
Computation and Distribution of Constrained Estimator:

Consider the null hypothesis H0: R� = r , where R is q � k and r is q � 1.
We suppose there are genuinely q restrictions under H0, so rank (R) = q.

Let �̂ be the unconstrained estimator,

i.e., �̂ = (X 0X )�1X 0y .

Let b be the constrained estimator satisfying Rb = r . (Typically, R�̂ 6= r .)

Proposition:
b = �̂ + (X 0X )�1R 0[R(X 0X )�1R 0]�1(r � R�̂)
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Proof :
Let S(~b) = (y � X ~b)0(y � X ~b)� 2�(R~b � r).
The constrained estimator b satis�es the �rst order conditions (2�s cancel):
(1) �X 0y + X 0Xb � R 0� = 0
(2) Rb � r = 0
Thus b = �̂ + (X 0X )�1R 0�

Let�s eliminate �:
Rb = R�̂ + R(X 0X )�1R 0�
Since Rb = r ,
[R((X 0X )�1R 0]�1r = [R(X 0X )�1R 0]�1R�̂ + �.

Thus, � = [R(X 0X )�1R 0]�1(r � R�̂).
Substitute out � in the de�nition of b:
b = �̂ + (X 0X )�1R 0[R(X 0X )�1R 0]�1(r � R�̂) �
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Sampling distribution of b

First step is to �nd the mean and variance of b:

Proposition: Eb = �. (Under H0)

Proof :Substitute �̂ in the de�nition of b:
b = � + (X 0X )�1X 0"

+(X 0X )�1R 0[R(X 0X )�1R 0]�1[r � R� � R(X 0X )�1X 0"]
= � + [I � (X 0X )�1R 0[R(X 0X )�1R 0]�1R](X 0X )�1X 0",

using r = R�.
From this we see that Eb = �. �
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Proposition: V (b) � V (�̂).

Proof : Let A = R(X 0X )�1R 0.

Note that:
b � � = [I � (X 0X )�1R 0A�1R](X 0X )�1X 0".
V (b) = E (b � �)(b � �)0

= �2[I � (X 0X )�1R 0A�1R](X 0X )�1
[I � (X 0X )�1R 0A�1R]0,

since E""0 = �2I
= �2[(X 0X )�1 � 2(X 0X )�1R 0A�1R(X 0X )�1
+(X 0X )�1R 0A�1R(X 0X )�1R 0A�1R(X 0X )�1]

Using the de�nition of A, this becomes
V (b) = �2[(X 0X )�1 � (X 0X )�1R 0A�1R(X 0X )�1]

� V (�̂) = �2(X 0X )�1 (why?) �
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What is the relation to the Gauss-Markov theorem?

Why doesn�t this expression depend on r?

Proposition: Under normality, we have the complete sampling distribution
of b with the mean and the variance calculated above.

Estimation of �2:

What is the unbiased estimator under restriction?

What is the ML estimator?
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F Tests

Let e and e� be the vector of restricted and unrestricted residuals
respectively.

Proposition:
e 0e � e�0e� = (r � R�̂)0[R(X 0X )�1R 0]�1(r � R�̂)

Proof : e = y � Xb = y � X �̂ � X (b � �̂)
= e� � X (b � �̂)

) e 0e = e�0e� + (b � �̂)0X 0X (b � �̂)
) e 0e � e�0e� = (r � R�̂)0[R(X 0X )�1R 0]�1(r � R�̂) �
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Example: Consider y = �0 + �1x1 + �2x2 + " with the restriction
�1 + �2 = 2. If we substitute for �1, we get

y = �0 + (2� �2)x1 + �2x2 + "
y = �0 + 2x1 � �2x1 + �2x2 + "
) y � 2x1 = �0 + �2(x2 � x1) + "

Regress (y � 2x1) on a constant term and (x2 � x1), and get the sum
squared residuals from this restricted regression (e 0e).

Regress y on a constant term, x1 and x2, and get the sum squared
residuals from this unrestricted regression (e�0e�).

Compare the sums of squared residuals from these regressions.
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Dummy Variables

Here we de�ne a new variable D equal to 0 or 1 indicating absence or
presence of a characteristic.

This allows the intercept to di¤er.

Example: homeowners/renters, male/female, regulation
applies/regulation doesn�t apply, etc.
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Dummy variable trap

Suppose:

D1 =
{
1 if a characteristic is present
0 if a characteristic is absent

D0 =
{
1 if a characteristic is absent
0 if a characteristic is present

then D1 + D0 = 1 and there is a problem of perfect collinearity if the
regressors include X1 = 1 ∈ Rn =⇒ X ′X is be not invertible.
Solutions: drop either 1 ∈ Rn or one between D1 and D0.
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Two alternative reparametrizations

Consider the model

Y = D1β1 + D0β0 + X ∗β∗ + ε

Given that

D1β1 + D0β0 = D1β1 + (1− D1)β0 = β0 + D1(β1 − β0)︸ ︷︷ ︸
β∗1

the model could be reparametrized as

Y = β0 + D1β∗1 + X
∗β∗ + ε
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Interpretation of coeffi cients

Interpretation of coeffi cients:

β1 is the conditional expectation of variable y when X ∗ = 0 and the
characteristic is present;

β0 is the conditional expectation of variable y when X ∗ = 0 and the
characteristic is absent;

β∗1 = (β1 − β0) is the average difference of y between the units for
which the characteristic is present and those for which the
characteristic is absent.

A test for H0 : β∗1 = 0 is then a test for a null average effect of the
characteristic on variable y .
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Interactions with continuous regressors:
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Example

Suppose education is reported in grouped form:
0-8 years; 9-12years; 12+ years

How should we set up the dummy variables?

One temptation is to code

d = 0 if 0-8 years of educaction
= 1 if 9-12 years of eduction
= 2 if 12+ years of education

This is very restrictive and probably unsound.
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A better set up would be to use 2 dummies:

d1 = 1 if 0-8 years of education
= 0 else

d2 = 1 if 9-12 years of education
= 0 else

The �rst set up imposes that the e¤ect of having 12+ years of education
is twice the e¤ect of having 9-12 years of education. In general, class
variables with several classes require many dummies.
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Practical matters:

Often you will run across categorical variables - with no natural ordering.
It is usually appropriate to do a fequency distribution and form dummy
variables on that basis.

For example, suppose the variable is color, and you have out of a sample
of 100; 25 red, 5 yellow, 40 blue, 1 green, 4 purple, etc. (small numbers
for the remaining colors).
It is probably appropriate to make a dummy for red, one for blue, and use
�other�as the base.
Plotting residuals, especially for the �base�observations, will tell you if
this fails.
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Multicollinearity

The problem is lack of data information when X 0X is singular (recall
picture) or �nearly� singular.

If some X�s move together, it is di¢ cult to sort their separate e¤ects on y .
More data does help.

Other sources of information are useful. Purely �technical� remedies for
collinearity work by imposing arbitrary and sometimes hidden
�information�. Never use ridge regression in an economic application.

The problem of multicollinearity in K -variable regression is equivalent to
the problem of small sample size in estimating a mean.
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