possible form the candidate density q then the Importance
Sampling:

E [X ] =

∫
[g(x)w(x)]q(x)dx∫

w(x)q(x)dx
≈

1
n

∑n
i=1 w(yi)g(yi )

1
n

∑n
i=1 w(yi )

=

∑n
i=1 w(yi )g(yi )∑n

i=1 w(yi )

where

Y is a random variable with (candidate) density q,

y1, . . . , yn: realizations from candidate,

w(x) ≡ p(x)/q(x) is the weight function,

w(y1), . . . ,w(yn): corresponding weights.



Importance Sampling (continued)

Illustration of importance sampling (IS):

Note: Points for which
candidate < (>) target:
sampled too rarely (often)
⇒
relatively large (small)
IS weights correct this
‘under-sampling’ (‘over-
sampling’).



Importance Sampling (continued)

Disadvantage of IS: IS cannot yield a sample of draws from the
(target) distribution of X , but can only give an estimate of an
expectation E [g(X )] for a function g .

Advantage of IS: Almost each property of interest can be written as
an expectation E [g(X )]

For example, recall: Pr [θ ∈ D] = E [I {θ ∈ D}], where D is some
region, I = 0/1 indicating whether θ ∈ D.

Using a suitable indicator function for the function g one can use IS
to construct histograms of marginal densities.



Importance Sampling (continued)

The performance of IS is greatly affected by the choice of the
candidate:

q(y) inappropriate
w(y) = p(y)/q(y) varies much
only a few points yi with extremely large weights determine the IS
estimate of E [g(X )]:

gIS =

∑n

i=1 w(yi )g(yi )∑n

i=1 w(yi )

Example: especially if p >> q in the tails of the distribution

⇒ few points with large IS weights at extreme locations
⇒ disastrous effect on gIS .

Conclusion: if target might have fat tails, use candidate with fat
tails (like Student’s t with few degrees of freedom).



Dependent sampling: MCMC methods - Basic idea

Obtain a sequence of draws from the desired target density p(x) by
cleverly constructing a Markov chain. Markov chain is a sequence of
random variables for which the Markov property holds:

p(xt+1|Xt ,Xt−1,Xt−2, ...) = p(xt+1|Xt)

The key problem is finding a transition probability function p(x , y)
such that the Markov chain converges to the desired target probability
function p(x), which will be the limiting “invariant” probability of the
Markov chain: ∑

x∈S
p(x)p(x , y) = p(y)

Metropolis et al. (1953) and Hastings (1970) found a solution to this
problem by constructing a time-reversible Markov chain.



MCMC methods

Time-reversibility: if a MC has the same transition probabilities as its
reversal.

Once the MC has reached the target distribution, it will never leave
it, because the probabilities will stay constant.

The target distribution is a limiting distribution of the MC.

Under the conditions of the irreducibility (all states are accessible from
each other) and aperiodicity (the number of transitions necessary to
return to a state is not necessary a multiple of some integer), the
limiting distribution is unique and equal to the target distribution.



MH algorithm

Simulating X , random variable with (target) density kernel p(·).
Simulation is possible form the candidate density q.

Initialization: Choose feasible X0 in S . Do for t = 1, 2, . . . , n

Obtain y from candidate transition probability function
q(Xt−1, y),

Accept y (i.e. Xt = y) with probability α :

α(Xt−1, y) = min

{
p(y)q(y ,Xt−1)

p(Xt−1)q(Xt−1, y)
, 1

}

If y is rejected, set Xt = Xt−1.

Note:

The acceptance/rejection step is done by drawing u ∼ U(0, 1)

So far this is the first method we get correlated draws



MH algorithm example

Simple example: Suppose we want a Metropolis-Hastings Markov chain
Xt |t = 1, 2, . . . of which the distribution converges to the target
distribution:

Pr [Xt = 0] = 1/3 = π(0) Pr [Xt = 1] = 2/3 = π(1)

where we choose the candidate transition probability function q(x , y) as:

q(0, 0) ≡ Pr [y = 0|Xt−1 = 0] = 1/2 q(1, 0) ≡ Pr [y = 0|Xt−1 = 1] = 1/2
q(0, 1) ≡ Pr [y = 1|Xt−1 = 0] = 1/2 q(1, 1) ≡ Pr [y = 1|Xt−1 = 1] = 1/2

Interpretation:

flip a coin:
head ⇒ y = 0
tail ⇒ y = 1



MH method

Usually and most basically, q(x , y) is specified in one of the following ways:

In an independence chain the candidate state y is drawn
independently from the current state x :

q(y , x) = q(y)

In a random walk chain the candidate transition step is chosen
instead of the candidate state y

q(y , x) = q(y − x)

It is often chosen as yt+1 = yt + ǫt+1 ǫt+1 ∼ N(0, σ2
ǫ )



Random Walk Metropolis-Hastings Algorithm(1)

Lets make the MH Algorithm operational

Let give a functional form for q(θ∗|θ(s−1),V ), i.e. a normal so that θ∗ ∼ N(θ(s−1),V ).
Then, q(θ∗|θ(s−1),V ) = q(θ(s−1)|θ∗,V )

The binomial RV simplifies to

θ(s) = θ∗ with probability

α(θ∗|θ(s−1),V ) = min

{
p(θ∗|yT )

p(θ(s−1)|yT )
, 1

}

θ(s) = θ(s−1) otherwise



Random Walk Metropolis-Hastings Algorithm(2)

Interpretation:

If we are moving uphill, i.e. p(θ∗|yT ) > p(θ(s−1)|yT ) we always keep
the draw. If we are moving downhill we keep the draw with probability

α̃ = p(θ∗|yT )
p(θ(s−1)|yT )

You explore the entire parameter space and not only the high
probability regions
Two good reasons: (1) you do not want to get stuck in a local
maximum, (2) you want to characterize also the tails of your
distribution.

How do you draw from a binomial distribution X with probability α̃? you draw r from a
uniform [0,1] and if r < α̃ you accept, otherwise reject.



Simple Example, MCMC-MH

Let the data generating process be student t distributed

yt = µ+ ǫt ǫt ∼ t(0, 1, ν)

p(ǫt |ν) = (νπ)−
1
2
Γ((1 + ν)/2)

Γ(ν/2)

[
1 +

1

ν
ǫ2t

]
−

ν+1
2

Student-t looks like normals with ticker tails, i.e. they assign larger probabilities to
extreme events. Stock prices returns with occasionally high or low returns. It is a
symmetric distribution.

When ν → ∞, the student-t converges to the gaussian distribution. ν > 2, else the
variance is infinity.

Student-t can be expressed as the product of a gamma distribution times a normal. You
are introducing a layer of heteroscedasticity.



———————————————————————————



Simulated data, T = 250
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Figure: Simulated data with ν = 3 and µ = 0.5. In blue the student-t errors in
black normal errors.



Simple Example, MCMC-MH

Given the observed data you wish to compute analytically the posterior.

Assume a normal prior for µ

p(µ|m, σ) = (2πσ2)−1/2 exp
{
−1/2 (1/σ(µ −m))2

}

Assume a χ-squared prior for ν

p(ν|q) = 2−q/2

Γ(q/2)
νq/2−1e−ν/2

The joint posterior distribution of ν and µ is given by

p(µ, ν|yT ) ∝ (νπ)−
1
2
Γ((1 + ν)/2)

Γ(ν/2)

[
1 +

1

ν
(yt − µ)2

]
−

ν+1
2

× p(µ|m, σ)× p(ν|q)

and looks pretty ugly ...



Simple Example, MCMC-MH

Assume assume priors values of m = 0.4 σ = 1 and q = 8. Given the observed data, we
wish to characterize the posterior distribution of µ and ν. MCMC !

1 Start from µ(0) = 1/T
∑

yt and ν0 = q and V = 0.2 I . Let θ = (µ, ν)
2 Generate a candidate draw θ∗ ∼ N(θ(s−1),V )
3 Compute

p(µ∗, ν∗|yT ) =




T∏

t=1

(ν∗π)−
1
2
Γ((1 + ν∗)/2)

Γ(ν∗/2)

[
1 +

1

ν∗
(yt − µ∗)2

]
−

ν
∗+1
2





× (2πσ2)−1/2 exp
{
−1/2 (1/σ(µ∗ −m))2

}
× 2−q/2

Γ(q/2)
(ν∗)q/2−1e−ν∗/2

4 Draw r form a uniform 0-1 and keep the draw if r < p(µ∗|yT )/p(µ(s−1) |yT )
5 repeat 2-4 many times.

6 Two practical suggestions:

Tune the size of the jump V to target an acceptance rate of 30-40%.
The smaller (larger) the step the more (less) likely you are accepting
the draws.
MC induce correlated draws. Typically you discard a burn-in part and
consider a (random) subset of accepted draws.



Posterior Simulators, Marginal distribution
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Gibbs sampling - Basic idea

In order to simulate multivariate random variable X Gibbs sampling is
‘divide and conquer’:

- Decompose X in k blocks (X1,X2, . . . ,Xk).
- Construct Markov chain by iteratively drawing each component of X
conditional on the values of all other components.

Gibbs sampling procedure works as follows:

Initialization: Choose feasible x0 = (x0, ..., xk) [θ0 = (β̂, σ̂2]

Do for j=1,...,n (number of MCMC simulations)

Do for i=1,...,k

Draw x
j
i from p(xi |x

j−1
−i ) where x

j−1
−i is the set of “most recent” values

of all other components.

[Draw p(βj |σ
2
j−1, y) and then p(σ2

j |βj , y)].







Example: bivariate normal distribution

Given X1 and X2 with bivariate normal distribution:(
X1

X2

)
∼ N

((
0
0

)(
1 ρ
ρ 1

))
with ρ = 0.98 (⋆).

The conditional distributions corresponding to (⋆):

X1|X2 = x2 ∼ N(ρx2, 1− ρ2)

X2|X1 = x1 ∼ N(ρx1, 1− ρ2)

with ρ = 0.98.

We can obtain draws from the distribution in (⋆) by Gibbs sampling:

Initialization: Choose e.g. (X1,X2) = (0, 0).
Do for t = 1, 2, . . . , n:

- Draw X t
2 ∼ N(ρX t

1 , 1− ρ2)
- Draw X t

1 ∼ N(ρX t
2 , 1− ρ2)



Gibbs sampling example (continued)

Gibbs draws:

X t
1 ∼ N(0.98X t−1

2 , σ = 1− ρ2) X t
2 ∼ N(0.98X t−1

1 , σ = 1− ρ2)
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Gibbs draws from the bivari-
ate normal distribution
number of simulations:
1000
estimated mean:
(x1) -0.066, (x2) -0.068

Note:

- For n = 1000 draws, estimated means are still far from true values (0)
(for smaller n the draws do not cover the whole domain)

- Notice high correlation between parameter draws!
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Summary of sampling algorithms

Accept/Reject MH IS Gibbs

Applicable for scalar
random variabe? yes yes yes no
Indirect sampling yes yes yes yes
Correlated draws yes yes no yes
Requires joint
target/posterior? yes yes yes no
Can be combined with
Gibbs sampler yes yes no −



Why use sampling methods? AR(1) example

Consider the AR(1) model for US GDP growth (gt):

gt = µ+ ρgt−1 + ǫt , ǫt ∼ NID(0, σ2)

Identify what are the model parameters: θ = {µ, ρ, σ2}
Write down the likelihood (p(g1:T |θ)) using the Bayes Rule:

L(g1:T |µ, ρ, σ2) = pr(gT |g1:T−1, µ, ρ, σ
2)× pr(g1:T−1|µ, ρ, σ2)

...

=

T∏

t=1

pr(gt |g1:t−1, µ, ρ, σ
2)× pr(g0|µ, ρ, σ2)

=
T∏

t=1

pr(gt |g1:t−1, µ, ρ, σ
2)

where the last line follows since we assume that the initial observation
g0 is given (probability 1).



Why use sampling methods? AR(1) example

The model states that

gt |g1:t−1, µ, ρ, σ
2 = µ+ ρgt−1 + ǫt ∼ NID(µ + ρgt−1, σ

2).

i.e.
pr(gt |g1:t−1, µ, ρ, σ

2) = φ(gt ;µ + ρgt−1, σ
2).

φ(gt ; a, b) is the density of the normal distribution with mean a and
variance b at point gt .

p(data|θ) = L(g1:T |µ, ρ, σ2) =
T∏

t=1

φ(gt ;µ+ ρgt−1, σ
2)

and φ(gt ; , a, b) is the density of the normal distribution with mean a and
variance b at point gt .



Why use sampling methods? AR(1) example

Recipe for a Bayesian: Likelihood and priors

‘Coming up with priors’

p(µ, ρ) ∝
{

1 if ρ ∈ (−1, 1)(I assume stationarity)
0 otherwise

(1)

p(σ2) ∝
{

1/σ2 if σ2 > 0
0 otherwise

(2)

this is a ‘flat, uninformative’ prior for the variance.



Why use sampling methods? AR(1) example

Assume independent priors for µ, ρ and σ2. The prior for
all model parameters is then:

p(θ) = p(µ, ρ, σ2) ∝
{

1/σ2 if ρ ∈ (−1, 1) and σ2 > 0
0 otherwise

Note: The above is NOT a probability density
(they do not integrate to any finite number)

Such a prior is called an improper prior.

Even if the priors are improper, as long as the resulting posterior
distributions are valid we can still conduct legitimate statistical
inference on them.



Why use sampling methods? AR(1) example

Recipe for a Bayesian: Likelihood and priors

Calculating the posterior density ∝ posterior density kernel ≡ target
density (for the sampling algorithm)

Recall Bayes’ rule:

p(θ|data) ∝ p(θ)× p(data|θ)
= 1/σ2I [ρ ∈ (−1, 1) and σ2 > 0]

×
T∏

t=1

φ(gt ;µ+ ρgt−1, σ
2)

and I [·] is the indicator function which takes the value of 1 if its
argument holds, and the value of 0 otherwise.



Why use sampling methods? AR(1) example

The posterior kernel has a very weird shape (even in this simple
model)

p(θ|data) = p(µ, ρ, σ2|g1:T )
∝ 1/σ2I [ρ ∈ (−1, 1) and σ2 > 0]

×
T∏

t=1

1√
2πσ2

exp

(
−1

2

(gt − µ− ρgt−1)
2

σ2

)

and I [·] is the indicator function which takes the value of 1 if its
argument holds, and the value of 0 otherwise.
It is hard to see if the right hand side is a known MULTIVARIATE
density function for the three parameters µ, ρ, σ2!
Solution: Instead of simplifying this function, and trying to find if this
is a known density function, we will simulate parameters
θ = {µ, ρ, σ2} and use Monte Carlo integration to find their mean,
variance, quantiles etc.



Which sampling method? Acceptance-Rejection for

model parameters

We need to simulate (µ, ρ, σ2) together from the target density
(posterior kernel):

p(θ|data) = p(µ, ρ, σ2|g1:T )
∝ 1/σ2I [ρ ∈ (−1, 1) and σ2 > 0]

×
T∏

t=1

1√
2πσ2

exp

(
−1

2

(gt − µ− ρgt−1)
2

σ2

)

and I [·] is the indicator function which takes the value of 1 if its
argument holds, and the value of 0 otherwise.

Recall: Need a ‘candidate distribution’ and a constant ‘c’ for this
target to be above the candidate.
Recall: Need to find an ‘ok’ candidate such that I do not end up with
‘0’ acceptance rate.

Finding the constant ‘c’ is really difficult for multiple parameters



Which sampling method? Importance Sampling

Recall: We need to define a candidate distribution that covers a wide
range of parameters.

It is hard to ‘guess’ where this distribution should be.

Simple choice: Independent candidate distributions for each
parameter:

q(θ) = q(µ)× q(ρ)× q(σ2) = T (µ; 3)︸ ︷︷ ︸
q(µ)

U(ρ;−1, 1)︸ ︷︷ ︸
q(ρ)

χ2(σ2; 3)︸ ︷︷ ︸
q(ρ;σ2)

There are also methods to find a ‘good multivariate candidate’



Which sampling method? Importance Sampling

The target density is given by:

p(θ|data) = p(µ, ρ, σ2|g1:T )
∝ 1/σ2I [ρ ∈ (−1, 1) and σ2 > 0]

×
T∏

t=1

1√
2πσ2

exp

(
−1

2

(gt − µ− ρgt−1)
2

σ2

)

The candidate density is give by

q(θ) = q(µ)× q(ρ)× q(σ2) = T (µ; 3)︸ ︷︷ ︸
q(µ)

U(ρ;−1, 1)︸ ︷︷ ︸
q(ρ)

χ2(σ2; 3)︸ ︷︷ ︸
q(ρ;σ2)

The IS estimation of the parameters is given by:

E [θ] =
E [w(θq)g(θq)]

E [w(θq)]

where:
θq is a random variable simulated from the (candidate) density q(θ);
w(θq) ≡ p(θq |data)/q(θq) is the weight function.



Which sampling method? Importance Sampling

Pseudo-code

Simulate M draws θ
(1)
q , . . . , θ

(M)
q from the ‘candidate’ q(θ) (these are

independent draws ⇒ Independence sampling method)

Calculate q(θ
(1)
q ), . . . , q(θ

(M)
q ), density of the ‘candidate’ for M draws.

Calculate the target density (posterior kernel)

p(θ
(1)
q |g1:T ), . . . , p(θ(M)

q |g1:T ) for M draws.

Calculate weights w(θ
(m)
q ) ≡ p(θ

(m)
q |data)/q(θ(m)

q ) for each draw
m = 1, . . . ,M.
Numerical stability: Better to calculate log-weights (similar to
log-likelihood maximization):

ln(w(θ
(m)
q )) = ln(p(θ

(m)
q |data))− ln(θ

(m)
q )



Which sampling method? Importance Sampling

Pseudo-code (continued)

Calculate e.g. mean values of θ (g(θ) = θ) using Monte Carlo
integration

E [θ] =
E [w(θq)θq]

E [w(θq)]
≈

1
M

∑M
m=1 w(θ

(m)
q )θ

(m)
q

1
M

∑M
m=1 w(θ

(m)
q )

Calculate e.g. variance values of θ (g(θ) = θ2) using Monte Carlo
integration

E [θ2] =
E [w(θq)θ

2
q]

E [w(θq)]
≈

1
M

∑M
m=1 w(θ

(m)
q )

(
θ
(m)
q

)2

1
M

∑M
m=1 w(θ

(m)
q )

var(θ) = E [θ2]− (E [θ])2



Which sampling method? Importance Sampling

Effect of M (Central Limit Theorem):
The higher M, the more precise parameter estimates

Effect of a ‘bad candidate’:
Importance weights w will be too close to 0
(Effective number of observations is very small)

Independence sampling (IS)
We did not have to run a loop for m draws,
all calculations can be made as ‘vector operations’.

Independence sampling (IS)
No need to ‘burn-in’ or ‘trim’ draws since they are independent
and we did not ‘initialize’ the algorithm.

Note: We did not use CLT for the data, goodness of the simulation is
independent of the sample size T .



Which sampling method? Importance Sampling

Effect of observation sample size
(common for all sampling methods you can use):

If the observation sample is not informative (e.g. small T ), the likelihood
(hence the posterior) will not be representative of the data generating
process.

This problem is not linked to the ‘goodness’ of Bayesian inference.
There is simply not much information in the data
⇒ Theoretically this will just lead to high variances of θ, just in the case of
classical estimation.

The problem of a small will be there whatever simulation method you use.

Notice the estimation of mean, variance etc of θ
We did not use any asymptotic T results for this purpose
⇒ No need to derive small sample properties in case of a small sample.
⇒ Also when testing parameter restrictions, no need to derive the
asymptotic properties or small sample properties of tests.

The advantage of going through these simulation based inference is that we now

do not need to derive test properties.



Bayesian estimation of State Space Models

Take a simple state space model

yt = Ztαt + Gtǫt , t = 1, 2, . . . , n,
αt = Ttαt−1 +Htηt ,

where ǫt ∼ NID(0, I), ηt ∼ NID(0, I), and E(ǫtη
′
t) = 0.

The initial conditions are specified as α1|δ ∼ N(α̃∗
1|0 +W1δ,P

∗
1|0).

The model has a Gaussian structure.



Gibbs sampler

Let Ξ denote the stack of the hyperparameters.

A typical Gibbs sampling iteration is:

draw α(i) ∼ p(α|,Ξ(i−1), y) (simulation smoother)
draw Ξ(i) ∼ p(Ξ|α(i−1), y)

see Kim and Nelson (1999), Carter and Kohn (1994, 1996) for the
discrete filter.



The simulation smoother

The simulation smoother is an algorithm which draws samples from
the conditional distribution of the states and the disturbances given
the observations and the hyperparameters. We focus on the
simulation smoother proposed by Durbin and Koopman (2002).

Let us define xt denote a random vector (e.g. a selection of states or
disturbances) and let x̃ = E(x|y), where x is the stack of the vectors
xt ; x̃ is computed by the Kalman filter and smoother.

We can write x = x̃+ e, where e = x− x̃ is the smoothing error, with
conditional distribution e|y ∼ N(0,V), such that the covariance
matrix V does not depend on the observations, and thus does not
vary across the simulations (the diagonal blocks are computed by the
smoothing algorithm).



A sample x∗ from x|y is constructed as follows:

Draw (x+, y+) ∼ p(x, y).
As p(x, y) = p(x)p(y|x), this is achieved by first drawing x+ ∼ p(x)
from an unconditional Gaussian distribution, and constructing the
pseudo observations y+ recursively from

α+
t = Ttα

+
t−1 +Htη

+
t ,

y+t = Ztα
+
t + Gtǫ

+
t , t = 1, 2, . . . , n,

where the initial draw is α+
0 ∼ N(0,H0H

′
0), so that y+ ∼ p(y|x).

The Kalman filter and smoother computed on the simulated
observations y+t will produce x̃+, and x+ − x̃+ will be the required
draw from e|y.
Hence , x̃+ x+ − x̃+ is a sample from x|y ∼ N(x̃,V).



Proof of the simulation smoother

Let (
y
x

)
∼ N

[(
µy

µx

)
,

(
Σy Σyx

Σxy , Σx

)]

with Σxy = Σ′
yx , then x|y ∼ N(x̃,V),

x̃ = µx +ΣxyΣ
−1
y (y − µy )

V = Σx −ΣxyΣ
−1
y Σyx

Notice that E(x|y) is linear in y and that V is invariant to y.



We aim at drawing a random sample from p(x|y).
Let (x+, y+) ∼ p(x, y) denote a draw from the joint distribution and

x̃+ = E(x+|y+) = µx +ΣxyΣ
−1
y (y+ − µy ).

(computed by the KFS).
Since V does not depend on y, Var(x+|y+) = V, as well.
Also, unconditionally (LIE),

E(x+ − x̃+) = 0,Var(x+ − x̃+) = V,

and thus
E[x̃+ (x+ − x̃+)|y] = x̃

Var[x̃+ (x+ − x̃+)|y] = E[(x+ − x̃+)(x+ − x̃+)′|y] = V.



DSGE estimation

The DSGE model after linearization, see can be written as a linear state
space model:

Measurement:

yt = Ψ(θ) + Ψ1(θ)t +Ψ2(θ)α+ ut

State transition:
αt = Φ(θ)αt−1 +Φǫ(θ)ǫt

Joint density for the observation and latent states is:

p(Y1:T ,α1:T |θ) =
T∏

t=1

p(yt , αt |Y1:t−1,S1:t−1, θ)

T∏

t=1

p(yt |αt , θ)p(αt |αt−1, θ)



Estimation

Let Ξ denote the stack of the hyperparameters.

A typical Gibbs sampling iteration is:

draw α(i) ∼ p(α|Ξ(i−1),Yt) (simulation smoother)
draw Ξ(i) ∼ p(Ξ|α(i−1),Yt)



Algebra

The Likelihood of the data

p(yT |µ) = (2π)−T/2 exp
{
−1/2

∑
(yt − µ)2

}



Algebra

The Likelihood of the data

p(yT |µ) = (2π)−T/2 exp
{
−1/2

∑
(yt − µ)2

}

The prior

p(µ) = (2πσ2)−1/2 exp

{
−1/2

(
µ−m

σ

)2
}



Algebra

The Likelihood of the data

p(yT |µ) = (2π)−T/2 exp
{
−1/2

∑
(yt − µ)2

}

The prior

p(µ) = (2πσ2)−1/2 exp

{
−1/2

(
µ−m

σ

)2
}

The posterior distribution is given by

p(µ|yT ) =
p(µ)p(yT |µ)

p(yT )



Algebra

The Likelihood of the data

p(yT |µ) = (2π)−T/2 exp
{
−1/2

∑
(yt − µ)2

}

The prior

p(µ) = (2πσ2)−1/2 exp

{
−1/2

(
µ−m

σ

)2
}

The posterior distribution is given by

p(µ|yT ) =
p(µ)p(yT |µ)

p(yT )

Lets analyze first the numerator



The Numerator

p(yT |µ)p(µ) = (2π)−(T+1)/2 exp

{
−1/2

[
∑

(yt − µ)2 +

(
µ−m

σ

)2
]}

= (2π)−(T+1)/2 exp
{
−1/2

[∑
y2
t + Tµ2 − 2µ

∑
yt + µ2/σ2 +m2/σ2 − 2µm/σ2

]}

= (2π)−(T+1)/2 exp{−1/2[µ2(T + 1/σ2)− 2µ(Ty +m/σ2) + Ty2

+m2/σ2 +
∑

(yt − y)2]}

= (2π)−(T+1)/2 exp
{
−1/2

[
1/σ2

µ(µ− µ̂)2 + Q
]}

= (2π)−1/2 exp

{
−1/2

(µ − µ̂)2

σ2
µ

}
(2π)−T/2 exp {−1/2Q}

where

σ2
µ = 1/(T + 1/σ2)

µ̂ = σ2
µ(Ty +m/σ2)

Q = Ty2 + µ2/σ2 +
∑

(yt − y)2 − σ2
µ(Ty +m/σ2)2



The denominator

p(yT ) =

∫
p(yT |µ)p(µ)dµ

=

∫
(2π)−1/2 exp

{
−1/2

(µ − µ̂)2

σ2
µ

}
(2π)−T/2 exp {−1/2Q} dµ

= (2π)−T/2 exp {−1/2Q}
∫

(2π)−1/2 exp

{
−1/2

(µ − µ̂)2

σ2
µ

}
dµ

Hence

p(µ|yT ) ∼ N(µ̂, σ2
µ)

return
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