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Exercise 1

Consider the testing procedure:

H0 : R� = r

HA : R� 6= r

where R is q ⇥ k with q  k, � is k ⇥ 1 and r is q ⇥ 1.

The distribution of least squares estimator is the following:

�̂ ⇠ N

⇣
�,�

2(X
0
X)�1

⌘

Then, we have:

R�̂ ⇠ N

⇣
R�,�

2
R(X

0
X)�1

R
0
⌘

Show that:

a) Under the null hypothesis, R�̂ � r ⇠ N

⇣
0,�2

R(X
0
X)�1

R
0
⌘

b)

⇣
R�̂ � r

⌘0h
s
2
R(X

0
X)�1

R
0
i�1⇣

R�̂ � r

⌘

q
⇠ F (q, n� k)

Hint: Be reminded that if a g-dimensional random variable U is distributed as N(0,⌃),

then U
0⌃�1

U ⇠ �
2(g)
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Moreover, to show that the numerator and denominator are two independent �
2
variables, recall that

you can write the above expression in terms of restricted and unrestricted residuals.

Solution

We compute the first and the second moments in order to show that under the null hypothesis, E(R�̂�r) = 0

and V ar(R�̂ � r) = �
2
R(X 0

X)�1
R
0.

a)

E(R�̂ � r) = R� �R� = 0

V ar(R�̂ � r) = E

h
(R�̂ � r)(R�̂ � r)0

i

= E

h
(R�̂ �R�)(R�̂ �R�)0

i

= E

h
R(�̂ � �)(�̂ � �)0R0

i

= E

⇢
R

h
(X 0

X)�1
X
0
"

ih
(X 0

X)�1
X
0
"

i0
R
0
�

= E

n
R

h
(X 0

X)�1
X
0
"

ih
"
0
X(X 0

X)�1
i
R
0
o

= R(X 0
X)�1

X
0
E(""0)| {z }

�2

X(X 0
X)�1

R
0

= �
2
R(X 0

X)�1
X
0
X(X 0

X)�1

| {z }
Ik

R
0

= �
2
R(X 0

X)�1
R
0

b) We know that the F distribution is a ratio between two independent �
2 variables divided by their

respective degrees of freedom.

In order to derive the numerator of the F distribution, we recall that if a g-dimensional random variable

U is distributed as N(0,⌃), then U
0⌃�1

U ⇠ �
2(g). Applying this, we obtain:

⇣
R�̂ � r

⌘0h
�
2
R(X 0

X)�1
R
0
i�1⇣

R�̂ � r

⌘
⇠ �

2(q)

where q degrees of freedom are the number of the elements of the vector R�̂|{z}
(q⇥k)(k⇥1)

.

In the denominator, in order to get rid of the unknown quantity �
2 we use:

(n� k)s2

�2
=

e
⇤0
e
⇤

�2
⇠ �

2(n� k)

2



Thus, we have:

⇣
R�̂ � r

⌘0h
�
2
R(X 0

X)�1
R
0
i�1⇣

R�̂ � r

⌘
/q

e⇤0e⇤
�2

(n�k)

=

⇣
R�̂ � r

⌘0h
R(X 0

X)�1
R
0
i�1⇣

R�̂ � r

⌘
/q

e
⇤0
e
⇤

(n� k)

Since e
0
e� e

⇤0
e
⇤ = (R�̂ � r)0[R(X 0

X)�1
R
0](R�̂ � r), then the above expression become:

=
(e0e� e

⇤0
e
⇤)/q

e⇤0e⇤/(n� k)

Notice that, e0e� e
⇤0
e
⇤ = "

0(M �M
⇤)" and tr(M �M

⇤) = (n� k + q)� (n� k) = q. Hence,

qs
2

�2
=

e
0
e� e

⇤0
e
⇤

�2
⇠ �

2(q)

In addition, "0(M �M
⇤)" and "

0
M" are independent because (M �M

⇤)M = 0

Thus, we have:
(e0e� e

⇤0
e
⇤)/q

e⇤0e⇤/(n� k)
⇠ F (q, n� k)

Rearrange the terms as follows

(e0e� e
⇤0
e
⇤)/q

e⇤0e⇤/(n� k)
=

⇣
R�̂ � r

⌘0h
R(X 0

X)�1
R
0
i�1⇣

R�̂ � r

⌘
/q

e
⇤0
e
⇤

(n� k)

=

⇣
R�̂ � r

⌘0h
R(X 0

X)�1
R
0
i�1⇣

R�̂ � r

⌘
/q

s2

=

⇣
R�̂ � r

⌘0h
s
2
R(X 0

X)�1
R
0
i�1⇣

R�̂ � r

⌘

q
⇠ F (q, n� k)

Exercise 2

Consider the population regression model

Y = X� + ".

Use the Law of Large Number (LLN) and the Central Limit Theorem (CLT) to show that:

a) as n ! 1, (�̂ � �)
p! 0 () E(X 0

") = 0, namely i↵ X and " are uncorrelated.
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b) as n ! 1,
p
n(�̂ � �)

d! N(0,�2
Q
�1), where Q = plim(X

0
X

n
).

Recall that if {wi} is an i.i.d. sequence and Var(wi)< 1. Then

• Law of Large Number (LLN): 1
n

nP
i=1

wi

p! E(wi)

• Central Limit Theorem (CLT): 1p
n

nP
i=1

(wi � E(wi))
d! N(0, V ar(wi))

Solution

a) Let us start from the expression for �̂:

�̂ = (X 0
X)�1

X
0
y

= (X 0
X)�1

X
0
X� + (X 0

X)�1
X
0
"

= � + (X 0
X)�1

X
0
"

Hence,

�̂ � � = (X 0
X)�1

X
0
"

�̂ � � = (X 0
X)�1

X
0
"
n

n

�̂ � � =
⇣
X
0
X

n

⌘�1X 0
"

n

By the LLN we know that plim

⇣
X

0
X

n

⌘�1
= Q

�1 and plim

⇣
X

0
"

n

⌘
= E(X"). Therefore, (�̂ � �)

p! 0,

i↵ E(X 0
") = 0. In other words, �̂ is a consistent estimator of � if and only if X and " are not correlated.

b)

�̂ � � =
⇣
X
0
X

n

⌘�1X 0
"

n

�̂ � � =
⇣
X
0
X

n

⌘�1 X
0
"p

n
p
n

p
n(�̂ � �) =

⇣
X
0
X

n

⌘�1X 0
"p
n

Note that plim
⇣
X
0
X

n

⌘�1
= Q

�1 by Law of Large Numbers and that
X
0
"p
n

d! N(0, D) by Central Limit

Theorem, where D = �
2
Q.

We have that
p
n(�̂ � �) has a finite mean and a finite variance:

E

hp
n(�̂ � �)

i
= E

h⇣
X
0
X

n

⌘�1X 0
"p
n

i
= 0
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V ar

h
(
p
n(�̂ � �)

i
= E

8
>><

>>:

h⇣
X
0
X

n

⌘�1⇣X 0
"p
n

⌘
� E

h⇣
X
0
X

n

⌘�1X 0
"p
n| {z }

=0

i
9
>>=

>>;

8
>><

>>:

h⇣
X
0
X

n

⌘�1⇣X 0
"p
n

⌘
� E

h⇣
X
0
X

n

⌘�1X 0
"p
n| {z }

=0

i
9
>>=

>>;

0

= E

⇢h⇣
X
0
X

n

⌘�1X 0
"p
n

ih⇣
X
0
X

n

⌘�1X 0
"p
n

i0�

= E

h⇣
X
0
X

n

⌘�1X 0
"p
n

"
0
Xp
n

⇣
X
0
X

n

⌘�1i

= Q
�1X

0
E(""0)X

n
Q
�1

= Q
�1

�
2 X

0
X

n| {z }
Q

Q
�1

= Q
�1

�
2
Q|{z}

D

Q
�1

Then, we have the following limiting distribution:

p
n(�̂ � �) =

⇣
X
0
X

n

⌘�1X 0
"p
n

d�! N(0, Q�1
DQ

�1) = N(0, Q�1
�
2
QQ

�1) = N(0,�2
Q
�1)

Exercise 3

Consider the classical Gaussian linear model Y = X� + ", with " ⇠ Nn(0,�2
In), and the null hypothesis

R� = r, where R is a q ⇥ k matrix of full row rank.

a) Write down the likelihood ratio (LR) test statistic.

b) Write down the Wald (W) test statistic.

c) Comment on the relation among the above test statistics and the classical F test statistic.

Solution

The sample log-likelihood for the classical Gaussian linear model is

L(✓) = �n

2
ln2⇡

| {z }
c

�n

2
ln�2 � n

2�2
n
�1(Y �X�)0(Y �X�)| {z }

Sn(�)

, ✓ = (�,�2)

Let ✓̃ = (�̃, �̃2) be the ML estimator of the constrained model, that is the model under which the con-

straints hold. Let ✓̂ = (�̂, �̂2) be the ML estimator of the unconstrained model.

a) The likelihood ratio (LR) test statistic is:

⇠
LR = 2(L̂� L̃)
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where L̂ = L(✓̂) is the log-likelihood evaluated at the unconstrained estimator and L̃ = L(✓̃) is the

log-likelihood evaluated at the constrained estimator.

✓̂ is the maximizer over the parameter space of the log-likelihood in the unrestricted model:

✓̂ = argmax
✓2 

L(✓)

whereas ✓̃ is the maximizer over the parameter space of the log-likelihood in the restricted model:

✓̃ = argmax
✓2 

L(✓) s.t. R✓ = r

For a fixed �, L(✓) attains its unique maximum at �2 = S(�). Thus �̂2 = S(�̂), �̃2 = S(�̃).

L̂ = L(✓̂) = c� n

2
ln �̂2 � n�̂

2

2�̂2
=

⇣
c� n

2

⌘
� n

2
ln �̂2

L̃ = L(✓̃) = c� n

2
ln �̃2 � n�̃

2

2�̃2
=

⇣
c� n

2

⌘
� n

2
ln �̃2

Hence, the LR test statistic is:

⇠
LR = 2

h⇣
c� n

2

⌘
� n

2
ln �̂2 �

⇣
c� n

2

⌘
+

n

2
ln �̃2

i
= n ln

�̃
2

�̂2

The LR principle leads to test that reject the null hypothesis for large values of ⇠LR.

The LR test requires computing both the unconstrained and the constrained ML estimator.

b) The Wald test only requires computing the unconstrained estimator.

Since R�̂ � r ⇠ Nq(0,�2
R(X 0

X)�1
R
0) under H0, where the vector (R�̂ � r) indicates the extent to

which the unrestricted ML estimates fit the null hypothesis, the Wald test statistic is:

⇠
W =

(R�̂ � r)0[R(X 0
X)�1

R
0]�1(R�̂ � r)

�̂2

We can rewrite the numerator of the Wald test statistic as the di↵erence between the residuals sum of

squares in the constrained model and the residuals sum of squares in the unconstrained model

ẽ
0
ẽ� ê

0
ê = (R�̂ � r)0[R(X 0

X)�1
R
0]�1(R�̂ � r)

Then

⇠
W =

(R�̂ � r)0[R(X 0
X)�1

R
0]�1(R�̂ � r)

�̂2

=
ẽ
0
ẽ� ê

0
ê

�̂2
=

n�̃
2 � n�̂

2

�̂2

= n
�̃
2 � �̂

2

�̂2
.

Reject the null hypothesis for large values of the test statistic.
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c) Recall the F statistic under the classical Gaussian linear model:

F =
(R�̄ � r)0[R(X 0

X)�1
R
0]�1(R�̄ � r)/q

s2
⇠ F (q, n� k) under H0

Rewrite the F statistic as:

F =
(ẽ0ẽ� ê

0
ê)/q

ê0ê/(n� k)
=

(ẽ0ẽ� ê
0
ê)

ê0ê

(n� k)

q

=
n(�̃2 � �̂

2)

n�̂2

(n� k)

q

=
�̃
2 � �̂

2

�̂2

(n� k)

q

In order to show the equivalence to the F statistic let us rewrite the expressions for the LR and the

Wald tests:

⇠
LR = n ln

�̃
2

�̂2

⇠
W = n

�̃
2 � �̂

2

�̂2

Thus, we have:

⇠
LR = n ln

h (1 + qF

n�k
)�̂2

�̂2

i
= n ln

⇣
1 +

qF

n� k

⌘

⇠
W = n

qF

(n� k)

Exercise 4

Consider the classical Gaussian linear model Y = X� + ", with " ⇠ Nn(0,�2
In), and the null hypothesis

R� = r, where R is a q ⇥ k matrix of full row rank. Show that the Lagrange Multiplier (or Score) test can

be written as

a) ⇠
S = NR

2

where R
2 is the determination coe�cient of the regression of the restricted residuals ẽ on X.

b) ⇠
S = n

�̃
2��̂

2

�̃2
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Solution

The sample log-likelihood for the classical Gaussian linear model is

L(✓) = �n

2
ln2⇡

| {z }
c

�n

2
ln�2 � 1

2�2
(Y �X�)0(Y �X�)| {z }

S(�)

, ✓ = (�,�2)

a) The Score o Lagrange Multiplier (LM) principle leads to test that reject for large values of a statistic

that is a quadratic form of the score vector, that is the gradient of the log-likelihood. The quadratic

form to consider is one that uses as a weighted matrix the inverse of the information matrix.

The test statistic is:

⇠
S = S̃

0
Ĩ
�1

S̃

where S̃ = L
0(✓̃) and Ĩ = �E[L00(✓̃)] are, respectively, the likelihood score and the (expected) infor-

mation matrix evaluated at the constrained Maximum Likelihood (ML) estimator.

The Score or LM test only requires computing the constrained ML estimator.

Since H0 leaves �2 unconstrained, we can focus on the derivatives with respect to �̃. This is possible

since S can be partitioned and the information matrix is block diagonal between � and �
2 with cross

derivatives equal to 0.

S�(✓̃) =
@L̃

@�̃
=

1

�̃2
X
0(Y �X�̃)

Ĩ(✓̃)�1 =

"
�̃
2(X 0

X)�1 0

0 2�̃4

n

#

How do we obtain the inverse of the information matrix?

First, we compute the second derivatives of the log-likelihood function:

@
2
L

@�@�0
= � 1

�̃2
(X 0

X)

@
2
L

@�2@�2
=

N

2�̃4
� 1

�̃6
(Y �X�̃)0(Y �X�̃)

@
2
L

@�@�2
= � 1

�̃4
(X 0

Y �X
0
X�̃)
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Second, we consider their expected values taken with the opposite sign:

E

✓
� @

2
L

@�@�0

◆
=

1

�̃2
(X 0

X)

E

✓
� @

2
L

@(�2)2

◆
= � N

2�̃4
+

1

�̃6
E("0")

= � N

2�̃4
+

1

�̃6
N �̃

2 =
N

2�̃4

E

✓
� @

2
L

@�@�2

◆
=

1

�̃4
(X 0

E(y)�X
0
X�̃)

=
1

�̃4
(X 0

X�̃ �X
0
X�̃) = 0

Therefore, the information matrix is:

I(✓) =

"
1
�̃2 (X 0

X) 0

0 N

2�̃4

#

Since the information matrix is diagonal, its inverse is given by:

I(✓)�1 =

"
�̃
2(X 0

X)�1 0

0 2�̃4

N

#

Coming back to the score test statistic, we have:

⇠
S = S̃

0
�̃
Ĩ
�1
�̃�̃

S̃
�̃
=

1

�̃2
(Y �X�̃)0X�̃

2(X 0
X)�1 1

�̃2
X
0(Y �X�̃)

=
(Y �X�̃)0X(X 0

X)�1
X
0(Y �X�̃)

�̃2

=
ẽX(X 0

X)�1
X
0
ẽ

�̃2

Now, let us consider the following auxiliary regression model

ẽ = �X + errors

We have that the OLS estimator of � is equal to

�̂ = (X 0
X)�1

X
0
ẽ

and that the predicted values are

ˆ̃e = X �̂

= X(X 0
X)�1

X
0
ẽ
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The R-squared of the above auxiliary regression is:

R
2 =

ˆ̃0
eˆ̃e

ẽ0ẽ

=
(X(X 0

X)�1
X
0
ẽ)0(X(X 0

X)�1
X
0
ẽ)

ẽ0ẽ

=
ẽ
0
X(X 0

X)�1
X
0
X(X 0

X)�1
X
0
ẽ

ẽ0ẽ

=
ẽ
0
X(X 0

X)�1
X
0
ẽ

ẽ0ẽ

We saw above that

⇠
S =

ẽX(X 0
X)�1

X
0
ẽ

�̃2

Given that �̃2 = ẽ
0
ẽ

N
, we can rewrite the Score test statistics as

⇠
S =

ẽX(X 0
X)�1

X
0
ẽ

ẽ0ẽ
N

= N
ẽX(X 0

X)�1
X
0
ẽ

ẽ0ẽ

= NR
2

b) We saw that the Score test statistic is:

⇠
S = S̃

0
Ĩ
�1

S̃

Notice that the quadratic form in the score vector is equivalent to a quadratic form in the Lagrange

multiplier associated with the constraint:

⇠
S = S̃

0
Ĩ
�1

S̃ = �
0
RĨ

�1
R
0
�

where � is the Lagrange multiplier associated with the constraint R✓ = r. The reason they are

equivalent comes from the first order conditions from the constrained maximization problem. If ✓̃

solves this problem, then L
0(✓̃)| {z }
S̃

�R
0
� = 0.

Therefore

S�(✓̃) =
@L̃

@�̃
=

1

�̃2
X
0(Y �X�̃) = R

0
�

where � = 1
�̃2

h
R(X 0

X)�1
R
0
i�1

(R�̂ � r)
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By computing S = R
0
� = 1

�̃2R
0[R(X 0

X)�1
R
0]�1(R�̂ � r), we obtain:

⇠
S = S̃

0
�̂
Ĩ
�1
�̂

S̃
�̂

=
1

�̃2
(R�̂ � r)0[R(X 0

X)�1
R
0]�1

R · �̃2(X 0
X)�1 · 1

�̃2
R
0[R(X 0

X)�1
R
0]�1(R�̂ � r)

=
1

�̃2
(R�̂ � r)0[R(X 0

X)�1
R
0]�1

R(X 0
X)�1

R
0[R(X 0

X)�1
R
0]�1

| {z }
Iq

(R�̂ � r)

=
1

�̃2
(R�̂ � r)0[R(X 0

X)�1
R
0]�1(R�̂ � r)

= n
�̃
2 � �̂

2

�̃2

Exercise 5

Consider the model y = X� + " and assume that E(") = 0 and V ar(y) = V ar(") = E(""0) = V , where V is

positive definite.

a) Compute E(�̂OLS) and V ar(�̂OLS)

b) Transform the data in order to restore the ideal conditions of the classical linear model

c) Derive �̂GLS

d) Compute E(�̂GLS) and V ar(�̂GLS)

e) Prove that (�̂GLS) is BLUE

Solution

a) We know that �̂OLS = (X 0
X)�1

X
0
y.

E(�̂OLS) = E[(X 0
X)�1

X
0
X� + (X 0

X)�1
X
0
"]

= � + (X 0
X)�1

X
0
E(")|{z}

0

= �

V ar(�̂OLS) = E[(�̂OLS � E(�))(�̂OLS � E(�))0]

= E[(�̂OLS � �)(�̂OLS � �)0]

= E[((X 0
X)�1

X
0
")((X 0

X)�1
X
0
")0]

= (X 0
X)�1

X
0
E(""0)X(X 0

X)�1

= (X 0
X)�1

X
0
V X(X 0

X)�1
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b) Since V is positive definite, V �1 is positive definite too. Therefore, there exists a nonsingular matrix

P such that V �1 = P
0
P .

Use P to transform the model as follows:

Py = PX� + P"

Since

E(P") = 0

and

V ar(P") = E(P""
0
P
0)

= PV P
0

= P (P 0P )�1
P
0

= I

then, the transformed model satisfies the conditions of the classical linear model.

c) The GLS estimator for � in the model y = X� + " is the Least Squares estimator for � in the model

Py = PX� + P". Hence,

�̂GLS = [(PX)0(PX)]�1(PX)0Py

= (X 0
P
0
PX)�1

X
0
P
0
Py

= (X 0
V
�1

X)�1
X
0
V
�1

y

d) The expected value of �̂GLS is:

E(�̂GLS) = E[(X 0
V
�1

X)�1
X
0
V
�1

y]

= E[(X 0
V
�1

X)�1
X
0
V
�1

X| {z }
I

� + (X 0
V
�1

X)�1
X
0
V
�1

"]

= � + (X 0
V
�1

X)�1
X
0
V
�1

E(")|{z}
0

= �

12



The variance of �̂GLS is:

V ar(�̂GLS) = E[�̂GLS � E(�̂GLS)][�̂GLS � E(�̂GLS)]
0

= E[�̂GLS � �][�̂GLS � �]0

= E[((X 0
V
�1

X)�1
X
0
V
�1

")((X 0
V
�1

X)�1
X
0
V
�1

")0]

= (X 0
V
�1

X)�1
X
0
V
�1

E(""0)V �1
X(X 0

V
�1

X)�1

= (X 0
V
�1

X)�1
X
0
V
�1

V V
�1

| {z }
I

X(X 0
V
�1

X)�1

= (X 0
V
�1

X)�1
X
0
V
�1

X(X 0
V
�1

X)�1

| {z }
I

= (X 0
V
�1

X)�1

e) In order to prove that �̂GLS is BLUE, let us consider another linear estimator, b, such that

b = [(X 0
V
�1

X)�1
X
0
V
�1 +A]y

– Unbiasedness

E(b) = [(X 0
V
�1

X)�1
X
0
V
�1 +A]E(y)

= [(X 0
V
�1

X)�1
X
0
V
�1 +A]X�

= (X 0
V
�1

X)�1
X
0
V
�1

X| {z }
I

� +AX�

= � +AX�

Thus, b is not biased when AX = 0.

– E�ciency

We need to show that V ar(�̂GLS)  V ar(b)

V ar(b) = E{[(X 0
V
�1

X)�1
X
0
V
�1 +A]y � E(b)}{[(X 0

V
�1

X)�1
X
0
V
�1 +A]y � E(b)}0

= E{[(X 0
V
�1

X)�1
X
0
V
�1 +A](X� + ")� �}{[(X 0

V
�1

X)�1
X
0
V
�1 +A](X� + ")� �}0

Notice that

[(X 0
V
�1

X)�1
X
0
V
�1 +A](X� + ")� � = [(X 0

V
�1

X)�1
X
0
V
�1

X| {z }
I

� + (X 0
V
�1

X)�1
X
0
V
�1

"+ AX|{z}
0

� +A"� �]

= � + (X 0
V
�1

X)�1
X
0
V
�1

"+A"� �

= (X 0
V
�1

X)�1
X
0
V
�1

"+A"

13



Therefore

V ar(b) = E{[(X 0
V
�1

X)�1
X
0
V
�1

"+A"][(X 0
V
�1

X)�1
X
0
V
�1

"+A"]0}

= [(X 0
V
�1

X)�1
X
0
V
�1

E(""0)| {z }
V

V
�1

X(X 0
V
�1

X)�1 + (X 0
V
�1

X)�1
X
0
V
�1

E(""0)| {z }
V

A
0+

+AE(""0)| {z }
V

V
�1

X(X 0
V
�1

X)�1 +AE(""0)| {z }
V

A
0

= (X 0
V
�1

X)�1 (X 0
V
�1

X)�1
X
0
V
�1

X| {z }
I

+(X 0
V
�1

X)�1
X
0
A
0

| {z }
0

+ AX|{z}
0

X(X 0
V
�1

X)�1 +AV A
0

= (X 0
V
�1

X)�1

| {z }
V ar(�̂GLS)

+AV A
0

Hence,

V ar(b)� V ar(�̂GLS) = AV A
0
> 0

since AV A
0 is positive definite.

Exercise 6

Consider the model specified in the previous exercise and let V be equal to �
2⌦

a) Derive the asymptotic distribution of �̂GLS , with ⌦ known.

b) Suppose now that ⌦ is unknown. Write down the expression for the Feasible GLS (FGLS) estimator,

�̂FGLS . Is it a consistent estimator for �?

c) Prove that plimX
0(⌦̂�1�⌦�1)X

N
= 0 and plim

X
0(⌦̂�1�⌦�1)"

N
= 0 are su�cient conditions for �̂GLS and

�̂FGLS to have the same asymptotic distribution.

Solution

a) Let us start from the expression for �̂GLS we derived above and recall that now V = �
2⌦

�̂GLS = (X 0(�2⌦)�1
X)�1

X
0(�2⌦)�1

y

=
⇣
X
0⌦�1

X

�2

⌘�1X 0⌦�1
y

�2

= (X 0⌦�1
X)�1

�
2X

0⌦�1
y

�2

= (X 0⌦�1
X)�1

X
0⌦�1

y

= (X 0⌦�1
X)�1

X
0⌦�1(X� + ")

= (X 0⌦�1
X)�1

X
0⌦�1

X| {z }
I

� + (X 0⌦�1
X)�1

X
0⌦�1

"

= � + (X 0⌦�1
X)�1

X
0⌦�1

"
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p
N(�̂GLS � �) =

⇣
X
0⌦�1

X

N

⌘�1X 0⌦�1
"p

N

By the Central Limit Theorem, X
0⌦�1

"p
N

d! N(0, D)

E[
p
N(�̂GLS � �)] = 0

V ar[
p
N(�̂GLS � �)] = E

h⇣
X
0⌦�1

X

N

⌘�1X 0⌦�1
"p

N

ih⇣
X
0⌦�1

X

N

⌘�1X 0⌦�1
"p

N

i0

=
⇣
X
0⌦�1

X

N

⌘�1X 0⌦�1
E(""0)⌦�1

X

N

⇣
X
0⌦�1

X

N

⌘�1

=
⇣
X
0⌦�1

X

N

⌘�1X 0⌦�1
�
2⌦⌦�1

X

N

⇣
X
0⌦�1

X

N

⌘�1

= �
2
⇣
X
0⌦�1

X

N

⌘�1X 0⌦�1
X

N| {z }
I

⇣
X
0⌦�1

X

N

⌘�1

= �
2
⇣
X
0⌦�1

X

N

⌘�1

Thus,
p
N(�̂GLS � �)

d! N

⇣
0,�2

⇣
X

0⌦�1
X

N

⌘�1⌘

b)

�̂FGLS = (X 0⌦̂�1
X)�1

X
0⌦̂�1

y

�̂FGLS = � + (X 0⌦̂�1
X)�1

X
0⌦̂�1

"

�̂FGLS � � =
⇣
X
0⌦̂�1

X

N

⌘�1X 0⌦̂�1
"

N

�̂FGLS is a consistent estimator for � if

plim
X
0⌦̂�1

X

N
= Q

where Q is pd and finite and

plim
X
0⌦̂�1

"

N
= 0

c) We have that

p
N(�̂GLS � �)�

p
N(�̂FGLS � �) =

⇣
X
0⌦�1

X

N

⌘�1X 0⌦�1
"p

N
�
⇣
X
0⌦̂�1

X

N

⌘�1X 0⌦̂�1
"p

N
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p
N(�̂GLS � �̂FGLS) =

⇣
X
0⌦�1

X

N

⌘�1X 0⌦�1
"p

N
�

⇣
X
0⌦̂�1

X

N

⌘�1X 0⌦̂�1
"p

N

Thus,

plim

p
N(�̂GLS � �̂FGLS) = plim

"⇣
X
0⌦�1

X

N

⌘�1X 0⌦�1
"p

N
�

⇣
X
0⌦̂�1

X

N

⌘�1X 0⌦̂�1
"p

N

#

If

plim

⇣
X
0⌦̂�1

X

N

⌘�1
= plim

⇣
X
0⌦�1

X

N

⌘�1

and

plim
X
0⌦̂�1

"

N
= plim

X
0⌦�1

"

N

then

plim
p
N(�̂GLS � �̂FGLS) = 0 ) �̂GLS and �̂FGLS have the same asymptotic distribution.
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