
Speci�cation Error:

Suppose the model generating the data is

y = X� + "

However, the model �tted is y = X ��� + ", with the LS estimator

b� = (X �0X �)�1X �0y
= (X �0X �)�1X �0X� + (X �0X �)�1X �0".

Then Eb� = (X �0X �)�1X �0X� and V (b�) = �2(X �0X �)�1
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Application 1: Excluded variables

Let X = [X1X2] and X � = X1.
That is, the model that generates the data is

y = X1�1 + X2�2 + ":

Consider b� as an estimator of �1:

Proposition: b� is biased.

Proof :

b� = (X �0X �)�1X �0y

= (X 01X1)
�1X 01(X1�1 + X2�2 + ")

= �1 + (X
0
1X1)

�1X 01X2�2 + (X
0
1X1)

�1X 01"

Eb� = �1 + (X
0
1X1)

�1X 01X2�2

The second expression on the right hand side is the bias. �
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A classic example:

Suppose that the model generating the data is
yi = �0 + �1Si + ai + "i
y : natural logarithm of earnings
S : schooling
a: ability

a is unobserved and omitted, but it is positively correlated with S .
Then

Eb� =
�
�0
�1

�
+

�
N

P
SP

S
P
S2

��1 � P
aP
aS

�
supposing a is measured so that its coe¢ cient is 1.

If we suppose that
P
a = 0, then the bias in the coe¢ cient of schooling is

positive.
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A classic example (cont�d)

Generally, we cannot sign the bias, it depends not only on �2 but also on
(X 01X1)

�1X 01X2, which of course can be positive or negative.

Note that Vb� = �2(X 01X1)
�1. So if �2 = 0, there is an e¢ ciency gain

from imposing the restriction and leaving out X2. This con�rms our
earlier results.
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Estimation of Variance:

e� = M1y = M1(X1�1 + X2�2 + ")
= M1X2�2 +M1�
) e�0e� = �02X

0
2M1X2�2 + "

0M1"+ 2�02X
0
2M1�

Note the expected value of the last term is 0.

Clearly, we cannot estimate �2 by usual methods even if X 01X2 = 0 (no
bias) since still M1X2 6= 0.

There is hope of detecting misspeci�cation from the residuals since
Ee�e�0 = �2M1 under correct speci�cation and
Ee�e�0 = �2M1 +M1X2�2�

0
2X

0
2M1 under misspeci�cation.

Professor N. M. Kiefer (Cornell University) Lecture 7: the K-Varable Linear Model IV 6 / 17



Application 2: Inclusion of unnecessary variables

Let X = X1 and X ∗ = [X1,X2], where X1 is N × K1 and X2 is N × K2.
That is, the “true”model is

Y = X1β1 + ε.

Proposition: b∗ = [b∗′1 , b
∗′
2 ]
′ where

b∗1 = (X
′
1M2X1)−1X ′1M2Y ,

b∗2 = (X
′
2M1X2)−1X ′2M1Y .
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Application 2: Inclusion of unnecessary variables (cont’d)

Proof : Premultiplying both sides of the estimated model

Y = X1b∗1 + X2b
∗
2 + e

∗

by M2 we get:
M2Y = M2X1b∗1 + e

∗

because M2e∗ = e∗ (why?). Premultiplying both sides of the above
equation by X ′1 we get:

X ′1M2Y = X ′1M2X1b∗1 =⇒ b∗1 = (X
′
1M2X1)−1X ′1M2Y

The same reasoning applies to b∗2 as well.

Comment: the above is the same as regressing X1 on X2 and then
regressing Y on the residuals of the former regression. Very neat
interpretation!
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Application 2: Inclusion of unnecessary variables (cont’d)

Proposition: b∗ is unbiased.
Proof : Substituting Y = X1β1 + ε in b∗1 and b

∗
2 we get:

b∗1 = β1 + (X ′1M2X1)−1X ′1M2ε

b∗2 = (X
′
2M1X2)−1X ′2M1ε

from which it easily follows that E(b∗1) = β1 and E(b∗2) = 0.

Proposition: V(b∗1) ≥ V(b1), where b1 = (X ′1X1)−1X ′1Y .
Proof : From the equation of b∗1 we get
V(b∗1) = σ2(X ′1M2X1)−1 =⇒ V(b∗1) ≥ V(b1) because

σ−2(V(b1)−1 −V(b∗1)−1) = X ′1X1 − X ′1M2X1 = X ′1P2X1 = X
′
1P
′
2P2X1

where P2 = X2(X ′2X2)
−1X ′2.

Gianluca Cubadda Università di Roma "Tor Vergata" ()Specification errors 19th November 2016 4 / 5



Estimation of Variance

Under normality of the errors ε, since e∗ = M∗Y = M∗ε, where
M∗ = IN − X ∗(X ∗′′X ∗)−1X ∗′, we get

e∗′e∗ = εM∗ε = σ2χ2(N − K1 − K2)

whereas
e ′e = εM1ε = σ2χ2(N − K1)

from which it follows that

E
(

e∗′e∗

N − K1 − K2

)
= E

(
e ′e

N − K1

)
= σ2.
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Heteroskedasticity

Suppose V = V(ε) = {vij} with vij = 0 for any i 6= j .
Is the OLS estimator unbiased? Is it BLUE?

Proposition: Under the assumption of heteroskedasticity,

V(β̂) = (X ′X )−1X
′
VX (X ′X )−1

Proof :

V(β̂) = E(X ′X )−1X
′
εε′X (X ′X )−1 = (X ′X )−1X

′
VX (X ′X )−1�

Note that

X
′
VX = E

N∑
i=1
Xiε2i X

′
i

where X
′
= [X1, ...,XN ]. The above suggests to estimate X

′
VX with

N∑
i=1
Xie2i X

′
i

when V is diagonal.
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Testing for heteroskedasticity:

1. Goldfeld-Quandt test:

Suppose we suspect that �2i varies with xi . Then reorder the observations
in the order of xi . Suppose N is even. If " was observed, then

"21 + "
2
2 + :::+ "

2
N=2

"2[(n=2)+1] + "
2
[(N=2)+2] + :::+ "

2
N
� F (N=2;N=2)

could be used.

We are tempted to use ei , but we can�t because the �rst N=2 ei�s are not
independent of the last.

Here comes the Goldfeld-Quandt trick: Estimate e separately for each
half of the sample with K parameters. The statistic is F ((N=2)� K ;
(N=2)� K ):
It turns out that this �works�better if you delete the middle N=3
observations.
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Testing for heteroskedasticity (cont�d):

2. Breusch-Pagan test:

The disturbances "i are assumed to be normally and independently
distributed with variance �2i = h(z

0
i�) where h denotes a function, and z

0
i

is a 1� P vector of variables in�uencing heteroskedasticity.

Let Z be an N � P matrix with row vectors z 0i . Some of the variables in
Z could be the same as the variables in X .

Regress e2=�2ML on Z , including an intercept term.

Note that (sum of squares due to Z )=2 � �2(P � 1) approximately. The
factor 1=2 appears here since under normality the variance of "2=�2 is
2(E"4 = 3�4).
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Testing for heteroskedasticity (cont�d):

An alternative approach (Koenker) drops normality and estimates the
variance of e2i directly by N

�1P(e2i � �̂2)2. The resulting statistic can be
obtained by regressing e2 on z and looking at NR2 from this regression.

Other tests are available for time series.
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Testing Normality

The moment generating function of a random variable x is
m(t) = E (exp(tx)); note m0(0) = Ex ; m00(0) = Ex2; etc.
The MGF of the normal distribution n(�; �2) is m(t) = exp(t�+ t2�2=2):

Proof :
let c = (2��)�1=2

m(t) = c
Z
exp(tx) exp(�1=2(x � �)2=�2)dx

= c
Z
exp(�1=2(x � �� �2t)2=�2 + t�+ �2t2=2)dx

= exp(t�+ �2t2=2):

Professor N. M. Kiefer (Cornell University) Lecture 7: the K-Varable Linear Model IV 16 / 17



Testing Normality (cont�d)

Thus for the regression errors " we have
E" = 0; E"2 = �2; E"3 = 0; E"4 = 3�4;E"5 = 0; etc.

It is easier to test the 3rd and 4th moment conditions than normality
directly.
If we knew the ", it would be easy to come up with a �2 test.

In fact a test can be formed using the residuals e instead (and relying on
asymptotic distibution theory). The test statistic is

n[((e=s)3)2=6+ ((e=s)4 � 3)2=24]:

Which is �2 with 2 df :

This is the Kiefer/Salmon test (also called Jarque/Bera).
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