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Exercise 1

In econometrics, a model for a conditional expectation is often specified to depend on a vector of parameters

B € B, which gives a parametric model of E(y|z) of the form E(y|z) = m(z, 8), where

&= (x1,%2, ..., Tk, ...xK)  vector of explanatory variables
X

B = (81,82, Bry-Br) vector of parameters
Kx1

Often, the first explanatory variable is equal to 1. This gives you a model with the intercept.
- Let us assume that the conditional expectation m(x, ) is linear in the components of the vectors (3
and x, i.e., E(y|lz) = 2’8

a) Write down the regression curve and define the error term. How can you write the population regression

equation?
b) Show the implications on the error term.

¢) Using your previous results, derive the following moment condition: E(zx’)8 = E(xy). What assump-

tion do you need for the true parameter 8 to exist?
Solution

a) The regression curve of y on z1...xx is defined to be the conditional expectation E(y|x;...xk).

Given the linearity assumption made above, the regression curve is

E(ylz) =28 = frey + ..fxaxk (1)



Define the error term or disturbance term as:

e=y—Eylz)=y—2'8 (2)

It follows from (1) and (2) that we can always write y as its conditional expectation, E(y|z), plus
an error term that has conditional mean zero. Therefore, the population regression equation can be
written as:

y=E(ylz) +e=a'B+e (3)
where

E(elz) =0 (4)

b) The zero conditional mean in (4) implies that:
- E(e) = Ex|E(elx)] = Ex[0] =0
- E(ze) = Ex[E(z¢|z)] = Ex[zE(e|z)] = 0 (orthogonality condition)

¢) Replace the definition given in (2) in the orthogonality condition:
0=FBws) = Blaly—/8)]

E(zy — z2'B)
E(xy) — E(za’)

Hence,
E(za')B = E(zy)

This implies that, for 8 to exists, we need to assume that E(zz’) is nonsingular or equivalently that
rank E(z2’) = K

Exercise 2

Assume that the conditional variance of y|x is a constant function of x: Var(y|z) = o2

Show that:

Var(e) = Var(y)— B/Var(x)ﬂ
Var(y) — Cov(y, z)Var(z) ' Cov(z,y)

Solution
Notice that:

0? =Var(ylx) = Var(B'z + €|lz) = Var(e|z)

In addition, by the Law of Iterated Expectation (LIE):



Var(e) = E(e?) = Ex[E(e?|x)] = Ex[Var(e|z)] = o2
Recall now the low of total variance:
Var(y) = E[Var(y|z)] + Var[E(y|z)]

Hence,

Var(y) = Var[E(y|z)] = E[Var(ylz)]
Var(y) — Var((2'B)] = E[Var(y|z)]
Var(y) — B'Var(z)8 = E[Var(ylz)]

= E[Var(e|x)]
= Var(e)

Recall now the following definitions:
e=y—pfz
B =Var(z) 1Cov(z,y)
B = Cov(y,x) Var(x)™?
~—_—————
=Cov(z,y)’

Hence,

Var(e) = Var(y)+ 8'Var(z)s — 26 Cov(z,y)
Var(y) + Cov(y, z)Var(z) " 'Var(z)Var(z) " Cov(z,y) — 2Cov(y, 2)Var(z) " Cov(z, )
= Var(y) — Cov(y,z)Var(z) *Cov(z,y)

Exercise 3
Consider a model where the population regression function is equal to

E(y | ) = 151 + x50

where x71 is a K7 X 1 vector and x5 is a Ko X 1 vector.

Use the properties of the conditional expectation to show that
E{ly — E(y | z2)] | [z1 — E(z1 [ 22)]} = [21 — E(21 | 22)]' 1

Hint

You can write E(y | ) as E(y | x1,x2) = @11 + x4P2 , which is the same as

y=z1P1+a5P2 +e



where,
E(e|x1,22) =0

(implication: € is orthogonal to x1, T2 and to any function of x1 and xs).

Solution

Using the property of linearity of the conditional expectation, we have that

E{ly— E(y | #2)] | [v1 — E(w1 | 22)]} = E{y | [21 — E(z122)]} — E{E(y | 22) | [v1 — E(2122)]}
= E{z161 + 2562 + ¢ | [v1 — E(z122)]} — E{E(y | 22) | [v1 — E(2122)]}

Recall that: E(y | x2) = E(z)f1 + 2502 + ¢ | 22) = E(x1 | x2)' 61 + 25 Fs.

Hence,

= E{2f1 + 2302 + ¢ | [v1 — E(x122)]} — E{E(x1 | #2)' 1 + 2582 | 22) | [#1 — E(21 | 22)]}

Applying again the linearity of the conditional expectation and since E{e | [z1 — E(z1 | z2)]} = 0, we get

= E{z161 | [v1 — E(21 | 22)]} + E{2382 | [v1 — E(21 | 22)]} — B{E(21 | 22)'B1 + 2582 | x2) | [x1 — E(z1 | 22)]}
= E{@1f1 | [z1 — B2y | 22)]} + E{2yf2 | [x1 — E(21 | 22)]} — E{E(z1 | 22)'1 | [x1 — E(21 | 22)]}—

— E{@yBs | [v1 — E(a1 | 22)]}

= brE{z} | [z1 — E(21 | 22)]} — B1E{E(z1 | 22)" | [21 — E(21 | 22)]}

= Bi{E[zy — E(z1 | 22)] | [#1 — E(z1 | 22)]}

= fu{E[1 — Ez1 | 22)]" | [21 — E(z1 | 22)]}

= Bilz1 — E(z1 | 22)]

Exercise 4

Write down the OLS problem and
a) derive BorLs
b) compute E(Bors) and V(Bors)
c) state the Gauss Markov theorem, recalling the assumptions you need to take

Solution

The ordinary least-squares (OLS) problem is
minQn(8) =~ 0l (9n — #3,6)° = (v = XB)' (v~ XB)



The method of OLS consists in finding the value of § which minimizes the function @,, called OLS the

criterion.

a) Differentiating @,, with respect to 8 gives

9Qn(B)
op

which set equal to zero gives the normal equations

= —2X'y +2X'XB

X'y - X'XBors =0

If the K x K matrix n='Y", z,2], = X’X is nonsingular, solving the OLS normal equations gives the

OLS estimate .
foss = (5, 2) (o)

-1

(X'X)"'X'y=0

b) Notice that

Bors = (X'X)"'X"y
= (X'X)"'X"(XB +¢)
— (X'X) XX B+ (X' X)X
=1,

=B+ (X'X)'X'e
Taking expectation on both sides, we get

E(Bors) =B+ (X'X)"' X' E(e)
>

=p

Notice now that
Bors —B=(X'X)"'X'e

The variance of Bors is therefore

El(Bors — B) (Bors — B)] = (X'X) ' X' BE(e's) X (X' X)~*
——

o2

=A(X'X)' X' x(X'X)™!
N ——
=1

— O_Q(X/X)—l

¢) Assumption Al: Linearity in the parameters.

The conditional expectation of Y E(Y|X) is a linear function of the parameters, the 8’s. It may or



may not be linear in the variable X.

Assumption A2: Random sample of n observations.
This assumption is composed of three related sub-assumptions.

- Assumption A2.1: The sample consists of n-paired observations that are drawn randomly from the

population.

- Assumption A2.2: The number of observations is greater than the number of parameters to be esti-

mated, usually written n > k.
- Assumption A2.3: X is a non-stochastic (n X k) matrix, with k& < n, which has full (column) rank
(rank(X) = k).

Two conditions are necessary to ensure this assumption:

- the number of observations cannot be smaller than the number of explanatory variables in the model.
So, n > k.

- there cannot be an exact linear relationship between two explanatory variables. This means that it is
impossible to include one variable twice or include a variable which is a linear combination of another
variable as this would lead to perfect collinearity.

If A2.3 fails, then we have (X’X) not invertible and cannot compute £.

Assumption A3: Strict exogeneity.

E(EX)=0

This statement indicates there is no relationship between the error terms and the explanatory variables.
Implications:
-E(e)=0as E(c) =E(e|X)=E0)=0

- E(Y|X) = Xp. If it fails, we have misspecification in the regression function (e.g. omitted variables).

Assumption A4: Independent and identically distributed error terms.
The error terms of the population €; are independent and identically distributed with zero expected
value and constant variance o?:

Eq (Oa 02)

This implies:

-A4.1: E(5;) =0

This is less strong than E(g;|X) = 0. If E(¢g;|X) = 0 is fulfilled, it implies also E(g;) = 0.
E(e;) = 0 does not imply E(g;|X) = 0.

- A4.2 Homoschedasticity: Var(s;) = o?

- A4.3 No autocorrelation: Cov(e;,e;) =0 for i # j

A4.2 and A4.3 can be summarized as Var(e) = o21,.

The following is not a Gauss Markov assumption so we cannot list among the other assumptions: ¢;



are normally distributed in the population.
OLS estimator will still be BLUE even if ¢; are not normally distributed in the population. We don’t

worry too much because we have normality asymptotically.

Under these assumptions, the Gauss Markov Theorem states that BO s is the best linear unbiased
estimator (BLUE)of 8, i.e., Var(Bors) < Var(3) V linear and unbiased estimators 3.

Exercise 5

Consider the projection matrix M = I,, — X (X' X)X’
Show that:

a) M'=M; MM = M (M is symmetric and idempotent)
b) rank(M) = trace(M) =N — K

Which is the relationship between M, the fitted values and the residuals?

Solution
a)

M =[I,-XX'X)"'X)=I-[XX'X)"'X=1, - X(X'X)"'X' =M

MM = [I, - X(X'X)"' X'|[I, - X(X'X)"'X']
=1, - X(X'X)'X' - X(X'X)7' X' + [X(X'X) "' X[ X (X' X)X
=L, -XX'X)' X - X(X'X)"' X'+ X(X'X)"' X' X(X'X)"' X'
————
=1

=L, -XX'X)"'X' =M

b) In general, notice that if A is a symmetric matrix, then A = VAV’ where V is the orthogonal matrix
containing the eigenvectors of A and A is the diagonal matrix of eigenvalues. The i — th diagonal
element of the matrix A is indicated as d;.

Now,

Sa;; =tr(A) =tr(A=VAV') =tr(AVV') = tr(A) = Xd;.
=1

We know that:
- if A symmetric, then rank(A) = #eigenvalues(A) # 0



- idempotent matrices have eigenvalues equal to zero or one

Our matrix M is symmetric and idempotent, therefore

rank(M) = #eigenvalues(M) # 0
=%d;
=tr(M)

Now,

tr(M) = tr(I, — X(X'X)7'X")
=tr(I,) — tr(X(X'X)"1X")
=tr(I,) — tr((X'X)"1X'X)
=tr(1l,) — tr(Ix)
=N-K

Concerning the relationship between M and residuals:

e=y—Xp
=y - X(X' X)Xy
=1 - X(X'X)"' X"y
= My

With respect to fitted values, we have that

= =My
= X(X'X)'X'y
Exercise 6

Prove the Gauss Markov Theorem, i.e., Var(Bors) < Var(3) V linear and unbiased estimators 3.

Solution
Essentially, we have to show that Var(3) — Var(B) is positive semi-definite.

To prove the theorem, we need to introduce another linear and unbiased estimator of 3. Let us consider



B8 =C'y, where C is a N x K matrix.

E(B) = C'E(y)
=C'E(XB+e¢)
=C'XB+ E(e)

-
=C'Xp
=p

which is true only if C’X = I. Then

Var(8) = Var(C'y)
=C'Var(y)C
=g2C'C

Notice that, under unbiasedness

VaT(BOLs) = UQ(X/X)71

= C'X(X'X)"' X'C
N~
=1 =1

Hence,

Var(B) — Var(Bors) = 02C'C — *C'X(X'X)"1X'C
=o?C'I, - X(X'X)"'X"|C
=d’C'M'MC
=2C'MC which is positive semi-definite

Exercise 7

Consider the classical Gaussian linear model Y ~ N, (X3, 021,,)
a) Show that maximizing the log-likelihood with respect to 3 is equivalent to minimizing the OLS criterion.

b) What can you say about the estimation of 62? Discuss.

Solution



a) Our linear regression model is:
Y=XB+e¢

where £ ~ N(0,0?) with first and second moments E(Y|X) = X3 and Var(Y|X) = Var(c|X) = 2.
Y1
We know that ¥ =

YN
N——
Nx1

If we express our model abandoning the matrix notation, we have as well-known:

yi =Bz +e

where ¢; ~ i.i.d.N(0,02), so our y’s are distributed as y; ~ N(f'z;,0%) withi=1,..., N.

The probability density function, conditioning on the parameters 8 and o2, is denoted by:

fyilzs; B,0?) = eTp |:_%;l_2(yi - 5/%)2}

1
V2mro?
The joint density function is, by independence, equal to the product of the marginal densities:

N
f(y17 "'7yN|X;ﬂ70-2) = f(yl‘X7670—2)f(yN|Xa /870-2) = H f(yl|x7;7670—2)
i=1
The likelihood function is defined as the joint density treated as a function of the parameters:

N
L(B, 0y, - yn; X) = [ [ fwili; B,0%)
i=1

N 1
TTeen] - sytus— ]

It is usually simpler to work with the log of the likelihood function:

N
E(ﬂ702|y17 ,vaX) = lOgL(/B,0'2|y17 7yNaX) = Zlng(nyz,ﬂ,UQ)

i=1
N

N N 1
= 75109271' — Eloga2 =952 Z(yz - ﬁlxi)Q

’L

In matrix notation:

N N 1
0B, 0°[y1, ..., yn; X) = logL(B,0%y1, ..., yn; X) = — 5 log2m — 510902 — 52— XB) (y - XB)

10



A maximum likelihood estimator of (3, 02) is a solution to the maximization problem:

max /(,0°
smax £(B,07)

Note that the solution to an optimization problem is invariant to a strictly monotone increasing trans-

formation of the objective function, a MLE can be obtained as a solution to the following problem:

max £(8,0%) = max L(3,0?
S (B,07) e (B,07)

According to the OLS criterion, the OLS problem is equivalent to the problem:

min S(B)=(y—XB)'(y—XB)

A solution 8 must necessarily satisfy the system of linear equations called normal equations.
X'XB—-X'y=0

If you look at the log-likelihood function as:

N N 1
A _ 2 _
(B,0%) = 5 log2m 5 logo 2025(5)

You see that maximizing the log-likelihood function with respect to 3 is equivalent to minimizing the
OLS criterion. Then, the Gaussian ML and the OLS estimates of 3 coincides.
Taking the derivative of the log likelihood function with respect to 3:

o 1

5 —@2(—)(')(9 - XpB)

%
oB
Bur = (X'X)7'X'y = Bors

1

ThU.S7 B]VIL = BOLS is unbiased.

(b) Taking the derivative of the log likelihood function with respect to the parameter o2:

o N 1 1

=5~ )= X8 - XB)

0 W= XPBun)'(y—XPuL) e

oML = N N

The ML estimator 0]2;1 ;, is biased for o but has a lower sample variance than the unbiased estimator.

11



= %{E(E/M//]\_/IIE))} = %E [tr(e’Ms)} since &' Me is a scalar
M
= %E{tr(Mgsl)} since tr(ABC)=tr(BCA)
= %tr {E(Mggl)} since expectation is a linear operator
= %tr {ME({;EI)} since M is non-stochastic
= 02% w since tr(aA)=atr(A) where a is a scalar
N—k
_ 2 Z; F <o

Therefore, the ML estimator of the variance is downward biased.
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