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Abstract

This paper develops a framework to evaluate the impact of sample selection on

the quality of statistical inference. An evaluator tests a hypothesis based on ob-

servation of a sample selected as the most favorable of several observations. The

impact of this sample selection on the evaluator’s payoff is characterized through

a generalization of Lehmann’s comparison of location experiments. The evaluator

benefits from greater selection when the data distribution’s quantile density func-

tion is less elastic than in Gumbel’s extreme value distribution. The evaluator is

harmed either when the data distribution has sufficiently thick tails and the hypoth-

esis would be rejected at the prior, or when tails are sufficiently thin and the prior

is to accept the hypothesis.
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1 Introduction

As econometricians have long recognized, in many instances observational data are

nonrandomly selected.1 Two main selection mechanisms typically operate: either self

selection is induced by choices made by the subjects under investigation, or selection

originates from sample inclusion decisions made by data analysts carrying out the study.

Experimental data can also suffer from selection problems, either because the study pop-

ulation is not representative of the population of interest (challenging external validity),2

or because the randomized allocation to treatment rather than control is subverted (chal-

lenging internal validity).3 Whatever the source of selection, it is natural to wonder

about the impact of sample selection on the quality of statistical inference.

Building on classic hypothesis testing, this paper provides a framework to charac-

terize the information value of a selected observation, relative to a random observation.

Consider an evaluator testing a simple hypothesis. Acceptance or rejection of the hy-

pothesis has payoff consequences for the evaluator, depending on the true state. In the

hypothesis testing problem, a central role is played by the error rates of false accep-

tance, α , and false rejection, β . We first note (Lemma 1) that our evaluator’s payoff can

be rewritten as a linear function of these two error rates. The relative weight attached

to α represents the evaluator’s preference against false acceptance. Each strategy for

mapping realized observations into the evaluator’s decision determines a pair of error

rates. Efficient use of the evidence provides lowest β for every α , yielding a convex

relationship of the best available β as a function of α . We call this relationship the

information constraint of the experiment, and we derive its convexity by assuming that

1See for example the large literature following Heckman (1979).
2In this regard, Alcott (2015) documents the presence of hard-to-control-for selection of the experi-

mental sites in the context of experiments conducted by utility companies to evaluate the effectiveness of

energy-savings policies.
3See Schulz (1995), Schulz et al. (1995), and Berger (2005) for extensive accounts and examples of

subversion of randomization in clinical trials. As explained by Berger (2005), the practice of blocking

to ensure an equal number of patients in the control and in the treatment group tends to make allocation

to control/treatment more predictable toward the end of the block, allowing researchers to subvert the

assignment of individual patients depending on the outcomes they expect for individual patients.
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the experimental observation is drawn from a log-concave distribution.4

Selection of the observation changes the information constraint and hence the value

of the evaluator’s problem. In our first main result (Theorem 1) we characterize those

distributions for which more selection induces an information constraint that is every-

where lower or everywhere higher than under less selection. We compare the value of a

random realization to that of a selected observation of the highest out of k realizations.

Our theorem shows that the evaluator’s payoff is increasing/decreasing in the amount k

of selection when the error distribution has a quantile density (a.k.a. Tukey’s sparsity)

function that is less/more elastic than Gumbel’s extreme value distribution.

The elasticity condition in Theorem 1 allows for a partial comparison of experiments

affected by selection via the well known Lehmann’s (1988) dispersion order. The eval-

uator prefers more/less selection for any preference against false acceptance. For many

distributions of interest, however, the criterion does not apply, as the evaluator prefers

more or less selection depending on the preference parameters. Our second main con-

tribution (Theorem 2) is a generalization of Lehmann’s result. Our theorem provides

a tool for comparing experiments whose information constraints may exhibit one or

more crossings. To compare two experiments for a neighborhood of parameter values,

it suffices to check for dispersion in a corresponding neighborhood of the distributions

underlying the two experiments.

Using Theorem 2, we then extend the welfare analysis of selection to the cases

where a uniform comparison of experiments fails (Proposition 1). If for instance greater

selection depresses the quantile density at low quantiles but raises it at high quantiles,

then selection harms evaluators with a strong preference against false acceptance, but

otherwise benefits them. This means that the evaluator is harmed either when the data

distribution has sufficiently thick tails (as for the Laplace distribution) and the hypothe-

sis would be rejected at the prior, or when tails are sufficiently thin (as for the uniform

distribution) and the prior is to accept the hypothesis.

4Di Tillio, Ottaviani and Sørensen (2015) address another set of questions for a toy model with binary

errors (hence not satisfying log-concavity).
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We then address how the evaluator is affected when the amount of selection grows

extremely large, as k tends to infinity. Drawing on extreme value theory, our third main

result (Theorem 3) characterizes the limit impact of selection. For an illustration, with

normally distributed errors, we show that the evaluator in the limit is able to identify the

true state on the basis of one, extremely selected observation. In this case, the evaluator

thus obtains the highest possible payoff where both error rates are zero. By contrast,

with exponentially distributed errors, the quantile density is more elastic than in the

Gumbel case, so selection increasingly harms the evaluator (Theorem 1) and the limit

information is less than full.

We conclude by applying our main results to the positive and normative analysis

of strategic selection by a researcher aiming at demonstrating that a treatment is effec-

tive. The researcher’s incentives to bias upward the evaluator’s inference are anticipated

in equilibrium by the evaluator. Under the global elasticity conditions of Theorem 1,

satisfied for example if the errors are normally distributed, we show that equilibrium se-

lective sampling benefits also the researcher in the empirically relevant case where the

prior strongly favors rejection.5 Instead, when the errors have thick tails and selection

is mild (small k), equilibrium selective sampling harms not only the evaluator but also

the researcher when the prior strongly favors rejection—generating a credibility crisis.6

In a complementary approach to modeling conflicts of interest in statistical testing,

Tetenov (2016) analyzes a regulator’s optimal commitment to a decision rule when pri-

vately informed proponents of innovations select into costly testing. Instead, we focus

on the impact of a researcher’s manipulation of the data on the welfare of an uncom-

mitted evaluator. Henry and Ottaviani (2015) analyze a dynamic model of persuasion

with costly information acquisition à la Wald (1950), where information is truthfully

reported at the time of application.

5In this case, we also show that equilibrium selection harms the researcher when the prior strongly

favors acceptance.
6In this case, we also show that equilibrium selection benefits the researcher when the prior strongly

favors acceptance. The researcher is harmed by selection for intermediate priors.
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2 Statistical Model

An evaluator is interested in the true value of a binary state θ ∈ {θ L,θ H}. It is natural to

interpret the two states as the true/false outcome of a hypothesis. The level of the state θ

may correspond to a treatment effect, where θ = θ H is equivalent to a good treatment.

We let θ H > θ L be real numbers. The evaluator behaves like a Bayesian, and has prior

belief Pr(θ = θ H) = q ∈ (0,1). We compare two scenarios:

Random Sample In the first scenario, the evaluator observes one signal realization x

of the location experiment

x= θ + ε,

where θ is the true state and the unobservable sampling error ε is a real random

variable drawn from a known distribution F .

Selected Sample In the second scenario, the signal realization observed by the evalua-

tor is the maximum of k independent and identically distributed draws:

x(k) = θ + ε(k),

with ε(k)=max{ε1, ...,εk}, and each ε i is drawn from the same distribution func-

tion F . Moreover, θ and (ε1, . . . ,εk) are stochastically independent. The distrib-

ution of ε(k) is Fk, with density k f Fk−1.

After having observed the signal, the evaluator updates the prior belief into a poste-

rior, and then either accepts or rejects. Acceptance results in payoff θ , while rejection

gives the safety payoff R, a real number satisfying θ L < R< θ H .

For an application, we may think of ε i as the health outcome of an individual i when

not receiving the treatment, and xi = θ+ε i as the health outcome of the same individual

when receiving the treatment. The assumption that F is known then corresponds to

assuming that many prior experiments have uncovered the distribution of baseline health

outcomes in the population.

5



In the first scenario, the evaluator’s problem is in line with Lehmann (1988). This

setting is our benchmark to evaluate the impact of sample selection (second scenario).

The main difference between the two scenarios is the distribution of the random error

in the signal observed. Section 6 justifies the second scenario in terms of a game-

theoretical setting in which the evidence is provided by a researcher who is interested

in obtaining acceptance.

Our goal is to analyze how changes in k affect the evaluator’s payoff in the second

scenario, depending on the exogenously given distribution F . Again, the first scenario

will be used as a benchmark both to formalize the evaluator’s decision problem and to

provide welfare results.

2.1 Evaluator’s Decision Problem

We start by a reformulation of the evaluator’s decision problem. We provide a general

characterization of the evaluator’s payoff when observing a given signal x. In our binary

choice problem, we show that the decision may be viewed as a simple trade-off between

correct choices—rejection in state θ L and acceptance in state θ H .

Assumption 1. The c.d.f. F has a derivative f which is log-concave, i.e., log( f ) is a

concave function.

Our assumption implies that F is continuous with an interval support, and F−1 is

well-defined. It also implies the monotone likelihood ratio property: the posterior belief

that the state is θ H after observing x= θ + ε with ε drawn from F ,

q f (x−θ H)

q f (x−θ H)+(1−q) f (x−θ L)
,

is increasing in x.7 The optimal decision rule is therefore also monotone in x, and the

evaluator’s problem thus amounts to choosing a threshold x̂ such that there is acceptance

if and only if x≥ x̂.

7Since we are dealing with a location experiment, the monotone likelihood ratio property is not only

necessary but also sufficient for log-concavity of the error distribution
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Any given threshold x̂ induces a (correct) rejection probability 1−α = F(x̂− θ L)

in state θ L and a (correct) acceptance probability 1−β = 1−F(x̂−θ H). This defines

a function relating α to β . We denote this function β F(α) and call it the information

constraint of experiment F . Clearly,

β F(α) = F
(
F−1(1−α)+θ L−θ H

)
.

We refer to the function β F(α) as the information constraint of experiment F .

Lemma 1. The evaluator’s problem is equivalent to choosing α,β ∈ [0,1] in order to

minimize (1−q)(R−θ L)α+q(θ H−R)β subject to β = β F(α).

Proof. As a function of the threshold x̂, the evaluator’s payoff is

∑
θ

Pr(θ){[1−F (x̂−θ)]θ +F(x̂−θ)R}

= qF (x̂−θ H)(R−θ H)+(1−q) [1−F (x̂−θ L)] (θ L−R)+qθ H+(1−q)R.

The constant qθ H +(1− q)R is irrelevant for the maximization of the payoff. Using

the definitions of α and β , we conclude that the optimality criterion is to minimize

(1−q)(R−θ L)α+q(θ H−R)β . Finally, the definitions of α and β can be rewritten as

the constraint F−1(1−α)+θ L = x̂= F−1(β )+θ H , that is, β = β F(α).

Log-concavity guarantees that this minimization problem is well behaved, as the

information constraint is convex. Along the constraint,

dβ

dα
=−

f
[
F−1 (β )

]
f [F−1 (1−α)]

=− f (x̂−θ H)

f (x̂−θ L)
,

which is negative and increasing in α because α is decreasing in x̂. Moreover, if

this likelihood ratio is unbounded (tending to 0 as x̂→ −∞ and to ∞ as x̂→ ∞) then

dβ/dα →−∞ as α → 0 and dβ/dα → 0 as α → 1. This is illustrated in the left panel

of Figure 1, where θ L = 0, θ H = 1, q = 1/2, R = 1/2 and the signal distribution F is

the standard normal, N(0,1). The black lines are iso-payoff lines, the blue curve is the

information constraint. The right panel is the analogous picture for an error uniformly
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Figure 1: Normal (left) and uniform (right) signal.

distributed U [−1,1], with the same parameters other than R= 7/10 instead of R= 1/2,

which gives a corner solution with α = 0.8

2.2 Comparing Experiments

Consider two location experiments with log-concave error distributions F and G, and

let β F(α) and β G(α) denote their respective information constraints. An immediate

separation argument shows that the evaluator is better off with the location experiment

induced by G than with the one induced by F , uniformly over q and R, if and only

if β G(α) < β F(α) for every α . In this case, we say that G is more effective than F

(relative to θ L and θ H).

Lehmann (1988) considered a similar problem—more general as θ need not be

binary—and proved that G is more effective than F , relative to every pair θ L,θ H with

8The constraint connecting β to α is known in the statistical literature under various names. Jewitt

(2007) refers to a probability-probability plot which shows β as a function of 1−α . Torgerson (1991)

uses both labels β -functions and Neyman-Pearson functions to describe power 1− β as a function of

significance α . The receiver operating characteristic curve likewise plots the true positive rate 1−β as a

function of the false positive rate α .

8



θ L < θ H , if and only if the quantile difference G−1(u)−F−1(u) is a weakly decreasing

function of u, that is,

f
(
F−1(u)

)
≤ g
(
G−1(u)

)
for all 0< u< 1. (1)

This criterion defines that G is less dispersed than F , a notion of stochastic ordering

already proposed by Bickel and Lehmann (1979).9 Intuitively, let 0 < u < v < 1 and

suppose that in experiment F we use a threshold resulting in type I error α = 1− v and

type II error β = u. Then the inequality G−1(u)−F−1(u)<G−1(v)−F−1(v) says that

the threshold adjustment needed to induce the same α under G, is smaller than the one

needed to induce the same β , and therefore it achieves a lower β .

3 Dispersion Ordering of Order Statistics

Recall that our goal is to compare the experiment induced by a generic F with the one

induced by a selected sample from F , that is, the experiment generated by Fk. Towards

this goal, we first seek a characterization of distributions F for which the number k has

a monotone effect on the evaluator’s payoff, uniformly over parameter constellations.

Lehmann’s condition turns on the quantile function, and it is convenient to introduce

notation for this. We denote it by Ξ(u) = F−1 (u). Its derivative is the quantile density

ξ (u) = 1/ f
(
F−1 (u)

)
. It can be directly computed that, when ξ is differentiable,

−ξ
′ (u)

ξ (u)
=

f ′
[
F−1 (u)

]
f 2 [F−1 (u)]

.

By definition, the elasticity of the quantile density function is −uξ
′ (u)/ξ (u).

An important special role is played by Gumbel’s extreme value distribution, F(ε) =

exp(−exp(−ε)). Its quantile function is Ξ(u) = − log(− logu) and hence ξ (u) =

−1/(u logu). Thus, the elasticity of its quantile density function is

−uξ
′ (u)

ξ (u)
=

u(1+ logu)/(u logu)2

1/(u logu)
=

1+ logu

logu
.

9They, in turn, credit Brown and Tukey (1946) for the essence of this definition.
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Theorem 1. Let F have a differentiable quantile density function ξ . If the elasticity of

ξ is everywhere greater than that of the Gumbel distribution, then Fk is more effective

than F, the greater the k. If, instead, this elasticity is everywhere less than that of the

Gumbel distribution, then Fk is less effective than F, the greater the k.

Proof. Fix the natural number k, and denote G = Fk+1 and H = Fk. By Lehmann’s

condition (1), G is more effective than H if G−1−H−1 is decreasing. Observe that

ε = H−1 (v) if and only if Fk (ε) = v, or F (ε) = v1/k. In particular, H−1 (v) = ε =

F−1
(

v1/k
)

. By the implicit function theorem, the slope of H−1 is

dε

dv
=
(1/k)v(1−k)/k

f (H−1 (v))
= (1/k)v(1−k)/k

ξ

(
v1/k
)
.

It suffices to check whether this slope is a monotone function of the real number k ≥ 1

— since natural numbers are real, it follows that the slope of G−1 can be compared to

that of H−1. Taking the logarithm, we need to check when

log

(
1

k

)
+

1− k

k
log(v)+ log

(
ξ

(
v1/k
))

is monotone in k. The derivative of this is

−1

k
− 1

k2
log(v)−

ξ
′
(

v1/k
)

ξ
(
v1/k
) v1/k log(v)

k2

Change variables to u= v1/k ∈ (0,1), and note that this derivative is non-positive if and

only if

−ξ
′ (u)

ξ (u)
u log(u)≤ 1+ log(u) .

An immediate implication of our characterization is that selection has no effect in

the case of the Gumbel distribution. This has an intuitive explanation. When selecting

the best of k, Fk(ε) = exp(−k exp(−ε)) = F (ε− log(k)). The location experiment

x= θ + ε is unaffected by this translation of the noise distribution.
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Figure 2: Comparison between F (blue) and F2 (red) for the normal distribution.

For the normal distribution, it can be verified that the elasticity condition in the the-

orem is met, and hence more selection benefits the evaluator. A plot of the information

constraints corresponding to F and F2 illustrates this in Figure 2.

If the distribution is logistic, F (ε) = 1/(1+ e−ε), we have Ξ(u) = log [u/(1−u)]

and hence ξ (u) = 1/ [u(1−u)]. Thus

−uξ
′(u)

ξ (u)
=

1−2u

1−u
>

1+ logu

logu
,

so ξ is more elastic than the Gumbel distribution. Here, too, any amount of selection

benefits the evaluator, and benefits even more as k increases.

For the exponential distribution, instead, F (ε) = 1− e−ε where ε ≥ 0, so Ξ(u) =

− log(1−u) and hence ξ (u) = 1/(1−u). Thus

−uξ
′ (u)

ξ (u)
=− u

1−u
<

1+ logu

logu

so ξ is less elastic than the Gumbel distribution—any amount of selection harms the

evaluator, ever more as k increases. It should be noted that signal realizations x < θ H

11



perfectly reveal state θ L, so β (α) = 0 where α ≥ 1−Fk (θ H−θ L).
10

Finally, note that with the change of variable u = F (ε), the condition for Fk to

become more effective with k can be restated as

f ′ (ε)/ f (ε)

f (ε)/F (ε)
>

1+ logF (ε)

logF (ε)
.

4 Local Comparison of Experiments

Lehmann’s comparison gives only a partial ordering of location experiments, because

it imposes a uniform criterion. For all θ L < θ H the information constraint β G(α) must

lie entirely below β F(α), in order for G to be more effective than F . In many cases of

interest, this property is not satisfied, even for fixed θ L and θ H . For example, as we

shall see, the property fails when we compare F with G= Fk and F is, e.g., the Laplace

or the uniform distribution. In this section we show that a useful criterion for comparing

experiments with crossing information constraints can still be given, in terms of a notion

that we call local dispersion.

4.1 Local Dispersion

Recall that G is more effective than F relative to every θ L and θ H > θ L if and only if

the quantile difference G−1(u)−F−1(u) is decreasing in u. This equivalence is at the

heart of the characterization provided in Theorem 1. What if the slope of the quantile

difference is not everywhere negative or everywhere positive? In this case, for some

values of θ L and θ H , the information constraints of G and F must cross at least once.

This means that, for those values of θ L and θ H , whether G or F is preferred depends on

the values of q and R.11

10Boland et al. (1995) compare dispersion of order statistics from the exponential distribution. Kochar

(1996) extends this to distributions with decreasing failure rate.
11Graphically, it is easy to see when experiment G is preferred to F for fixed parameter values. Let

β F∨G denote the convex envelope of β F and β G, that is, the largest convex function that is no greater

than β F or β G. Let α∗ denote a point at which the objective function (1− q)(R− θ L)α + q(θ H −R)β
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Generalizing Lehmann’s (1988) main theorem, our next result shows that even in

those cases where Lehmann’s uniform criterion is not applicable, the pattern of G−1(u)−
F−1(u) still determines the pattern of preference over G and F . The key is that, while

the quantile difference may not be everywhere increasing or everywhere decreasing, its

slope in a neighborhood around a particular value u still characterizes the preference

over F and G in a certain corresponding region of the parameters θ L, θ H , q, and R.

Intuitively, and in a sense that our theorem makes precise, the decreasing (increasing)

parts of the quantile difference correspond to those regions of parameters where G is

preferred to F (resp. F is preferred to G).

Theorem 2. Let N ≥ 1 and 0= u1≤ ·· · ≤ u2N+1= 1. Suppose that, for all n= 1, . . . ,N,

f
(
F−1(u)

)
≤ g
(
G−1(u)

)
for all u ∈ (u2n−1,u2n),

f
(
F−1(u)

)
≥ g
(
G−1(u)

)
for all u ∈ (u2n,u2n+1),

Suppose also that, for all m= 1, . . . ,2N,

θ H−θ L ≤max
{

F−1(um+1)−F−1(um) , G−1(um+1)−G−1(um)
}
.

Then there exist 0= K1 ≤ ·· · ≤ K2N+1 = ∞ such that, for all n= 1, . . .N,

G is preferred to F if
1−q

q

R−θ L

θ H−R
∈
(
K2n−1,K2n

)
,

F is preferred to G if
1−q

q

R−θ L

θ H−R
∈
(
K2n,K2n+1

)
.

Proof. It suffices to show that there exist 0 = α2N+1 ≤ ·· · ≤ α1 = 1 such that, for all

n = 1, . . . ,N, we have β G(α) ≤ β F(α) for all α ∈ (α2n,α2n−1) and β G(α) ≥ β F(α)

for all α ∈ (α2n+1,α2n).

Define, for every v ∈ (0,1),

u(v) =max
{

β F(1− v) , β G(1− v)
}
.

is minimal on the curve β F∨G(α). Clearly, if β F∨G(α
∗) = β F(α

∗) then F is at least as good as G for

the evaluator. Likewise, if β F∨G(α
∗) = β G(α

∗), then G is at least as good as F . Finally, if neither

β F∨G(α
∗) = β F(α

∗) nor β F∨G(α
∗) = β G(α

∗), then F and G are equally good.
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The bound on the difference θ H −θ L implies that there exist 0= v1 ≤ ·· · ≤ v2N+1 = 1

such that, for all n= 1, . . . ,N,

G−1(v)−F−1(v)≤ G−1(u(v))−F−1(u(v)) for all v ∈ (v2n−1,v2n),

G−1(v)−F−1(v)≥ G−1(u(v))−F−1(u(v)) for all v ∈ (v2n,v2n+1).

But for each α ∈ (0,1) we have

G−1(1−α)−F−1(1−α) = G−1(β G(α))−F−1(β F(α))

and hence the inequality β G(α)≤ β F(α) is equivalent to both of the following:

G−1(1−α)−F−1(1−α)≤ G−1(β F(α))−F−1(β F(α)),

G−1(1−α)−F−1(1−α)≤ G−1(β G(α))−F−1(β G(α)).

We conclude that, for all n= 1, . . . ,N,

β G(α)≤ β F(α) for all α ∈ (1− v2n,1− v2n−1) =: (α2n,α2n−1),

β G(α)≥ β F(α) for all α ∈ (1− v2n+1,1− v2n) =: (α2n+1,α2n).

This theorem implies that, when the difference θ H−θ L is not too large, the slope of

G−1(u)−F−1(u) for large, intermediate, or small values of u determines the evaluator’s

preferences over G and F when the relative weight attached to type I errors, the ratio

(1− q)(R−θ L)/[q(θ H −R)], is high, intermediate, or low, respectively. For example,

suppose that we would like to check whether G is preferred to F for a given q and for all

R above a certain value (or for a given R and for all q below some value). The theorem

highlights that checking whether this preference indeed holds only requires us to verify

that G−1(u)−F−1(u) is decreasing for u above a certain bound. Perhaps remarkably,

the same preference would then hold for any other distributions G′ and F ′ with the same

shape as G and F above that bound.

The bound on the difference θ H − θ L in the theorem cannot be dispensed with.

Indeed, recall that the fact that the slope of the quantile difference does not have a
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constant sign only implies that for some values of θ L and θ H the information constraints

of G and F must cross. Our theorem shows that when θ L and θ H are sufficiently close,

the information constraints do indeed cross. However, it is easy to construct examples

where θ L and θ H are far apart, and one experiment is preferred to the other for all q,R

(and those θ L and θ H) despite the fact that the quantile difference is not monotone.

4.2 Local Ordering of Order Statistics

Thanks to the local condition developed above, we can now refine Theorem 1 by consid-

ering the following immediate consequence of Theorem 2. Afterwards, we will illustrate

this method for the case of Laplace and uniform distributions.

Proposition 1. Let ū∈ (0,1) and suppose that G−1(u)−F−1(u) is decreasing (resp. in-

creasing) for u ∈ (0, ū) and increasing (resp. decreasing) for u ∈ (ū,1). Then there ex-

ists δ > 0 and a≥ 0 such that, if θ H−θ L ≤ δ , then selection benefits (resp. harms) the

evaluator for (1− q)(R− θ L) < aq(θ H −R) and harms (resp. benefits) the evaluator

for (1−q)(R−θ L)> aq(θ H−R).

Intuitively, we may describe (Fk)−1(u)−F−1(u) as U-shaped when it has the first

property assumed in the theorem, and bell-shaped in the second case. For an illustration

of the first case, suppose that k= 2 and consider the Laplace distribution where F (ε) =

(1/2)eε for ε < 0 and F (ε) = 1− (1/2)e−ε for ε ≥ 0. In the left-hand side panel

of Figure 3 we plot F (blue) and F2 (red), which reveals the U-shape of (F2)−1(u)−
F−1(u). In this example, there is a bound to the posterior belief after seeing any signal

realization, and hence the information constraints are not tangent to the axes as α → 0

and α → 1. As shown in the right-hand side panel of Figure 3, drawn for θ L = 0

and θ H = 1, the evaluator prefers F to F2 when the relative weight attached to type

I errors—the ratio (1− q)(R− θ L)/[q(θ H −R)]—is large. Indeed, this correspond to

steeper iso-payoff lines and hence lower optimal values of α . On the other hand, F2 is

better than F for smaller values of the ratio above.
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Figure 3: Comparison between F (blue) and F2 (red) for the Laplace distribution.

Next, consider the uniform distribution, F (ε) = ε for ε ∈ [0,1]. Suppose that θ H <

θ L+ 1, so there is some overlap of the supports of signal distributions F (x−θ L) and

F (x−θ H). Since F2(ε) = ε2, it is simple to eyeball that (F2)−1(u)−F−1(u) is bell-

shaped, as illustrated in the left-hand side panel of Figure 4. This is a case where greater

selection is better for the evaluator for large values of (1−q)(R−θ L)/[q(θ H−R)], but

worse for small values, as illustrated in the right-hand side panel of Figure 4. It should be

kept in mind that signals x< θ H reveal state θ L, so β (α)= 0 where α ≥ 1−(θ H−θ L)
k
.

Likewise, signals x > θ L+ 1 reveal state θ H , so we have a vertical part of the curve

where α = 0 when β ≥ (θ L+1−θ H)
k
.

5 Extreme Selection

In this section, we examine the effect of extreme selection, k→ ∞, on the evaluator’s

payoff. To gain some initial intuition, recall from Theorem 1 that in the Gumbel distri-

bution, the evaluator’s payoff is constant in k. Next, the fundamental result in extreme

value theory says that the distribution of the maximum of k i.i.d. random variables,

properly adjusted for location and scale inflation, either does not converge weakly to
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Figure 4: Comparison between F (blue) and F2 (red) for the uniform distribution.

any nondegenerate distribution (for any choice of adjustment) or it converges weakly to

a distribution F̄ that must belong to one of the following three types: Gumbel, Extreme

Weibull or Frechet. (See e.g. Leadbetter et al. (1983) for a reference.) More precisely,

for some sequence ak > 0 and bk,

Fk (bk+akε)→ F̄ (ε)

for every continuity point ε of F̄ .

Note that Fk is decreasing in k wherever F ∈ (0,1). Hence, the distribution of ε

is systematically shifted upwards as k increases, in the sense of first-order stochastic

dominance. Hence, the location adjustment sequence −bk is growing. However, the

evaluator can adjust for any translation of the error distribution without any impact on

payoff.

The limit impact of selection thus hinges on whether the sequence ak shrinks to zero

or not. If ak→ 0, the error distribution is less and less dispersed, providing the evaluator

with arbitrarily precise information about the state.

To formalize this claim, denote by V k the payoff of the evaluator when selection is

at level k.
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Theorem 3. If Fk (bk+akε)→ F̄ (ε) at every continuity point of F̄, with ak→ 0, then

V k→ qθ H+(1−q)R, the full information payoff. If ak = 1 for all k, then V k converges

to the payoff from observing one non-selected observation with error distribution F̄.

It is well known that many familiar distributions are in the basin of attraction of

the Gumbel distribution. Specifically, when F is normal—or half-normal, which has

the same right tails—then an must be decreasing to zero (an = (2logn)−1/2
works),

and F̄ is the Gumbel distribution. More generally, when F is exponential power (or

folded exponential power) with shape parameter b > 1, an must be decreasing to zero

(an = (b logn)−(b−1)/b
works, as we show in the appendix), and F̄ is the Gumbel distri-

bution. This result is striking, because it is also known that when F is the exponential

distribution—or the Laplace distribution, since the two distributions have the same right

tails—then it also converges to the Gumbel distribution, but we can take ak = 1 for each

k. That is, at least within the rather large exponential power family of distributions,

extreme selection leads to full information whenever the parameter value b > 1, while

it does not when b = 1. The uniformly negative impact of selection in the exponential

case discussed earlier is, in this sense, non-generic, as any arbitrarily close distribution

in the family reverses the conclusion.

6 Strategic Selection

Sample selection of the sort considered above naturally arises as an equilibrium phe-

nomenon in a strategic setting where the experiment is carried out by a researcher who

is less worried than the evaluator about false acceptances (the type I error α). Intuitively,

a researcher biased toward acceptance may want to select an individual with a high error

term—e.g., in the treatment effect setting, a good untreated outcome—in order to bias

upward the experimental result and thus increase the chances of acceptance. As we have

seen, an evaluator taking this behavior into account may suffer or benefit, compared to

the case of a random sample. In this section we discuss how the researcher’s ability to

strategically select the sample affects the researcher’s own welfare, too.
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To illustrate the issues in a simple setup, consider the following timeline:

1. The researcher privately observes ε1, . . . ,εk and then chooses i ∈ {1, . . . ,k}.

2. The evaluator observes xi = θ + ε i and then chooses whether to accept or reject.

As before, the evaluator receives a fixed payoff R when rejecting, and θ when ac-

cepting. The researcher receives 0 if the evaluator rejects, and 1 if the evaluator ap-

proves.

The game described above has a unique (Bayes Nash) equilibrium where the evalua-

tor follows a cutoff rule.12 In this equilibrium, the researcher chooses i∈ argmax1≤ j≤k ε j

and hence the evaluator’s threshold x̂k is defined by

Fk−1(x̂k−θ H) f (x̂k−θ H)

Fk−1(x̂k−θ L) f (x̂k−θ L)
= K.

This is also the unique equilibrium in which the researcher selects the same order sta-

tistic (in equilibrium, the highest) for each ε1, . . . ,εk.13 It is also worth remarking that,

even without assuming equilibrium, the outcome we described is the only outcome com-

patible with the assumption that (i) both players are rational, (ii) the researcher believes

that the evaluator follows a cutoff rule, and (iii) the evaluator believes in (i) and (ii).

How are the two players affected by the researcher’s strategic sample selection? For

fixed values of q, θ L and θ H , we can assess the impact of selection on both the eval-

uator’s and the researcher’s welfare, as R varies between θ L and θ H (and hence as the

12As usual, uniqueness has to be qualified by the fact that any other strategy profile where, e.g., the

researcher behaves differently on a measure zero set of vectors (ε1, . . . ,εk), is also an equilibrium.
13Since the density function f (x) is log-concave, both the cumulative distribution function F(x) and

the reliability function 1− F(x) are log-concave. Moreover, the product of log-concave functions is

log-concave. Thus, the density function of the mth smallest of k such (iid) random variables,

k!

(m−1)!(k−m)!
Fm−1(x)

[
1−F(x)

]k−m
f (x),

is log-concave, which implies that the evaluator follows a cutoff rule. But then the best response of the

researcher is to select the individual with highest error term, as its distribution first-order stochastically

dominates that of any other order statistic.
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relative weight attached to type I errors, the ratio (1− q)(R−θ L)/[q(θ H −R)], varies

between 0 and ∞), by comparing the c.d.f. of the posterior expectation of θ correspond-

ing to k > 1 with the one corresponding to k = 1. Given k ≥ 1 and an observation x, the

posterior expectation is

πk(x) :=
qFk−1(x−θ H) f (x−θ H)θ H+(1−q)Fk−1(x−θ L) f (x−θ L)θ L

qFk−1(x−θ H) f (x−θ H)+(1−q)Fk−1(x−θ L) f (x−θ L)
,

with c.d.f.

F̃k(p) :=
∫

1{πk(x)≤p}dFk(x).

The evaluator accepts if and only if x ≥ x̂k, which is the same as πk(x) ≥ R. Thus, at

safety payoff R, the researcher’s expected payoff is

Uk(R) := 1− F̃k(R),

while the evaluator’s expected payoff is

V k(R) := R+
∫

θ H

R
[1− F̃k(r)]dr.

When the elasticity condition in Theorem 1 is satisfied, V k(R) is increasing in k for

every R. But the expectation of πk is the same for every k, because it must equal the

prior expectation of θ . In other words, for every k we have∫
θ H

θ L

[1− F̃k(r)]dr = qθ H+(1−q)θ L.

Thus, in terms of the c.d.f.s of the posterior expectations, we must have F̃k′(r) ≥ F̃k(r)

for all k′ ≥ k and all r sufficiently close to θ L and F̃k′(r) ≤ F̃k(r) for all r sufficiently

close to θ H . Clearly, the opposite must hold when the elasticity condition is violated.

The following result summarizes these facts.

Proposition 2. Let F have a differentiable quantile density function ξ . If the elasticity

of ξ is everywhere greater (resp. everywhere less) than that of the Gumbel distribution,

then V k(R) is increasing (resp. decreasing) in k for every R. Moreover, for every k,k′

with k′ ≥ k there exist R′,R′′ such that Uk′(R) ≤Uk(R) for R ∈ [θ L,R
′] and Uk′(R) ≥

Uk(R) for R ∈ [R′′,θ H ] (resp. Uk′(R)≥Uk(R) for R ∈ [θ L,R
′] and Uk′(R)≤Uk(R) for

R ∈ [R′′,θ H ]).
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Figure 5: Welfare impact of selection in the normal case

In many special cases of interest, for k′ ≥ k the c.d.f.s of πk′ and πk cross only

once—other than at the extremes R= θ L and R= θ H—and hence the thresholds R′ and

R′′ in Proposition 2 coincide. When our elasticity condition holds, the crossing occurs

from above. The evaluator benefits from a larger k for every R, whereas the researcher

benefits or loses according to whether R is above or below a threshold. This happens,

for instance, in the case of a normally distributed error (cf. Figure 2), as illustrated in

Figure 5 for k = 1 (blue) and k = 2 (red), with θ L = 0 and θ H = 1.

When greater selection is not uniformly better for the evaluator, the c.d.f.s of the

posterior expectation corresponding to k and k′ > k must cross more than once, and the

effect on the researcher is more subtle. Consider again the case of a Laplace distribution.

Recall that, in this case, for the evaluator F2 is worse than F for large R but better for

small R (cf. Figure 3). A consequence of this is that the impact on the researcher’s

welfare changes sign twice. The researcher benefits from selection for small or large

values of R, but loses for intermediate values. The left-hand side panel of Figure 6 plots

the c.d.f.s of the posterior expectations π2 (red) and π1 (blue), illustrating this.

Next, recall the case of the uniform distribution discussed earlier, where the eval-

uator benefits from selection for large R, but fares worse for small R (cf. Figure 4)

Similarly to the case of Laplace distribution, here the impact on the researcher’s welfare
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Figure 6: Comparison between F (blue) and F2 (red) for the uniform distribution.

also changes sign twice as R varies between θ L and θ H . However, the impact on the

researcher’s welfare, just like that on the evaluator’s, is exactly the opposite. Selection

benefits the researcher for small or large values of R, but harms for intermediate values,

as illustrated in the right-hand side panel of Figure 6.

Finally, note that in the Gumbel case, the researcher’s selection has no impact on

the error rates (α,β ). In this case, properly anticipated selection has zero impact on

the decision and thus on the information value (evaluator’s payoff) and the approval

probability (researcher’s decision payoff). If there is any cost to selection, this cost is

completely wasted, so that the researcher’s net payoff is necessarily reduced by strategic

selection. In this case, strategic selection is a pure rat race.

To the literature on optimal persuasion following Rayo and Segal (2010) and Ka-

menica and Gentzkow (2011) we contribute a signal-jamming model of persuasion.14

The researcher’s choice of the size k of the presample is akin to the agent’s effort choice

in Holmström’s (1999) classic career concern model. The twist here is that this ef-

fort results in private information, which the researcher then uses to select the reported

14See also Henry (2009), Dahm, González, and Porteiro (2009), and Felgenhauer and Schulte (2014)

for persuasion models with endogenous information acquisition. In our setting, the researcher is con-

strained to disclose a single observation, as in the limited-attention models proposed by Fishman and

Hagerty (1990) and Hoffmann, Inderst, and Ottaviani (2014).
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information. As we show, information manipulation induces positive skewness in the

distribution of treated outcomes. Contrary to naive intuition, the evaluator is not nec-

essarily hurt by information manipulation; actually, we characterize natural conditions

under which the evaluator benefits. In addition, we characterize situations in which the

researcher ends up suffering from information manipulation like in a rat race, even if

we abstract away from the cost of acquiring information.

In a pioneering game theoretic analysis, Blackwell and Hodges (1957) analyze how

an evaluator should optimally design a sequential experiment to minimize selection bias,

defined as the number of times an optimizing researcher is able to correctly forecast the

treatment assignment.15 In the context of our single experiment, we characterize situa-

tions in which the selection bias that is present when the researcher is able to forecast

the assignment actually benefits the evaluator, contrary to what Blackwell and Hodges

(1957) stipulate.

7 Concluding Remarks

While in general selected data are not Blackwell comparable to random data, we char-

acterized the welfare impact of selection on the basis of dispersion. Our results depend

on the features of the environment (conditional signal distribution and parameters of

decision problem). Our notion of local dispersion, like Lehmann’s, applies to the case

where the evaluator observes only one outcome x. It is natural to generalize. The con-

struction of the β (α) curve is generally applicable, and the convex envelope generally

allows for the comparison of experiments, as explained in Section 4.

In a natural extension of the selection model, the number k is random. Again, the

15Blackwell and Hodges (1957) argue that selection bias is minimized by a truncated binomial design,

according to which the initial allocations to treatment and control are selected independently with a fair

coin, until half of the subjects are allocated to either treatment or control; from that point on, allocation is

deterministic. Efron (1971), instead, characterizes the selection bias resulting from a biased coin design,

according to which the probability of current assignment to treatment is higher if previous randomizations

resulted in excess balance of controls over treatments.
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β (α) curve can be generally used to compare experiments. However, the application of

dispersion is harder. Suppose that ε is drawn from λFk+1+(1−λ )Fk where λ ∈ (0,1)
and Fk+1 is less dispersed than Fk. It might be natural to conjecture that the evaluator is

better off, the greater the weight λ attached to the more effective experiment. However,

this is generally false. To see this note that when F is Gumbel, both Fk and Fk+1 are

Gumbel, but λFk+1+(1−λ )Fk is not Gumbel. In fact, for every λ ∈ (0,1), λFk+1+

(1−λ )Fk is worse than Fk, for it is Blackwell worse than informing the evaluator

about the outcome of the lottery over Fk and Fk+1. Intuitively, the equivalence of Fk

with Fk+1 rests on being able to remove a constant bias from the distribution of ε , but

this is not feasible when it is random whether ε derives from one distribution or the

other.16

Finally, in a more elaborate game-theoretic model it is natural to ask how large is

the equilibrium amount of manipulation. Considering a deviation from equilibrium,

the researcher actually has a potential gain through the upward shift of the realized ob-

servation x. This is to be weighed against the cost of looking at more subjects, when

already looking at k. The main point, however, is the ratchet effect: when the evalu-

ator correctly anticipates a greater selection, the researcher’s effort to manipulate the

experiment is wasted.

We leave to future work the design of experiments and policy responses in the pres-

ence of strategic selection. A natural starting point in this direction is Chassang, Padró i

Miquel, and Snowberg’s (2012) characterization of experimental design when outcomes

are affected by experimental subjects’ unobserved actions.

16Some advance may still be feasible by using the arithmetic-mean to geometric-mean inequality, and

observing that Fλ (k+1)F(1−λ )k is itself a power of F , as characterized in Theorem 1.
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A Proofs

A.1 Proof of Theorem 3

Fix any δ ∈ (0,(θ H−θ L)/2). Let εδ > 0 be such that F̄ (εδ )− F̄ (−εδ ) ≥ 1− δ/2.

Choose k̂ so that for all k ≥ k̂,

akεδ < δ , Fk (bk+akεδ )≥ F̄ (εδ )−
δ

4
, and Fk (bk−akεδ )≤ F̄ (−εδ )+

δ

4
.

Then, for each θ , since x= θ +bk+akε ,

Pr
(
θ +bk−δ ≤ x≤ θ +bk+δ

∣∣ θ
)
≥ Pr

(
θ +bk−akεδ ≤ x≤ θ +bk+akεδ

∣∣ θ
)

= Fk (bk+akεδ )−Fk (bk−akεδ )

≥ F̄ (εδ )−
δ

4
− F̄ (−εδ )−

δ

4

≥ 1−δ .

In words, the distribution of observation x in state θ assigns at least probability 1− δ

to a δ -ball around the point θ + bk. Now, rejecting if and only if x < x̂ = θ H + bk− δ

gives

α = Pr
(
x≥ θ H+bk−δ

∣∣ θ L

)
≤ 1−Pr

(
θ L+bk−δ ≤ x≤ θ L+bk+δ

∣∣ θ L

)
≤ δ

and

β = Pr
(
x< θ H+bk−δ

∣∣ θ H

)
≤ 1−Pr

(
θ H+bk−δ ≤ x≤ θ H+bk+δ

∣∣ θ H

)
≤ δ .

As we can choose δ > 0 arbitrarily small, we can make Kα+β arbitrarily small. The

first claim in the theorem now follows from Lemma 1.

To prove the second claim, consider the pair of error rates (α,β ) that result with

threshold x̂ when the error is drawn from F̄ . Let (αk,β k) be the error rates that result

with threshold x̂−bk when the error is draw from Fk. The convergence Fk (bk+ ε)→
F̄ (ε) at both ε = x̂− θ H and x̂− θ L implies that the sequence (αk,β k) converges to

(α,β ). Since this is true for every x̂, every point on the β (α) curve generated from F̄
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is a limit point for the corresponding curves for experiments Fk. For the convex curves

in the compact space, this implies convergence of the β (α) functions. This implies

convergence of the evaluator’s payoff.

A.2 Extreme Selection in the Exponential Power Case

In this appendix we show that if ε1,ε2, . . . are i.i.d. exponential power with shape b,

location 0 and scale 1, then Mn =max{ε1, . . . ,εn} satisfies

Pr(Mn ≤ anε+bn)→ e−e−ε ∀ε (Gumbel),

where

an = (b logn)−
b−1

b

and

bn = (b logn)1/b−
b−1

b
log logn+ log(2Γ[1/b])

(b logn)
b−1

b

.

Here, Γ denotes the Gamma function.

Remark 1. For b= 1 (Laplace) we have an = 1 and

bn = logn− log(2Γ[1]) = logn− log2.

Remark 2. For b= 2 (normal) we have an = (2logn)−1/2
and

bn = (2logn)1/2−
1
2

log logn+ log(2Γ[1/2])

(2logn)1/2

= (2logn)1/2−
log logn+2log

(
2
√

π
)

2(2logn)1/2

= (2logn)1/2− log logn+ log4π

2(2logn)1/2
,

as in Leadbetter et al. (Note that an in that book corresponds to 1/an here.)

Remark 3. The calculations do not cover the case b = ∞ (uniform) because in this

case the relevant extreme value distribution is not Type I (Gumbel) but rather Type III

(Weibull).
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The proof follows closely and generalizes the one given by Leadbetter et al. (1983)

for the normal case b= 2.

Start by noticing that

f (ε)

εb−1[1−F (ε)]
→ 1 as ε → ∞.

Fix ε and define yn for each n≥ 1 by

1−F (yn) =
e−ε

n
,

so that
e−ε

n

yb−1
n

f (yn)
→ 1 as n→ ∞. (2)

We may assume yn > 0 for all n. Then

f (yn) =
b

b−1
b

2Γ[1/b]
e−yb

n/b,

and hence, by (2),

− logn− ε+(b−1) logyn−
b−1

b
logb+ log(2Γ[1/b])+

yb
n

b
→ 0. (3)

From (3) we see that

− logn+(b−1) logyn+
yb

n

b
=− logn+o

(
yb

n/b
)
+

yb
n

b
→ a constant,

and hence that

−b logn

ub
n

+
o
(
yb

n/b
)

ub
n/b

+1→ 0,

that is
b logn

ub
n

→ 1,

or

b logyn− logb− log logn→ 0,

that is

logyn =
1

b
(logb+ log logn)+o(1) .
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Using this fact in (3), we obtain

yb
n

b
= logn+ ε− b−1

b
(logb+ log logn)+

b−1

b
logb− log(2Γ[1/b])+o(1)

= logn+ ε− b−1

b
log logn− log(2Γ[1/b])+o(1) ,

or

yb
n = b logn

[
1+

ε− b−1
b

log logn− log(2Γ[1/b])

logn
+o

(
1

logn

)]
,

or

yn = (b logn)1/b

[
1+

ε− b−1
b

log logn− log(2Γ[1/b])

logn
+o

(
1

logn

)]1/b

= (b logn)1/b

[
1+

ε− b−1
b

log logn− log(2Γ[1/b])

b logn
+o

(
1

logn

)]

= (b logn)1/b+
ε− b−1

b
log logn− log(2Γ[1/b])

(b logn)
b−1

b

+o

(
1

(logn)
b−1

b

)
= anε+bn+o(an) .

Thus

Pr(Mn ≤ anε+bn+o(an))→ e−e−ε

.
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