Computation and Distribution of Constrained Estimator:

Consider the null hypothesis Hy: R3 = r, where Ris g X k and r is g x 1.
We suppose there are genuinely g restrictions under Hp, so rank (R) = q.

Let B be the unconstrained estimator,
e, B=(X'X)"1X'y.
Let b be the constrained estimator satisfying Rb = r. (Typically, Rf3 #r.)

Proposition:
b=+ (X'X)R[R(X'X)IR|7L(r — RB)
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Proof:

Let S(b) = (y — Xb)'(y — Xb) — 2A(Rb — r).

The constrained estimator b satisfies the first order conditions (2's cancel):
(1) —X'y+X'Xb—R'X=0

(2) Rb—r=0

Thus b=+ (X'X)"1R'\

Let's eliminate A:

Rb = RB+ R(X'X) 1R\

Since Rb = r,

[R((X'X)" TR 1r = [R(X'X)R"1Rf + A.

Thus, A = [R(X'X)"LR']"(r — RB).
Substitute out A in the definition of b:
b=+ (X’X)*lR’[R(X’X)*lR’]*l(r —RG) N
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Sampling distribution of b

First step is to find the mean and variance of b:
Proposition: Eb = f3. (Under Hp)

Proof :Substitute B in the definition of b:
b=p+(X'X)"1Xe
+H(X'X)IRR(X'X) LR r — RB — R(X'X) "1 Xe]
=B+ — (X'X)TR[R(X'X)LRIR|(X'X) "1 X,
using r = Rf.
From this we see that Eb=53. B
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Proposition: V(b) < V(B).
Proof Let A= R(X'X)"IR".

Note that:
b—B=[l—(XX)TRAIR|(X'X) 1 Xe.
V(b) = E(b—pB)(b— B)

= o[l — (X'X)IR'AIR](X'X) L

[l — (X'X)"IR'ALRY,
since Ece’ = o2/
=?[(X'X)! = 2(X'X)IRATIR(X'X) !
+H(X'X)TRATIR(X'X)IRPATIR(X'X) 7]

Using the definition of A, this becomes
V(b) = ?[(X'X)™! — (X'X)IR'ATIR(X' X))
< V(B) = (X'X)7 (why?) B
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@ What is the relation to the Gauss-Markov theorem?

@ Why doesn't this expression depend on r?

Proposition: Under normality, we have the complete sampling distribution
of b with the mean and the variance calculated above.
Estimation of o2:

@ What is the unbiased estimator under restriction?
@ What is the ML estimator?
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Let e and e* be the vector of restricted and unrestricted residuals
respectively.

Proposition: A A
ele —e¥e* = (r — RB)'[R(X'X)*R~(r — RB)

Proof: e=y—Xb=y— X3 —X(b—j)
=e*—X(b-P)

= ee=e"e*+ (b—B)YX'X(b—p)

= ee—e’e* = (r— RB)[R(X'X)" IR (r— RG) M
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Example: Consider y = 3¢ + 81x1 + Box2 + € with the restriction
B1 + By = 2. If we substitute for 3;, we get

y =P80+ (2= B8y)x+ Pyx2+¢
y = B0 +2x1 — Byx1 + Boxa + €
=y —2x1 =g+ Brlx2 —x1) +¢

@ Regress (y — 2x1) on a constant term and (xo — x1), and get the sum
squared residuals from this restricted regression (€’e).

@ Regress y on a constant term, x; and x», and get the sum squared
residuals from this unrestricted regression (e*'e*).

@ Compare the sums of squared residuals from these regressions.
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Dummy Variables

Here we define a new variable D equal to 0 or 1 indicating absence or
presence of a characteristic.

This allows the intercept to differ.

Yy

y=Xb + Db’

y=Xb

Example: homeowners/renters, male/female, regulation
applies/regulation doesn't apply, etc.
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Dummy variable trap

Suppose:

1 if a characteristic is present
D; = . ..
0 if a characteristic is absent

D — 1 if a characteristic is absent
0= 1 0 if a characteristic is present

then D; + Dy = 1 and there is a problem of perfect collinearity if the
regressors include X; =1 € R" = X’X is be not invertible.
Solutions: drop either 1 € R" or one between D; and Dj.
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Two alternative reparametrizations

Consider the model
Y = D11 + Doffo + X*B* + ¢

Given that

D11 + DofBo = D11 + (1 — D1)Bo = Bo + Di(B1 — Bo)
A

the model could be reparametrized as

Y =00+ D1+ X*B8* +¢
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Interpretation of coefficients

Interpretation of coefficients:

@ [ is the conditional expectation of variable y when X* = 0 and the
characteristic is present;

@ [o is the conditional expectation of variable y when X* = 0 and the
characteristic is absent;

e 7 = (B1 — Bo) is the average difference of y between the units for

which the characteristic is present and those for which the
characteristic is absent.

A test for Hy : 8] = 0 is then a test for a null average effect of the
characteristic on variable y.
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Interactions with continuous regressors:

y=xb+Da+xDb’

Professor N. M. Kiefer (Cornell University) Lecture 6: the K-Varable Linear Model Il



Suppose education is reported in grouped form:
0-8 years; 9-12years; 12+ years

How should we set up the dummy variables?
One temptation is to code

d = 0 if 0-8 years of educaction
=1 if 9-12 years of eduction
= 2 if 124 years of education

This is very restrictive and probably unsound.
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A better set up would be to use 2 dummies:

di = 1 if 0-8 years of education
=0 else

dr = 1 if 9-12 years of education
=0 else

The first set up imposes that the effect of having 12+ years of education
is twice the effect of having 9-12 years of education. In general, class
variables with several classes require many dummies.
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Practical matters:

Often you will run across categorical variables - with no natural ordering.

It is usually appropriate to do a fequency distribution and form dummy
variables on that basis.

For example, suppose the variable is color, and you have out of a sample
of 100; 25 red, 5 yellow, 40 blue, 1 green, 4 purple, etc. (small numbers
for the remaining colors).

It is probably appropriate to make a dummy for red, one for blue, and use
“other” as the base.

Plotting residuals, especially for the “base” observations, will tell you if
this fails.

Professor N. M. Kiefer (Cornell University) Lecture 6: the K-Varable Linear Model Il




Multicollinearity

The problem is lack of data information when X’X is singular (recall
picture) or “nearly” singular.

If some X's move together, it is difficult to sort their separate effects on y.
More data does help.

Other sources of information are useful. Purely “technical” remedies for
collinearity work by imposing arbitrary and sometimes hidden
“information”. Never use ridge regression in an economic application.

The problem of multicollinearity in K-variable regression is equivalent to
the problem of small sample size in estimating a mean.
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