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Abstract

In a money-search model where deposits are used as means-of-payments, banks have

expertise to obtain higher returns from assets with a cost and an economy of scale but

are subject to limited commitment and moral hazard. They can pledge a proportion

of asset holdings to issue deposits. Optimal regulation trades off efficiency in asset-

management and liquidity service banks provide. An optimal charter system restricts

banking licence to crate profits for banks to sustain a leverage ratio above the laissez-

faire level to improve liquidity. A moral hazard problem for banks is also considered

where banks may choose to gamble with the assets to obtain a stochastic higher private

returns but with lower overall expected returns and we characterize the optimal capital

requirement. As moral hazard becomes more serious, optimal regulation allows banks

to be larger and have higher profits to compensate for stricter capital requirement due

to moral hazard. However, we also show that when such capital requirement becomes

too restrictive, it is in fact optimal to allow banks to gamble.
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1 Introduction

The serious interruption of the real economy from the Global Financial Crisis of 2008 has

given rise to a renowned interest in understanding the role of financial intermediaries and

how to regulate them. Two particular issues have surfaced both in the mass media and

in the policy debate: first, bankers seem to make unjustified profits;1 second, the banking

sector seem to be too concentrated in few big banks. These issues surfaced to the public

domain partly because the banking sector has been under two government protections: the

deposit insurance that allows them to raise more deposits, and government bail-outs to many

banking failures. These privileges seem even more unreasonable as it has been difficult to

persecute any potential fraud in the sector.2

We contribute to this debate by studying optimal banking regulations and their interac-

tions with bank sizes and profits. Our framework has two main features that are suitable

for this study related to the balance sheet of a bank. On the asset side, banks have n an

environment where banks play a useful role as financial intermediaries to improve social

welfare. In particular, aspect that may result in externality which requires regulation is the

liquidity role banks’ liabilities serve;3 in most advanced economies, the majority of money

supply consists of bank deposits. This role, which is mainly concerned with bank liabilities,

motivates various regulations that promote stability, as bank failures would affect not only

banks’ shareholders but also the welfare of the general public who rely on banks’ liquidity

services.

This liquidity service is provided by an asset transformation process: while banks issue
1In a comment about the Dodd-Frank reform, New Yorker article (“Banking’s New Normal,” 2016 issue)

has argued that “Bankers still make absurd amounts of money.”
2For a popular view on difficulty in such persecutions, see New Yorker article, “Why Corrupt Bankers

Avoid Jail,” 2017 issue.
3See, for example, the Controversies section in Economic Journal, issue 106, May 1996, where all articles

mentioned that banking is special because they produce “money,” or assets that can be used as means-of-
payments.
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deposits on the liability side, they also hold various assets to back those deposits. This

process, as the financial crisis reveals, involves many credit market frictions from the banks,

such as uncertainty to bank returns and limited commitment. The feature that banks supply

liquidity and they are subject to frictions has important macroeconomic consequences, and

thus, implications on policy and regulations.

In this paper, we propose a model of financial intermediaries with endogenous liquidity

provision. We do this by introducing banks into a standard monetary model à la Lagos and

Wright (2005) to maintain tractability. On the asset side, banks are the only agents with the

necessary expertise to manage/monitor loans (modeled as one-period Lucas trees) to receive

dividends. There is economy of scale in the sector by way of a fixed cost of operation, which

determines the efficient level of asset holdings and hence the efficient size of banks. On the

liability side, banks may issue deposits to finance their asset holdings, and, under the usual

frictions that render means-of-payments essential (lack of commitment and monitoring) from

the depositor side, this can generate a higher profits to banks by doing so. We consider two

main frictions in the banking sector. First, banks cannot fully commit to honor their future

obligations; instead, they could only credibly pledge a fraction of their assets that can be

seized by the court upon bankruptcy. This friction constraints the amount of liquidity banks

can provide and may prevent the first-best level of consumption for the depositors to be

achieved. Second, the banks’ efforts in managing the assets may not be observable and this

moral hazard issue may hinder the liquidity role of the banks.

We first consider the limited commitment of the banks but no moral hazard. When

banks can only make static contracts, the amount of deposits a bank can issue is constrained

by limited pledgeability of assets through market discipline; no one would deposit in a

bank unless it can credibly repay. Under free entry of banks, bank sizes are determined

by a zero-profit condition that balances the variable cost of asset management and the

fixed cost of entry, which coincide with the efficient level of asset holdings as far as the
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asset-management is concerned for the economy of scale. However, unless the pledgeability

constraint is slack, depositors cannot achieve first-best level of consumption due to lack of

liquidity and asset pricing exhibits liquidity premium. This pledgeability constraint also

implies a capital requirement impose by the market: the bank will not repay any deposit

beyond what is pledgeable because of limited commitment and hence the difference has to

be financed by bank capital.

Against this free market arrangement, we show that a charter system with a banking

regulator can improve social welfare. Under the charter system, the regulator can shut down

a bank when it does not honor its obligation and hence allows for a dynamic incentive to

relax the pledgeability constraint. For this dynamic incentive to be effective, however, it is

necessary to limit the number of charters relative to the efficient number under free entry and

to allow banks to earn economic profits. This scheme makes it incentive feasible for banks

to issue unsecured deposits beyond the pledgable assets they own, and hence can increase

the leverage ratio of banks. The optimal policy then trades off two inefficiencies: on the one

hand, a smaller number of charters increases bank profits and hence helps increase liquidity,

which improves depositors’ welfare; on the other hand, a smaller number of charters increases

the overall cost of banking operations as each one gets inefficiently large. Our main result

demonstrate that, whenever liquidity is tight under static bank contracts, it is optimal to

limit the number of charters relative to the number under efficient asset management, and

to relax the pledgeability constraint through a lower overall leverage ratio requirement that

its laissez faire level.

Our model can not only generate insights about overall bank size and profits, it also

allows us to consider how optimal regulation affects distribution of bank sizes and profits.

In our model, bank sizes are endogenously determined by either free entry (in the absence of

charter), or by the number of charters. We extend our model by allowing for heterogeneous

management costs. In the absence of regulation, more efficient banks end up being larger
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in terms of asset holding, and it is efficient to do so. When liquidity is tight, we show that

an optimal charter system would in fact make large banks even larger by allowing more

generous unsecured borrowing. The intuition is simple: when the number of charters is

limited, large banks make higher profits and hence it is more efficient to incentivise them to

repay unsecured deposits. As a result, we obtain a positive correlation between bank size

and leverage ratio under the optimal policy arrangement.

We then introduce the moral hazard issue with asset-management by banks, in which

banks may gamble on their assets to obtain a private gain with certain probability, although

doing so would lower the overall return on average and hence socially suboptimal. Precisely

because of the two-sided nature of bank contracts, banks may have incentives to gamble,

as that may increase their profits because of the private gain while the depositors have

to suffer (most of) the consequences. We show that, under static contract and free-market

arrangement, market discipline would impose an additional proportional capital requirement

to a bank’s asset holding to ensure efforts. This, however, can be harmful to liquidity

provision as it lowers the level of deposits banks can offer. In particular, as moral hazard

becomes more serious, the liquidity service becomes poorer.

Against this background environment we study how an optimal charter system can handle

this moral hazard issue. We first fully characterize the optimal proportional capital require-

ment necessary for the moral hazard issue and the accompanied overall leverage ratio, for

any given number of licences. Then we can employ our earlier methodology to search for the

optimal number of banking licences. Thus, the model delivers a clear distinction between

two capital regulations: the first is a capital requirement proportional to a bank’s asset

holdings to deal with moral hazard, and the second is an overall leverage ratio that would

depend, among other things, on the market power and hence profitability of the bank. There

is a nontrivial interaction between these two regulations as well. We show that, under some

conditions, as moral hazard becomes worse, it is in fact optimal to allow for higher profits
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and to make banks larger. This is due to the welfare impact on banks’ liquidity provision:

as moral hazard gets worse, a higher proportional capital requirement is needed and that

hurts liquidity provision; to compensate for that loss, it is optimal to increase unsecured

borrowing from banks by making them bigger and hence more profitable.

Finally, while traditionally it is assumed that gambling would be suboptimal in banking,

it is not obvious whether gambling would be better or worse for liquidity provision in our

framework. We first show that, without further capital requirements, an equilibrium where

all banks gamble exist if the moral hazard issue is binding. As mentioned earlier, to induce

prudent behavior it is necessary to introduce further capital requirement. Comparing against

the regime in which all banks gamble, the regulator faces a nontrivial trade-off, which does

not exist in earlier literature without endogenous liquidity needs, to introduce the capital

requirement that induces prudent behavior: on the one hand, it discourages gambling and

hence increase overall return; on the other hand, it directly decreases liquidity provision. We

give a full characterization on how the trade-off resolves. It turns out that the regime without

the capital requirement and hence with gambling banks yields a higher welfare whenever the

necessary capital requirement is sufficiently stringent.

Related Literature

Our pledgeability constraint is similar to that in Gertler and Kiyotaki (2010). There are

two key differences, however. First, we explicit model the deposits as means-of-payments

and hence focus on banks’ liquidity role for depositors. Second, we focus on banks’ limited

commitment and moral hazard problem and the optimal regulations to deal with them.

Our approach to model bank assets as Lucas trees effectively assumes that all agency issue

between the banks and the end borrowers is captured by the management/monitoring cost,

an approach shared by some recent papers such as Begenau and Landvoigt (2017).

This paper is not the first one to point out that future bank profits play an essential role
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in banking regulations. On the empirical side, Keeley (1990) provides some evidence that

charter value restricts banks’ risk-taking behavior. On the theory side, Hellmann, Murdock,

and Stiglitz (2000), in a model where banks have market powers and face moral hazard, show

that it is optimal to use a combination of capital requirement and deposit-rate ceilings to

create sufficient franchise value for banks to ameliorate the moral-hazard problem. Future

bank profits are the main incentive device for prudent behavior, using deposit-rate ceiling

to maintain profits. In contrast, profits are maintained by restricting entry and deposit-

rate ceilings would be sub-optimal in our model. Two main modeling ingredients explain

the difference: first, while deposit demand is exogenously given there, in our model it is

driven by endogenous liquidity needs; second, bank entry decision and sizes are endogenously

determined in our model.

Our paper is also related to the literature on liquidity provision by banks. Using a means-

of-payment-in-advance model with currency and deposits, Chari and Phelan (2014) show that

if there is insufficient deflation, fractionally backed banks which offer interest-bearing deposits

may be good, but such banks are subject to socially costly runs. Williamson (2016), shows

that, when banks face limited commitment, and when short-maturity government debt has

a greater degree of pledgeability than long-maturity government debt, quantitative easing

can improve liquidity. These papers, however, do not address optimal financial regulations.

Gorton and Winton (2017) also features a trade-off of raising capital requirement because

bank debt is used for transactions purposes, while more bank capital can reduce the chance of

bank failure; however, they assume exogenously given banks’ charter value. Phelan (2016), in

a model where deposits serve the liquidity function, shows that leverage also increases asset

price volatility and so limiting leverage decreases the likelihood that the financial sector is

undercapitalized. However, the model assumes that deposits exogenously generate utility

to depositors, and hence it is then not clear how regulations may affect banks’ function in

providing means-of-payment, and through which, the economic activity.
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2 The Environment

The environment is borrowed from Rocheteau and Wright (2005). Time is discrete and has

an infinite horizon, t ∈ N0. The economy is populated by three sets of agents; each set has

a continuum of infinitely-lived agents with measure one. The first set consists of buyers,

denoted by B, and the second consists of sellers, denoted by S. The third set consists of

potential banks. Each date has two stages: the first has pairwise meetings of buyers and

sellers in a decentralized market (called the DM), and the second has centralized meetings

(called the CM) where all agents meet. In each DM, the probability that a buyer has a

successful meeting with a seller is σ. There is a single perishable good produced in each

stage, with the CM good taken as the numéraire. Agents’ labels as buyers and sellers

depend on their roles in the DM where only sellers are able to produce and only buyers wish

to consume. While all agents can produce and consume in the CM, potential banks do not

consume nor produce in the DM.

Buyers’ preferences are represented by the following utility function

E
∞∑
t=0

βt [u(qt) + xt − ht] ,

where β ≡ (1 + r)−1 ∈ (0, 1) is the discount factor, qt is DM consumption, xt is CM

consumption, and ht is the supply of hours in the CM. Sellers’ preferences are given by

E
∞∑
t=0

βt [−c(qt) + xt − ht] ,

where c(q) is the seller’s disutility of producing q in the DM. The first-stage utility functions,

u(q) and −c(q), are increasing and concave, with u(0) = υ(0) = 0. The surplus function,

u(q)−c(q), is strictly concave, with q∗ = argmax [u(q)− c(q)]. Moreover, u′(0) = c′(∞) = ∞

and c′(0) = u′(∞) = 0. All agents have access to a linear technology to produce the CM
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output from their own labor, x = h.

There is only one real assets, loans to entrepreneurs. There is a competitive market for

loans to financing entrepreneurs’ projects, which, for simplicity, are assumed to materialize

within a single period, each unit has a gross return τ (in terms of CM goods) at pays off in

the next CM. The average supply (per buyer) of the projects is Ā at each period. To obtain

the return from the entrepreneurs, however, it requires a potential bank to perform costly

monitoring/management. As in Gertler and Kiyotaki (2010), one can also think of the bank’s

claim on these projects as equity.4 The firms are subject to an agency problem such that

costly monitoring is required, as in the delegated monitoring model of financial intermediaries

proposed by Williamson (1986) or Diamond (1984).5 In contrast to those papers, however,

our main focus is on the role of banks in providing liquid assets as a means of payment.

Specifically, each bank can issue deposit certificates in an open market. We assume that

these certificates are perfectly divisible, perfectly durable, and cannot be counterfeited. Such

liabilities are payable to the bearer. Thus, buyers may use such certificates to finance their

consumptions in the DM. There is a public record of banks’ liabilities and asset holdings,

but there is no record keeping of buyers’ or sellers’ deposit holdings and their transaction

records. A historical resemble of this deposit claim is banknotes, and a modern counterpart

is stored-value cards issued by banks.6

There are two frictions associated with this financial intermediation. The first friction is

the cost associated with managing/monitoring the loans. Only active banks can hold assets

and issue deposits; to become active, a bank has to pay a fixed cost of γ each period. There

is also a marginal cost of asset-management: for a banker to hold a units of loans, he needs to
4They also consider capital accumulation for firms and an interbank loan market, which are absent here.
5Of course, in those models one needs to introduce asymmetric information between borrowers and lenders

to give the financial intermediaries a role, while here the return of the Lucas trees is certain. One can interpret
the return of Lucas trees here as the diversified return in those models where each bank represents a large
number of depositors.

6The point here is that the record keeping technology should not be too good to completely destroy the
anonymity of agents in the DM market; otherwise trade can be conducted by using credit.
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pay ψ(a) (as a labor cost) to monitor/manage the entrepreneurs. We assume that ψ(0) = 0,

ψ(a) is strictly increasing and strictly convex, and ψ(Ā) = ∞.

Second, banks have limited liability and cannot commit to their future actions. However,

we assume that if a bank files for bankruptcy, the court could seize ρ proportion of his

claims on the entrepreneurs. Thus, by holding a units of bonds, a bank can credibly pledge

ρ fraction of the returns from the projects he invested in but can take the rest away, a friction

similar to that in Kiyotai and Moore (1997). In contrast, banks can fully pledge the value

of all their tree holdings. Banks maximize their life-time profits with discount factor β.

Finally, we define social welfare in our economy. It is convenient to define

Π(A) = ψ′(A)A− ψ(A). (1)

We assume that

Π(Ā) < γ < Π

[
(ψ′)−1

(
τ

1 + r

)]
. (2)

An allocation consists of both DM trade per successful meeting, denoted by q, and the

number of active banks, denoted by m (and hence the amount of loan holding for each bank

is Ā/m).7 Given an allocation (q,m), the total welfare is given by

W(q,m) = α[u(q)− c(q)]−
[
mψ(Ā/m) +mγ

]
. (3)

The first-best allocation, defined as the allocation (q,m) that maximizes W(q,m) without

any constraint, is denoted by (q∗,m∗) and it satisfies

u′(q∗)− c′(q∗) = 0,

Π(Ā/m∗) = γ.

7Note that, as typically in the Lagos-Wright models, CM production and consumption does not affect
welfare due to linearity.
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Assumption (2) then ensures that m∗ < 1.

3 Bank contracts

In this section we consider equilibrium bank contracts with the depositors. We begin with the

case where there is free entry without any regulations, and highlight the potential inefficiency

under this free-market arrangement. Then, we introduce the charter system with a regulator

whose goal is to maximize the social welfare, and characterize the optimal interventions that

respect voluntary participation and incentive compatibility due to limited commitment of

all agents and anonymity of buyers.

We first describe the time line and the general characteristics of the banking contracts.

The course of events. In the CM, the course of events is as follows:

1. first, banks settle deposit obligations with depositors;

2. then, banks buys loans in competitive market at price φ (in terms of CM good);

3. finally, banks may issue deposit contract, promising a gross return R (in exchange for

CM good).

We use d to denote the total amount of deposits that the bank promises to give out in the

next CM (and hence it will receive d/R in the current CM). Note that there are two different

markets in the CM—a spot market for deposits, and a spot market for assets. Because only

banks can manage Lucas trees to receive dividends, with no loss of generality we assume

that buyers and sellers do not participate in the asset market.8 We also assume that only
8We implicitly assume that there is no friction within the two spot markets in the sense that all agents

(especially buyers and bankers) can make promises to deliver the CM goods within the same-date CM stage
when making the portfolio decisions, and hence, as usual in Lagos and Wright (2005) frameworks, the timing
of the trades within CM does not matter and we can work with the net consumption in the CM for various
agents.
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buyers enter the deposit contracts in the CM but not sellers.

In the DM, upon a successful meeting with a seller, the buyer makes a take-it-or-leave-

it offer, (q, z), where q is the DM consumption and z is the amount of deposit (in terms

of the coming CM goods) transfer. This is feasible because, as mentioned earlier, there is

record-keeping technology under which the accounts of the buyer can be transferred to the

seller.

3.1 Static bank contracts

Here we consider the case where the free entry of banks implies a zero-profit condition, which

in turn implies that banks cannot credibly promise any amount beyond what could be seized

by the court.

As a benchmark, we first begin with the situation where banks cannot issue deposits at

all. In this case, the price of the Lucas trees can be easily pinned down by a no arbitrage

condition (i.e., banks’ profit-maximizing condition) and the number of banks pinned down

by free entry. Note that assumption (2) also ensures that there is sufficient entry to the

banking sector. Indeed, as will be clear below, Π(A)− γ will be the profit for a bank with A

units of trees. Free entry then requires banks to hold A = Π−1(γ) and hence only a measure

m∗ = Ā/Π−1(γ) of banks will enter, where m∗ is also the first-best number of active banks.

Thus, (2) ensures that a unit measure of banks is sufficient to provide free entry. We may

define the fundamental value of trees as

φ∗ =
τ

1 + r
− ψ′

(
Ā

m∗

)
, (4)

which will be the price for the asset if the banks cannot issue any deposits.
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For expositional purposes, we define a variable,

ι ≡ 1 + r

R
− 1.

Given R (and hence ι), ϕ, and φ, and for a given loan holding, a, a given tree holding,

b, and a given deposit issuance, d, (in terms of next CM promised value), a bank’s profit is

given by

π(a, d;φ,R) =
d

R
− φa− γ − ψ(a) + β{τa− d} (5)

= β {ιd+ [τ − (1 + r)φ]a− (1 + r)[ψ(a) + γ]} ,

and is subject to the pledgeability constraint,

d ≤ ρτa. (6)

As mentioned, under static contracts, banks can only pledge what could be seized by the

court, namely, ρ fraction of the dividends of their assets; (6) captures this constraint.

Let A(φ, ι) be the optimal asset holding that maximizes (5) subject to (6). Note that

whenever ι > 0, the constraint (6) is binding and A(φ, ι) is determined by the following

FOC:

−(1 + r)φ+ (1 + ιρ)τ = (1 + r)ψ′ (a) . (7)

When the pledgeability constraint is binding, the bank needs to own capital, φa − d
R

, to

finance some of its asset holdings.
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Now we turn to depositors’ behavior. Given R, a depositor’s problem is given by

max
d≥0

− d

R
+ β {σ[u(q(d))− c(q(d))] + d} , (8)

where c(q(d)) = d if d < c(q∗) and q(d) = q∗ otherwise.

Note that d is the promised value of the deposit in the coming CM. The FOC to (8) is

ι =
σ[u′(q(d))− c′(q(d))]

c′(q(d))
. (9)

Let D(ι), the deposit demand per depositor, be the solution to (9). Note that for any ι > 0,

D(ι) is uniquely determined; when ι = 0, D(ι) is not pinned down but D(ι) ≥ c(q∗). Without

loss of generality we may take D(0) as its minimum. Then, D(ι) is continuous and strictly

decreasing in ι.

Equilibrium then requires market clearing conditions for deposits and assets:

D(ι) = ρτĀ; (10)

mA(ι, φ) = Ā. (11)

Finally, free-entry implies that all active banks have to have zero profits.

Lemma 3.1. There is a unique equilibrium allocation, (m,φ, ι, q, d), in which m = m∗, and

(φ, ι, q, d) is characterized as follows.

(a) Suppose that

ρτĀ ≥ c(q∗). (12)

Then, φ = φ∗, q = q∗, and ι = 0.
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(b) Suppose that (12) does not hold. Then,

φ =
(ιρ+ 1)τ

1 + r
− ψ′

(
Ā

m∗

)
, (13)

with q = c−1(D(ι)) < q∗ and with ι > 0 as the unique solution to

D(ι) = ρτĀ. (14)

Moreover, in this case, the constraint (6) is binding in equilibrium.

According to Lemma 3.1, the equilibrium interest rate on deposits is determined by (14).

When the real pledgeable value of the loans, ρτĀ, is small, ι can be large and possibly larger

than r and hence the deposit contract has a negative net return. However, in a system with

fiat money alone, a monetary equilibrium with zero gross return exists and would dominate

such an equilibrium with banking. In the next section we show that by introducing a banking

authority that imposes a reserve requirement would make the banking system essential in

the sense that it will dominate fiat money in terms of social welfare.

3.2 Reserve requirements

Here we introduce the charter system with a banking authority or regulator. The regulator,

or the central bank, set a reserve requirement. The bank reserve, as in the current system,

should be regarded as a nominal liability of the central bank. As such, the bank can fully

pledge its holding of the reserves. One can think of reserves as an instrument to settle

interbank payments. For now we assume that the reserve money is of constant supply, and

bears no interest, and hence, has a zero gross return. The reserve thus may be regarded as

outside money for the banking system.

Consider a bank that holds a units of loan and z units of reserve (measured in terms of
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coming CM good), and issue d units of deposits. Given the return on deposit, R, and price

for loans, φ, such a bank’s profit is given by

π(a, d, z;φ,R) =
d

R
− φa− z − γ − ψ(a) + β{τa+ z − d} (15)

= β {ιd+ [τ − (1 + r)φ]a− rz − (1 + r)[ψ(a) + γ]} ,

and is subject to the pledgeability constraint and reserve requirement,

d ≤ ρτa+ z, (16)

z ≥ ηd, (17)

where z is the reserve holding. The constraint (17) is the reserve requirement, and, since z

enters (15) as a negative term, (17) is binding. Thus, the profit to a bank is given by

π(a, d, z;φ,R) = β {(ι− ηr)d+ [τ − (1 + r)φ]a− (1 + r)[ψ(a) + γ]} .

Note that d > 0 only if

ι− ηr ≥ 0. (18)

Assuming that this holds, (16) is binding, and hence

π(a, d, z;φ,R) = β

{
ι− ηr

1− η
ρτa+ [τ − (1 + r)φ]a− (1 + r)[ψ(a) + γ]

}
.

This then gives rise to the following FOC:

ι− ηr

1− η
ρτ + [τ − (1 + r)φ] = (1 + r)[ψ′(a) + γ]. (19)

We use A(φ, ι) to denote the solution.

16



A depositor’s problem is still given by (8), and deposit demand, D(ι), remains the same.

For given η and m, the market-clearing conditions are given by

D(ι) =
ρτ

1− η
Ā; (20)

mA(φ, ι) = Ā. (21)

Moreover, we only consider m’s that satisfy

τ ≥ ψ′
(
Ā

m

)
(1 + r). (22)

By (2) and convexity of ψ, there exists a unique m̄ < m∗ such that (22) is satisfied for all

m ∈ [m̄,m∗]. It can be verified that it is never optimal to have m < m̄.

Lemma 3.2. Let m ∈ [m̄,m∗] and let η be given. Assuming that all banks issue deposits,

there is a unique allocation (φ, ι, q, d) that satisfies the market-clearing conditions that can

be characterized as follows:

φ =

(
1 + ρ ι−rη

1−η

)
τ − ψ′

(
Ā
m

)
(1 + r)

1 + r
, (23)

and q = c−1(D(ι)) with ι ≡ ι(η) as the unique ι such that ι ≥ 0 and

D(ι) ≤ ρτ

1− η
Ā, (24)

with equality whenever ι > 0.

Now, to ensure that the allocation that satisfies market clearing is indeed an equilibrium,

we need to check (18). To do so, note that for any η, (24) determines ι uniquely, denoted by
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ι(η). Note that ι(η) is strictly decreasing in η. It is an equilibrium if and only if

ηr ≤ ι(η). (25)

To maximize social welfare, (3), the optimal reserve requirement would maximize the total

liquidity, i.e., the right-side of (24), subject to (25). The following theorem characterize such

optimal reserve requirement.

Theorem 3.1. Assume that ρ > 0. Then, in any equilibrium with free entry, we have

m = m∗. If (12) holds, then the optimal reserve requirement is to set η = 0. Otherwise, the

optimal reserve requirement is to set

η =
ι

r
. (26)

with ι ∈ (0, r) determined by

D(ι) =
rτρĀ

r − ι
. (27)

Compared with (14) in Lemma 3.1, aggregate liquidity shown in (27) is larger (beca-

sue r > ι) due to higher pledgeability of banks’ asset. The reserve requirement improves

banks’ pledgeability because reserve money is more pledgeable than loans. According to

Theorem 3.1, the equilibrium return on bank contracts is always more attractive than a sys-

tem with fiat money, regardless of asset supply. This is in contrast with Lemma 3.1 where

such return can be negative. The reserve requirement in fact performs asset transformation

for the economy with banking—by choosing the optimal level of reserve requirements, the

central bank can ensure that banks will compete to guarantee a positive gross return. This

is a form of asset-transformation; the banking sector combines the reserves and loans to

entrepreneurs into a liquid asset that pays a positive return.

However, despite the optimal use of bank reserves, the total amount of liquidity the

banking sector can provide is still bounded by pledgeable asset supply, as formalized in (27),
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while the banking sector is still fully efficient in terms of asset monitoring. Indeed, it is easy

to show that equilibrium ι is strictly decreasing in ρτĀ and hence equilibrium amount of

deposit holding per depositor is strictly increasing in ρτĀ. In the next section we introduce

a charter system that can relax further the pledgeability constraint.

3.3 Charter system

In many modern banking systems banks are highly regulated and entry is restricted through

permission of a banking authority. One example is the charter system in the US. Here we

show that such a system, by restricting entry and by potentially depriving banking privilege

as a way to discipline bank behavior, can relax the pledgeability constraint and improve the

efficiency of banking system in terms of liquidity provision. Intuitively, such a system can

relax the constraint because it provides a dynamic incentive for banks to repay their deposit

liability. On the one hand, restriction on entry implies that all operational banks would

earn economic profits due to less intensive competition. On the other hand, any bank that

does not repay would be excluded from banking forever. The relaxation of the pledgeability

constraint then allows for more liquidity the banking system can provide, but at the expense

of less efficient monitoring of their assets due to larger than efficient amount of asset holding

for each bank.

We begin with a more relaxed pledgeability constraint and reserve requirement:

d ≤ ρτa+ z + κ, (28)

z ≥ max{0, η(d− κ′)}. (29)

Compare to (16), (28) allows each bank to issue κ units of additional deposits relative to

its pledgeable assets. Compared to (17), (29) allows the first κ′ units of deposits to be

exempted from reserve requirement. As we shall see later, incentive compatibility conditions
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are needed to sustain these relaxed constraints. Obviously there are other ways to relax

these constraints; in particular, one may increase ρ to allow for higher issuance of deposits

for any given level of asset holding. In the Appendix we show that the forms of allowing the

issuance of unsecured deposits and of the reserve requirement given here are in fact optimal.

Note that bank profit is still given by (15); thus, it is always optimal to choose d ≥ κ′,

and to have (29) binding. Thus, the profit is given by

π(a, d, z;φ,R) = β

{
ι− ηr

1− η
ρτa+ [τ − (1 + r)φ]a− (1 + r)[ψ(a) + γ] +

ι− ηr

1− η
(κ− ηκ′) + rηκ′

}
.

Now, given κ and κ′, the market-clearing conditions now become:

D(ι) =
ρτ

1− η
Ā+m

1

1− η
(κ− ηκ′); (30)

mA(φ, ι) = Ā. (31)

We have the following lemma.

Lemma 3.3. Let m ∈ [m̄,m∗] and let η, κ be given. Assuming that all banks issue deposits,

there is a unique allocation (φ, ι, q, d) that satisfies the market-clearing conditions that can

be characterized as follows: φ is still given by (23), and q = c−1(D(ι)) with ι = ι(m, η1, κ) ∈

[0, r) as the unique ι such that ι ≥ 0 and

D(ι) ≤ ρτ

1− η
Ā+m

1

1− η
(κ− ηκ′), (32)

with equality whenever ι > 0. Moreover, the profit for each bank is given by

Π

(
Ā

m

)
− γ +

1

1 + r

[
ι− ηr

1− η
(κ− ηκ′) + rηκ′

]
.

Now, we need to verify two incentive compatibility constraints. First, to convince banks
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to issue deposits beyond κ′, it is necessary that (18) holds. Second, banks have to be willing

to repay the unsecured component, κ. Since the court can only seize ρ proportion of a bank’s

asset and the reserves, the bank has temptation not to repay the κ component of his liability

in (28). To deter this temptation, the regulator can remove the bank charter and stop the

bank from future business if the bank fails to honor his deposit obligations. Thus, if a bank

defaults, he loses the pledged assets, ρτĀ/m, and the reserves, z, as well as the charter to

run the business, beginning from the period when he fails to repay. As a result, a bank is

willing to repay deposits if and only if

−κ− ρτĀ/m− z+
∞∑
t=0

βt
{
Π

(
Ā

m

)
− γ +

1

1 + r

[
ι− ηr

1− η
(κ− ηκ′) + rηκ′

]}
≥ −ρτĀ/m− z.

This constraint can be simplified as

− r − ι

1− η
(κ− ηκ′) + (1 + r)

[
Π

(
Ā

m

)
− γ

]
≥ 0. (33)

We have the following lemma.

Lemma 3.4. Let m ∈ [m̄,m∗] and ι < r be given. The optimal (η, κ, κ′) that solves

S(m, ι) = max
η,κ,κ′

ρτ

1− η
Ā+m

1

1− η
(κ− ηκ′), (34)

subject to (18) and (33) is given by (26) and

κ = κ′ =
(1 + r)

[
Π
(
Ā
m

)
− γ
]

r − ι
. (35)

According to Lemma 3.4, it is optimal to set κ′ = κ, and to set both equal to the

level according to (35). As a result, we may refer to a policy as a pair (m, η, κ), with the

understanding that we set κ′ = κ. Moreover, Lemma 3.4 shows that to solve for optimal
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policy, we may use the following equilibrium condition:

D(ι) ≤ S(m, ι) = rρτ

r − ι
Ā+m

(1 + r)
[
Π
(
Ā
m

)
− γ
]

r − ι
, (36)

and hence the planner’s problem is now to maximize (3) subject to (36).

The following theorem characterizes the optimal charter system.

Theorem 3.2. Assume (A0). There exists an optimal policy (m, η, κ) that maximizes welfare

subject to implementability.

(a) If (12) holds, then (m, , η, κ) = (m∗, 0, 0) is an optimal policy.

(b) Suppose that (12) does not hold. Then, any optimal policy has m < m∗, η > 0, and

κ > 0.

Theorem 3.2 shows that, when designing an optimal charter system, the regulator has to

balance efficiency in asset management and efficiency in liquidity provision. When there is

abundant pledgable assets so that (12) holds, full efficiency can be achieved on both aspects,

according to Theorem 3.2 (a). Otherwise, according to Theorem 3.2 (b), the constrained

efficient arrangement has to sacrifice full efficiency on both aspects. Restricting the number

of charters reduces competition and increases banks’ profits; this is suboptimal regarding

efficiency in asset-management. However, higher profits make it easier for banks’ incentive

constraint, (33), to hold and allow for a positive κ without having the banks defaulting on

their debts. Thus, this financial stability in our framework is possible because of positive

profits banks enjoy, and it is useful to enhance social welfare because banks provides liquidity

services as their liabilities are used as means-of-payments.

Since the optimal κ regulates the amount of deposits a bank can issue through the

pledgeability constraint (28), one can interpret the policy parameter κ as an overall leverage

ratio requirement. Again, consider the balance sheet of each bank in equilibrium, where the
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value of the asset is given by τ Ā
m

. Then the leverage ratio, defined as the ratio between

liability to asset, would be

L =
ρτ Ā

m
+ z + κ

τ Ā
m
+ z

.

Theorem 3.2 (2) then implies that this leverage ratio would be higher than under the free

entry when liquidity is tight.

In contrast to the common capital requirements that depend only on the asset characteris-

tics a bank holds, optimal κ also depends on other bank characteristics such as ρ (proportion

of asset that can be secured for repayment) and ψ (marginal cost of asset-management). Our

framework then implies a holistic approach to capital requirement that would take both id-

iosyncratic feature of a specific bank as well as the global environment into account when

designing the optimal capital regulations.

We emphasize that the charter system can implement the optimal equilibrium uniquely

by allowing the issuance of unsecured debt and terminating banks that fail to repay deposits.

In principle, the regulator can simply restrict the number of banking licences and the market

will demand an appropriate pledgeability constraint accordingly. However, in that case there

would be multiple equilibrium: any κ below the highest level consistent with the incentive

compatibility constraint (33) can be an equilibrium, including κ = 0.

4 Heterogenous bank sizes and profits

Our basic framework can be readily extended to discuss many issues, including heterogeneity

of bank sizes, profits, and leverage ratios. Here we consider heterogenous banks in terms of

their efficiency in asset management. Specifically, for each n ∈ {1, ..., N}, the economy has

measure µn of type-n banks with
∑N

n=1 µn = 1, and the cost function for a bank of type-n

is λnψ(a) + γ. The parameter λn is then a measurement of how efficient type-n banks are

23



in terms of asset management. We assume that λn ∈ [1, λ̄] is strictly increasing in n, and

hence type-1 banks are the most efficient ones while type-n are the least efficient ones.

4.1 Efficient asset management

First we consider efficient asset management in this environment. Without deposit issuance,

efficient asset management requires the measures of type-n active banks, denoted by mn, to

solve

min
mn∈[0,µn],An≥0,n=1,...,N

N∑
n=1

[mnγ + λnψ(An)] (37)

s.t.
N∑
n=1

mnAn = Ā.

Parallel to (2), to ensure that there is sufficient entry we assume that

N∑
n=1

µnΠ
−1(γ/λn) > Ā. (38)

To characterize the solution to (37), first for each m = (m1, ...,mN) with m1 > 0, we define

{An(m)}Nn=1 as the solution to

N∑
n=1

mnAn = Ā, λ1ψ
′(A1) = λnψ

′(An) if mn > 0, An = 0 otherwise. (39)

We have the following claim.

Claim 4.1. Assume (38). The solution to (37) is unique, denoted by m∗, is characterized
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by n̄ ∈ {1, ..., N} and 0 < m∗
n̄ ≤ µn̄ such that

m∗ = (µ1, .., µn̄−1,m
∗
n̄, 0..., 0), (40)

λnΠ(An(m
∗)) ≥ γ, for all n = 1, ..., n̄, (41)

λnΠ(An̄(m
∗)) = γ if mn̄ < µn̄, (42)

λnΠ(An(m
∗)) < γ, for all n = n̄+ 1, ..., N. (43)

4.2 Reserve requirement

Now we consider only reserve requirements with free entry. Given R (and hence ι) and φ,

and for a given asset holding, a, reserve holding, z, and deposits giving out, d, (in terms of

next CM promised value), the profit of a type-n bank is given by

πn(a, z, d;φ,R) = β {ιd− [(1 + r)φ− τ ]a− rz − (1 + r)[λnψ(a) + γ]} ,

and is subject to the pledgeability constraint and reserve requirement,

d ≤ ρτa+ z, (44)

z ≥ ηd. (45)

Note that the reserve requirement is not size-dependent because η is the same across banks

(though the amounts of reserves held are different across banks because deposits issued are

heterogenous). As will be clear later, making the reserve required ratio size-dependent will

not improve welfare, because it does not affect aggregate liquidity. As before, to ensure that

banks issue deposits, we need (18) to hold. Assuming (18), this gives rise to a well-defined
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asset demand An(φ, ι, η) determined by the following FOC:

−(1 + r)φ+

[
1 +

ρ(ι− rη)

1− η

]
τ = (1 + r)λnψ

′ (a) . (46)

That is,

An(φ, ι, η) = (ψ′)−1

−(1 + r)φ+
[
1 + ρ(ι−rη)

1−η

]
τ

(1 + r)λn

 . (47)

Let φ∗
m be the unique solution to

N∑
n=1

mnAn(φ, 0, 0) = Ā.

As before, we may call φ∗
m∗ the fundamental value of the asset, the price for the trees if banks

were not allowed to issue deposits; in that situation the measures of active banks would be

given by m∗.

Let mn be the measure of active type-n banks, n = 1, ..., N . Then, equilibrium objects

include asset price φ, returns to deposits ι, and the measure of active type-n banks, mn

for each n = 1, ..., N (mn = 0 means that no type-n bank is active). The market-clearing

conditions and free entry condition are given by (note that D(ι) is still given by ( 9))

D(ι) =
ρτ

1− η
Ā; (48)

N∑
n=1

mnAn(φ, ι, η) = Ā; (49)

λnΠ[An(φ, ι, η)] ≥ γ if mn > 0, λnΠ[An(φ, ι, η)] ≤ γ if mn < µn. (50)

We have the following lemma.

Lemma 4.1. Assume (38) and let η be given. There exists a unique allocation that satisfies

market clearing. The equilibrium measures of active banks are given by m∗ and equilibrium
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asset holding is given by An(m∗) according to (39) for type-n banks.

Lemma 4.1 shows that even with heterogenous banks, the result that efficiency of asset-

management is achieved without charters still holds. However, here we obtain an endogenous

distribution of bank balance sheets. Specifically, (39) implies that An(m∗) > An+1(m
∗) for

all n = 1, ..., n̄−1, and hence, under free entry, more efficient banks are also larger in terms of

asset holdings. Moreover, the FOC also implies that the profit for bank of type-n is given by

λnΠ[An(φ, ι)]−γ, and hence Claim 4.1 implies that even under the efficient arrangement for

asset management, some banks may make positive profits. Strict convexity also implies that

λnΠ(An(m
∗)) > λn+1Π(An+1(m

∗)) for all n = 1, ..., n̄ − 1, and hence, more efficient banks

also make higher profits. In what follows, we assume that the solution satisfies m∗
n̄ < µn̄.

Theorem 4.1. Assume that ρ > 0. Then, in any equilibrium with free entry, we have

m = m∗. If (12) holds, then the optimal reserve requirement is to set η = 0. Otherwise, the

optimal reserve requirement is to set (26) with ι ∈ (0, r) determined by

D(ι) =
rτρĀ

r − ι
. (51)

Remark 4.1. It is straightforward to see that allowing for varying η across bank types does

not increase welfare.

4.3 Heterogenous bank leverages

Here we consider the charter system. We assume that bank efficiency, λn, is observable.

Given this assumption, the policy parameters also include a measure of banks for each type,

m = (m1, ...,mN). The pledgeability and reserve requirements for bank of type n are as
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follows:

d ≤ ρτa+ z + κn, (52)

z ≥ max{0, η(d− κ′n)}. (53)

As before, we assume that κ′n ≥ κn for each n = 1, ..., N . Note that the demand for assets

from banks of type-n is still given by (47) (since κn and κ′n do not affect the FOC). For given

m and {κn}, the market-clearing conditions are given by (note that D(ι) is still given by

(9))

D(ι) =
ρτ

1− η
Ā+

N∑
n=1

mn
κn − ηκ′n
1− η

; (54)∫ N

n=1

mnAn(φ, ι, η) = Ā. (55)

We have the following lemma.

Lemma 4.2. Let m ≤ m∗ with m1 > 0 and {κn} be given. There is a unique allocation

(φ, ι, q, d) that satisfies the market-clearing conditions, and can be characterized as follows:

An = An(m),

φ =

[
1 + ρ(ι−rη)

1−η

]
τ − (1 + r)λ1ψ

′(A1)

1 + r
, (56)

D(ι) ≤ ρτ

1− η
Ā+

N∑
n=1

mn
κn − ηκ′n
1− η

, with equality if ι > 0. (57)

Moreover, the profit for bank of type n is given by

λnΠ(An(m))− γ +
1

1 + r

[
ι− ηr

1− η
(κn − ηκ′n) + rηκ′n

]
. (58)
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The assumption that m1 > 0 is with no loss of generality; if, instead, m1 = 0 but mn > 0

for some other n, then we can simply replace 1 by n in (56) and (57). Note also that since

we are only concerned with market clearing and not entry, banks may make negative profits

(because of the fixed cost γ). However, a full equilibrium analysis also requires incentive

compatibility for repayment of κ, which would require nonnegative profits. As before, banks

fail to repay depositors will be closed and hence lose their future profits. Thus, given a

policy, m and {(κn, κ′n)}, a bank of type-n is willing to repay deposits if and only if

−κn +
∞∑
t=0

βt
{
λnΠ(An(m))− γ +

1

1 + r

[
ι− ηr

1− η
(κn − ηκ′n) + rηκ′n

]}
≥ 0.

This constraint can be simplified as

− r − ι

1− η
(κn − ηκ′n) + (1 + r)[λnΠ(An(m))− γ] ≥ 0. (59)

The regulator then chooses policy parameters to maximize the social welfare. For a given

policy m and {κn} and the DM trade q, the regulator maximizes the welfare given by

σ[u(q)− c(q)]−
N∑
n=1

mn [λnψ(An(m))− γ] , (60)

subject to equilibrium implementation c(q) = D(ι(m, {κn})) and incentive compatibility

condition (59). The following lemma characterize optimal {κn} for a given m.

Lemma 4.3. Let m be given such that

λnΠ(An(m)) ≥ γ for all n with mn > 0.

For any given ι, it is optimal to set η according to (26), and to set κ′n = κn.
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(a) Let κ̂n(m) = 1+r
r
[λnΠ(An(m))− γ] for each n = 1, ..., N . If

c(q∗) ≤ ρ
τ

1 + r
Ā+

N∑
n=1

mnκ̂n(m), (61)

then ι = 0 and q = q∗ in equilibrium under η = 0.

(b) Suppose that (61) does not hold. Then, there exists an optimal {κn} under m, denoted

by {κ̄n(m)}, such that the constraint (59) is binding for all n with mn > 0.

Now we are ready to characterize optimal policy.

Theorem 4.2. Suppose that ρ > ρ̃. There exists an optimal policy m and {κn}; in any

optimal policy, we have that m ≤ m∗, and that mn = µn or mn = 0 except for at most one

n.

(a) Suppose that (61) holds for m = m∗, then (m∗, {κ̂n(m∗)}) is an optimal policy.

(b) Suppose that (61) does not hold for m = m∗.

(b.1) Any optimal policy (m, {κ̄n(m)}) have mn̄ < m∗
n̄.

(b.2) Suppose that ψ(A) = Ax for some x > 1. Then, for any optimal policy (m, {κ̄n(m)}),

Ln =
ρτAn(m) + zn + κ̄n(m)

τAn(m) + zn

is strictly decreasing in n.

Theorem 4.2 (b.1) shows that unless the first-best is implementable, restriction in banking

licence is optimal. This generalizes Theorem 3.2. Moreover, (b.2) shows that under the

optimal arrangement, not only the regulator would allow higher unsecured deposit issuance

for larger banks, the ratio between total debt and total asset also increases with the bank

size; that is, it is optimal to allow for higher leverage ratio requirements for larger banks. The

underlying intuition is this. When liquidity is tight, it is desirable to allow for more unsecured
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deposit issuance to banks with higher profits (or with potential for higher profits). Because

larger banks are more efficient in terms of asset management, they also have potential to

obtain higher profits.

5 Moral hazard

We have shown that when designing an optimal policy in the presence of limited commitment

of banks, the regulator needs to trade off efficiency and stability. Here we introduce another

friction that is more akin the conventional moral hazard issue discussed in the literature.

Our main focus is to what extent the competitive market can correct this issue and how this

issue would interact with the optimal overall leverage ratio requirements we obtained in the

last section.

Suppose that the return to a bank’s loan holdings are subject to moral hazard and

the bank may gamble on the assets. There are two benefits when banks commit gambling

behavior. First it lowers the cost of managing assets. By gambling the cost of managing a

units of assets is ψ(a)− ea+γ. Second, while by gambling the return is stochastic and lower

on average, when it succeeds, banks receive private returns. Specifically, with probability

q ∈ (0, 1) the return from gambling will be τh > τ , and with probability 1 − q it will be

τ` < τ . When the return τh realizes, the difference τh − τ is not observable and hence is

the private gain to the bank. The decision to gamble is not observable, but when return τ`

occurs, it is observable to all. We assume that

(1 + r)e < τ − [qτh + (1− q)τ`]. (62)

Condition (62) ensures that no gambling, or prudent behavior, is socially beneficial.
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5.1 Static contracts

First we begin with the case where there is only reserve requirement and hence only static

contracts are feasible. We shall impose free entry later, but for now assume that the number

of active banks is given by a fixed m. Even in the absence of regulation, depositors can

potentially discipline the bank not to gamble by not depositing in a bank without sufficient

capital in place. In this subsection, we focus on equilibrium in which no banks gamble; we

shall return to equilibria with gambling toward the end of the section.

To induce prudent behavior, the constraint (6) may no longer be appropriate as it may

not induce efforts. Indeed, this is the case when ρ is in a certain range, as will be shown

later. The market can discipline banks by demanding additional capital requirement. A

more general pledgeability constraint thus is:

d ≤ ρτ`a+ ω(τ − τ`)a+ z, (63)

for some ω ∈ [0, ρ]. We still keep the reserve requirement as in (17). Note that when ω = ρ,

(63) coincides with (6). The parameter ω also has a simple interpretation: 1 − ω stands

for the share of the additional return that goes to the bank by being prudent. Thus, ω

basically represents a capital requirement in which lower ω means that banks have to place

more capital to finance their asset holdings. As we shall see later, when ω = 0, all banks are

willing to be prudent.

Here we give a remark about what we mean by equilibrium that induces prudent behavior

under moral hazard, or a prudent equilibrium. The market would discipline the banks by

not depositing in banks that do not satisfy the appropriate pledgeability constraints. Thus,

in equilibrium the pledgeability constraint (63) must satisfy two conditions: first, it has to

ensure that the banks are willing to be prudent; second, no banks can credibly issue more

deposits than what the constraint requires. Equivalently, equilibrium requires the highest
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ω under which no bank has incentive to gamble. It has to be the highest as for otherwise

banks can credibly deviate to issue more deposits than the constraint (63) requires.9

To do this, we modify our previous analysis and obtain market clearing conditions. Recall

that we assume a fixed number of active banks, m. By being prudent, the bank profit is

obtained by substituting (63) at equality into (5) (as before, whenever ι ≥ 0, it is without

loss of generality to assume that (63) is binding):

π(a, z, d;φ,R) =
d

R
− z − φa− [ψ(a) + γ] + β{τa+ z − d} (64)

= β

{
ι− rη

1− η
[ρτ` + ω(τ − τ`)]a+ [τ − (1 + r)φ]a− (1 + r)[ψ(a) + γ]

}
.

The FOC for (64) is thus

ι− rη

1− η
[ρτ` + ω(τ − τ`)] + [τ − (1 + r)φ] = (1 + r)ψ′ (a) .

Thus, the equilibrium price for trees is pinned down by market-clearing, a = Ā/m:

φ =

ι−rη
1−η [ρτ` + ω(τ − τ`)] + τ − ψ′

(
Ā
m

)
(1 + r)

1 + r
; (65)

Note that, as before, the bank profit is then given by Π(Ā/m)− γ. Given φ, the equilibrium

ι is then the unique solution to (with equality whenever ι > 0)

D(ι) ≤ ρτ` + ω(τ − τ`)

1− η
Ā. (66)

Finally, we also need to consider the profit to a bank if it gambles, taking φ as given. Though

a gambling bank may issue deposits constrained by (63) (since the gambling decision is not
9Obviously, here we assume monotonicity in terms of incetivising banks to be prudent in terms of ω, a

fact that will be confirmed in our equilibrium analysis.
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observable), he only pays d` = ρτ`a + z to depositors once the return turns out to be τ`;

hence, the current bank profit is given by (again, when ι ≥ 0, we may assume that (63) is

binding)

πs(a, z, d;φ,R) =
d

R
− z − φa− [ψ(a)− ea+ γ] + β{[qτh + (1− q)τ`]a+ z − qd− (1− q)d`}

= β


ι−rη
1−η [ρτ` + ω(τ − τ`)]a+ [τ − (1 + r)φ]a− (1 + r)[ψ(a) + γ]

+[qτh + (1− q)τ` − τ + (1− q)ω(τ − τ`)]a+ (1 + r)ea]

 . (67)

The FOC implies that the asset holding for a gambling bank is given by As that solves

ι− rη

1− η
[ρτ`+ω(τ−τ`)]+[τ−(1+r)φ]+[qτh+(1−q)τ`−τ+(1−q)ω(τ−τ`)] = (1+r)[ψ′ (As)−e].

Hence, the bank profit under shirking is given by Π(As) − γ. Thus, to ensure that banks

have no incentive to shirk, we the following condition:

Π(Ā/m)− Π(As) ≥ 0. (68)

To summarize, equilibrium conditions then consist (65), (66), and (68). We have the following

lemma.

Lemma 5.1. Consider the static contract. In equilibrium m = m∗. The highest ω under

which no bank gambles in equilibrium is given by min{ω1, ρ} with

ω1 ≡ 1− (1 + r)e+ q(τh − τ)

(1− q)(τ − τ`)
. (69)

It is also straightforward to verify from the proof of Lemma 5.1 that banks have no

incentive to gamble if and only if ω ≤ min{ω1, ρ} in equilibrium, and hence the highest ω

is also one consistent with the incentive to issue deposits. Moreover, since equilibrium ι is
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decreasing in ω, the highest ω is also optimal from the depositors’ perspective.

Lemma 5.1 shows that the market can discipline banks to be prudent by demanding

additional capital requirement parameterized by ω1. When ρ is relatively small, i.e., when

ρ ≤ ω1, the highest ω consistent with efforts is ρ and the presence of moral hazard does not

affect the equilibrium allocation. In contrast, when ρ is relatively large and hence ω1 < ρ,

the presence of moral hazard does limit the ability of the banks to provide liquidity. Finally,

under fee entry, m = m∗; that is, with an appropriate capital requirement to counter the

moral hazard problem, the equilibrium measure of banks is still m∗.

5.2 Charter system with moral hazard

Now we turn to the charter system with moral hazard. Relative to the literature, the novelty

here is to study the two capital regulations together, one parameterized by ω and the other

by κ. For simplicity we assume that for the given κ the reserve requirement is given by (29)

with κ′ = κ. In the Appendix we show that this is in fact optimal. Under the charter system

with moral hazard, the general pledgeability constraint is given by:

d ≤ ρτ`a+ ω(τ − τ`)a+ z + κ. (70)

Again, here we consider only equilibria that induce prudent behavior. Thus, the policy

parameter now becomes (m, η, κ, ω).

First we do the equilibrium analysis for a given policy parameter. By being prudent, the

bank profit is given by (assuming that η ≤ ι/r so that all constraints are binding and banks
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are willing to hold deposits):

π(a, z, d;φ,R) =
d

R
− z − φa− [ψ(a) + γ] + β{τa+ z − d} (71)

= β

{
ι− rη

1− η
[ρτ` + ω(τ − τ`)]a+ ικ+ [τ − (1 + r)φ]a− (1 + r)[ψ(a) + γ]

}
.

The profit to each bank in equilibrium is then Π(Ā/m)−γ+βικ. Given the policy parameter

(m, η, κ, ω), the equilibrium ι that satisfies market clearing is then the unique solution to

(with equality whenever ι > 0)

D(ι) ≤ ρτ` + ω(τ − τ`)

1− η
Ā+mκ. (72)

Again, note that the only difference between (66) and (72) is the term mκ.

Now we turn the incentive compatibility of banks to be prudent and to repay κ. We

assume that banks with return τ` will have their charters terminated. That is, losing the

charter value is used as a threat by the regulator to prevent gambling behavior, and it is

easy to see that this is the optimal punishment. Thus, a gambling bank with asset holding

a only pays d` given by

d` = ρτ`a+ z (73)

to depositors under return τ`. Thus, the profit to a gambling bank is given by

πs(a, z, d;φ,R) (74)

=
d

R
− z − φa− [ψ(a)− ea+ γ] + β{[qτh + (1− q)τ`]a+ z − qd− (1− q)d`}

= β


ι−rη
1−η [ρτ` + ω(τ − τ`)]a+ ικ+ [τ − (1 + r)φ]a− (1 + r)[ψ(a) + γ]

+(1− q)κ+ [qτh + (1− q)τ` − τ + ω(1− q)(τ − τ`)]a+ (1 + r)ea

 .

Again, note that the only difference between (74) and (67) is the term β(ι + 1 − q)κ and

36



hence has no bearings on FOC; so the optimal asset holding is still given by As and the

profit is Π(As)− γ + β(1− q + ι)κ.

To ensure that banks follow equilibrium behavior, we have two incentive compatibility

conditions, one for repaying κ, the other for being prudent. Since we assume that in equi-

librium all banks are prudent, the first one is the same as before, (33) (with κ′ = κ though);

note that, however, equilibrium ι is affected by ω through (72). Now, since a shirking bank

will be closed only if the return τ` realizes, the second condition is new and is given by

[Π(As)− γ] + βικ+ q
β

1− β

[
Π

(
Ā

m

)
− γ +

ι · κ
1 + r

]
+ (1− q)βκ

≤ [Π(Ā/m)− γ] + βικ+
β

1− β

[
Π

(
Ā

m

)
− γ +

ι · κ
1 + r

]
.

The above condition is obtained by checking by the one-shot deviation. After some algebra,

this is equivalent to

−
[
Π(As)− Π(Ā/m) + β(1− q)κ

]
+
β(1− q)

1− β

[
Π

(
Ā

m

)
− γ +

ι · κ
1 + r

]
≥ 0. (75)

Theorem 5.1. Let m < m∗ be given. Suppose that ρ ∈ (0, 1). The optimal capital require-

ment is such that ω = min{ρ, ω1} given by (69), and κ is the highest κ that satisfies (33)

with ι determined by (72) and with ω = min{ρ, ω1}.

Compared against Lemma 5.1, Theorem 5.1 shows that under the charter system the

optimal ω is the same as that under market-discipline, and that it is optimal to use the

dynamic incentive to increase κ and κ only. Note that, however, optimal κ is indeed affected

by moral hazard, since the choice of ω does affect the amount of liquidity banks can provide

through asset prices and returns on deposits. Moreover, since Theorem 5.1 holds for any given

m, it follows that we can extend Theorem 3.2 to the case with moral hazard. In particular,

Theorem 5.1 states that the highest κ exists for which (33) holds with ι determined by (72)
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and with ω = ω1. One can then solve for the optimal m and, as in Theorem 3.2, we will

have m < m∗ and κ > 0 unless the first-best is implementable under m = m∗ and κ = 0, as

well as ω = ω1.

But how would the optimal m, and hence optimal κ and profits vary with the moral

hazard issue? The following theorem gives a partial characterization when the parameters

are close to the region where the first-best is implementable.

Theorem 5.2. Suppose that ψ(A) = λAx/x, x > 1, and c(q) = q, and that

ι+
D′(ι)

D(ι)
is strictly increasing. (76)

If the first-best is not implementable under market discipline, then, as τh increases, optimal

m decreases, and optimal profit increases.

Examples of utility functions that satisfy (76) include the functional form u(q) = θqα/α

for any α ∈ (0, 1). As τh increases and hence the moral hazard issue becomes more serious,

ω1 decreases as well by Theorem 5.1. This directly decreases the amount of liquidity banks

can provide. However, Theorem 5.2 shows that the optimal response to such change is to

decrease m, which allow banks to acquire higher profits, and, therefore, permits the regulator

to set the highest incentive feasible κ. This implies a nontrivial interaction between the

conventional capital requirement designed to counter the moral hazard issue and the overall

leverage ratio requirement in our charter system, with the aim to balance stability and

liquidity. Crucially, this result follows from our explicit treatment of liquidity provision from

banks. The threat to removing charters is used to control for banks’ incentive to be prudent,

as well as to provide sufficient liquidity that is otherwise tightened up by preventing banks

from gambling.
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5.3 Is gambling always bad?

Up to now we have focused on equilibrium with regulations that induce banks to be prudent,

and have shown that the best equilibrium with prudent banks requires the capital require-

ment be given by ω = ω1 even under the charter system. However, this can be very costly

in terms of liquidity provision; in particular, when τh is high so that ω1 is close to zero, it

seems inefficient to insist on prudent behavior. To investigate whether it is indeed optimal

for banks not to gamble, it is then necessary to understand whether an equilibrium with

banks gambling exists in the first place. For the analysis below, we first begin with a given

m.

In contrast to the previous section, when the regulator expects the banks to gamble, the

pledgeability constraint has to take this into account. In particular, since the returns are

now stochastic, the repayment should also depend on the bank return. Specifically, when a

bank with asset holding a has return τh, he can repay up to

dh = ρτa+ z + κ,

where κ is the unsecured lending; note that, as assumed earlier, the court cannot seize the

difference τh − τ . When the return is τ`, the bank can only repay

d` = ρτ`a+ z + κ.

Note that this differs from (73) by κ as gambling is expected and the regulator still requires

the repayment κ to stay in business. Thus, the pledgeability constraint is bounded by the

expected amount the bank can repay, and hence is given by

d ≤ ρ[qτ + (1− q)τ`]a+ z + κ, (77)
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and, as in the previous section, we set the reserve requirement as (29) with κ′ = κ.

Note that here there is no extra capital requirement than what the court could enforce

under the assumption that all banks gamble. Thus, the profit for a gambling bank is given

by

πs(a, d;φ,R) =
d

R
− z − φa− [ψ(a)− ea+ γ] + β{(qτh + (1− q)τ`)a+ z − qdh − (1− q)d`}

= β


ι−rη
1−η ρ[qτ + (1− q)τ`]a+ [qτh + (1− q)τ` − (1 + r)φ]a

+ικ− (1 + r)[ψ(a)− ea+ γ]

 . (78)

Note that the demand for deposits is not affected by the stochastic returns since both buyers

and sellers are only concerned with the expected return in the CM. Thus, the market clearing

condition for deposits,

D(ι) ≤ ρ
[qτ + (1− q)τ`]

1− η
Ā+mκ, (79)

with equality whenever ι > 0.

Finally, banks need incentives to gamble. Indeed, if q = 0, then no bank is willing to

gamble by (62), as all the additional return apart from τ` is to the banks and (62) ensures

that such gain is higher than the saved management cost. In general, we need to consider

the profit for a bank not to gamble under pledgeability constraint (77), which is given by

πp(a, d;φ,R) =
d

R
− z − φa− [ψ(a) + γ] + β{τa+ z − dh} (80)

= β


ι−rη
1−η ρ[qτ + (1− q)τ`]a+ [qτh + (1− q)τ` − (1 + r)φ]a+ ικ

+[τ − qτh − (1− q)τ`)]a− ρ(1− q)(τ − τ`)a− (1 + r)[ψ(a) + γ]

 .

Now, compare (80) against (78), a prudent bank loses on two grounds: first, since a bank

with return τ repays more and a prudent bank always has return τ , this hurts the profit of a

prudent bank, and this is reflected in the term βρ(1− q)(τ − τ`)a; second, the prudent bank
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has a higher variable cost. The only benefit is higher expected return, reflected in the term

β[τh− qτ − (1− q)τ`)]a. Taking φ as given, the FOC then gives an optimal asset holding for

a prudent bank, Ap. Incentive compatibility then requires

Π(Ap) ≤ Πs(Ā/m).

We have the following theorem.

Theorem 5.3. Let m ≤ m∗ be given. Then, an equilibrium with all banks gambling exists

and is unique if and only if ω1 ≤ ρ, where ω1 is given by (69). Moreover, optimal gambling

equilibrium yields a higher welfare than optimal prudent equilibrium if and only if first-best

is not implementable under optimal prudent equilibrium and

ω1 < ρq. (81)

Theorem 5.3 shows that a gambling exists whenever the capital requirement is binding.

Thus, as long as the regulator does not impose additional capital requirement than ρ, one

should expect a gambling equilibrium. It also gives a full characterization for when such

gambling equilibrium is better than imposing additional capital requirements to induce pru-

dent behavior. Intuitively, this would be the case when the additional capital requirement

is too stringent; inequality (81) gives a precise condition for this.

6 Concluding remarks

In this paper we take the liquidity role of banks seriously and derive optimal banking reg-

ulations. We have shown that when banks are subject to limited commitment, an overall

leverage ratio requirement with restricted banking licence can be optimal for welfare in a
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charter system. In particular, we have shown that under such arrangement, banks have

higher profits and higher leverage ratio relative to the laissez-faire economy without banking

regulations. This is broadly consistent with the contrast in these two dimensions for the US

banking industry entering the Great Depression (an era where no serious regulations) and

the industry entering the recent Financial Crisis (an era when more regulations are in place).

Compared to most of the literature, we have shown that considerations for liquidity pro-

vision can change many conventional wisdom about banking regulation. First, we show that

when moral hazard issue becomes more serious, while it is optimal to increase asset-specific

capital requirement, the overall leverage ratio requirement should not be proportionally in-

creased, and it is in fact optimal to allow higher profits for banks to make them more

trustworthy. Second, while it is true that in our model under deposit insurance moral haz-

ard would require capital requirement from the regulator, it is not always the case that the

regulator should discourage gambling.
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Proofs of Lemmas and Theorems

Proof of Lemma 3.1 (a) In equilibrium A(ι, φ) = Ā/m∗. Taking ι = 0 and a = Ā/m∗

into (7), we obtain φ given by (4). Finally, (12) ensures that (10) is satisfied with D(0) = q∗.

(b) Again, in equilibrium A(ι, φ) = Ā/m∗, and substituting a = Ā/m∗ into (7) we obtain φ

given by (13). Since D(ι) is strictly decreasing in ι there is a unique solution to (10): when

ι = 0, since (12) does not hold, the left-side of (10) is strictly greater than the right-side.

Proof of Lemma 3.2 Since market clearing requires each bank to hold Ā/m units of

assets, plugging a = Ā/m into (19) then implies (23). The rest of the argument is similar to

Lemma 3.1.

Proof of Theorem 3.1 Note that when (12) holds the economy is at the first-best. So

suppose that (12) does not hold. This implies that the unique solution to (27) satisfies

ι ∈ (0, r), denoted ι̃. Set η̃ = ι̃/r. We first claim that ι(η̃)/r = η̃, or, equivalently,

ι(η̃) = ι̃.

By (24), it is sufficient to show that

D(ι̃) =
ρτ

1− η̃
Ā =

ρτ

1− ι̃/r
Ā,

which holds since ι̃ satisfies (27).

Proof of Theorem 3.2 (b) Since (12) does not hold, Lemma 3.1 (b) implies that under

(m,κ) = (m∗, 0) the equilibrium allocation has q < q∗. We show that any optimal policy

has m < m∗.
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Now, define

S(m, ι) = max
η,κ,κ′

ρτ

1− η
Ā+m

1

1− η
(κ− ηκ′),

subject to (18) and (33). From Theorem 3.1, η = ι
r,

and from Lemma 3.4, κ = κ′ =

(1+r)
[
Π
(

Ā
m

)
−γ

]
r−ι , which implies that

S(ι,m) = max
κ

rρτ

r − ι
Ā+m

(1 + r)
[
Π
(
Ā
m

)
− γ
]

r − ι
.

It is easy to verify that for any m, the optimal κ and ι is determined by D(ι) ≤ S(ι,m) and

with equality whenever ι > 0. Let ι(m) be the unique solution.

Now, for all ι < r,

∂

∂m
S(ι,m∗) =

1 + r

r − ι

[
Π

(
Ā

m∗

)
− Π′

(
Ā

m∗

)(
Ā

m∗

)
− γ

]
= −1 + r

r − ι

[
ψ′′
(
Ā

m∗

)
Ā2

(m∗)2

]
< 0.

The second equality is obtained by using the fact that when m = m∗, banks have zero profits

and Π
(
Ā
m∗

)
− γ = 0. Thus, when ι(m∗) > 0, for m < m∗ but sufficiently close to m∗, we

have ι(m) < ι(m∗) and D(ι(m)) > D(ι(m∗)).

Before we prove Lemma 4.1, we first prove Claim 4.1.

Proof of Claim 4.1 It is easy to verify that for any given m, [A1(m), ...., AN(m)] given

by (39) uniquely solves

min
(A1,...,AN )

N∑
n=1

[mnλnψ(An) +mnγ]
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s.t.
∑N

n=1mnAn = Ā. Moreover, these solutions can be characterized as follows: for any m,

define C(m) as the solution to

N∑
n=1

mn(ψ
′)−1

(
C

λn

)
= Ā. (82)

C(m) is well-defined by strict convexity of ψ. Then,

An(m) = (ψ′)−1

(
C(m)

λn

)
if mn > 0, An(m) = 0 otherwise.

Now, we can compute the derivatives:

∂

∂mn

C = − An(m)∑N
j=1

mj

λjψ′′[Aj(m)]

, (83)

∂

∂mn

An′ = − An(m)∑N
j=1

mj

λjψ′′[Aj(m)]

1

λn′ψ′′[An′(m)]
. (84)

Now, define

Ψ(m) ≡
N∑
n=1

[mnλnψ(An(m)) +mnγ] , (85)

and we can rewrite the original problem, (37), as

min
m

Ψ(m) s.t. mn ≤ µn, n = 1, ..., N.
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By (84), we have

∂

∂mn

Ψ(m) = λnψ(An(m)) + γ −
N∑
k=1

mkλkψ
′(Ak(m))

An(m)∑N
j=1

mj

λjψ′′[Aj(m)]

1

λkψ′′[Ak(m)]

= λnψ(An(m)) + γ − λnψ
′(An(m))An(m)

∑N
k=1mk

1
λkψ′′[Ak(m)]∑N

j=1
mj

λjψ′′[Aj(m)]

= −λn[ψ′(An(m))An(m)− ψ(An(m))] + γ

= −λnΠ(An(m)) + γ, (86)

where the second equality follows from (39). Since for any m, λnΠ(An(m)) is strictly de-

creasing in n among which mn > 0. This implies the optimal solution has the form given by

(40)-(43). Note that (38) guarantees that n̄ ≤ N .

Proof of Lemma 4.1 We show that the unique equilibrium is given by m = m∗, and

An = An(m
∗). Notice that there is a unique ι > 0 which is determined by

D(ι) =
ρτ

1− η
Ā.

It is straightforward to verify that the market clearing and free entry conditions are satisfied.

Now, uniqueness of allocation follows from the fact that market-clearing for asset market

and the FOC for asset holdings imply (39), and monotonicity of λnΠ(An(m)).

Proof of Lemma 4.3 Let κ̄ =
∑N

n=1mn(κn − ηκ′n). Define

S(ι,m) = max
η,κn,κ′n

ρτ

1− η
Ā+

κ̄

1− η
,

subject to

− r − ι

1− η
κ̄+ (1 + r)

N∑
n=1

mn [λnΠ(An(m))− γ] ≥ 0. (87)
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This implies that

S(ι,m) =
ρτ

1− η
Ā+

(1 + r)
∑N

n=1mn [λnΠ(An(m))− γ]

r − ι

=
ρτ

1− η
Ā+

(1 + r)[−Ψ(m) +
∑N

n=1mnλnψ
′(An(m))An(m)]

r − ι
,

where Ψ is given by (85). Note that, for any fixed m, S(ι,m) is strictly increasing in ι.

For each n, let

κ̄n(m, ι) =
(1− η)(1 + r) [λnΠ(An(m))− γ]

r − ι
.

Fixed some m, we consider two cases.

(i) If D(0) ≤ S(0,m), then q∗ is implementable under η = 0 with κn = κ̄n(m, 0), which is

optimal under m.

(ii) Otherwise, let ι(m) > 0 be the unique solution to

D(ι) = S(ι,m). (88)

Then, κn = κ̄n(m, ι(m)) is optimal under m.

Proof of Theorem 4.2 (b) Let ι(m) be defined by (88). Then, ι(m∗) > 0. Now,

∂

∂mn̄

S(ι,m∗) =
1 + r

r − ι
λn̄ψ

′(An̄(m
∗))An̄(m

∗)

+
(1 + r)

[
−∂Ψ(m∗)

∂mn̄
+
∑N

n=1mnλn[ψ
′′(An(m

∗))An(m
∗) + ψ′(An(m

∗))] ∂
∂mn̄

An(m
∗)
]

r − ι

=
1 + r

r − ι
λn̄ψ

′(An̄(m
∗))An̄(m

∗)

+
(1 + r)

[∑N
n=1mnλn[ψ

′′(An(m
∗))An(m

∗) + ψ′(An(m
∗))] ∂

∂mn̄
An(m

∗)
]

r − ι
,

47



since by (86) and by definition of n̄,

∂

∂mn̄

Ψ(m∗) = − [λn̄Π(An̄(m
∗))− γ] = 0.

Now, by (84),

N∑
n=1

mnλnψ
′′(An(m

∗))An(m
∗)

∂

∂mn̄

An(m
∗)

= −
N∑
n=1

mnλnψ
′′(An(m

∗))An(m
∗)

An̄(m
∗)∑N

j=1
mj

λjψ′′[Aj(m)]

1

λnψ′′[An(m∗)]

= −

(
N∑
n=1

mnAn(m
∗)

)
An̄(m

∗)∑N
j=1

mj

λjψ′′[Aj(m)]

= − ĀAn̄(m
∗)∑N

j=1
mj

λjψ′′[Aj(m)]

,

and

N∑
n=1

mnλnψ
′(An(m

∗))
∂

∂mn̄

An(m
∗)

= −
N∑
n=1

mnλnψ
′(An(m

∗))
An̄(m

∗)∑N
j=1

mj

λjψ′′[Aj(m)]

1

λnψ′′[An(m∗)]

= −λn̄ψ′(An̄(m
∗))An̄(m

∗)

∑N
n=1

mn

λnψ′′[An(m∗)]∑N
j=1

mj

λjψ′′[Aj(m)]

= −λn̄ψ′(An̄(m
∗))An̄(m

∗),
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where the second last equality follows from the fact that λn̄ψ′(An̄(m
∗)) = λnψ

′(An(m
∗)) for

all n with m∗
n > 0. Combining the terms, we obtain

∂

∂mn̄

S(ι,m∗) =
1 + r

r − ι
λn̄ψ

′(An̄(m
∗))An̄(m

∗)

− 1 + r

r − ι

[
λn̄ψ

′(An̄(m
∗))An̄(m

∗) +
ĀAn̄(m

∗)∑N
j=1

mj

λjψ′′[Aj(m)]

]

= −(1 + r)

r − ι

[
ĀAn̄(m

∗)∑N
j=1

mj

λjψ′′[Aj(m)]

]
< 0.

For ι > 0, κn = κ̄n(m, ι(m)) = (1+r)[λnΠ(An(m))−γ]
r−ι is optimal under m. We show that

λnΠ(An(m)) decreases in n, so does κn(m). Suppose that x < y. Then, equilibrium requires

λxψ
′(Ax) = λyψ

′(Ay).

Hence,

λx [ψ
′ (Ax)Ax − ψ (Ax)] > λy [ψ

′ (Ay)Ay − ψ (Ay)]

iff

Ax −
ψ (Ax)

ψ′(Ax)
> Ay −

ψ (Ay)

ψ′(Ay)
.

Now,
d

dA

[
A− ψ(A)

ψ′(A)

]
= 1− [ψ′(A)]2 − ψ(A)ψ′′(A)

[ψ′(A)]2
=
ψ(A)ψ′′(A)

[ψ′(A)]2
> 0.

Proof of Lemma 5.1 We show that banks have no incentive to gamble if and only if

ω ≤ ω1. Note that we only need to show that As ≤ Ā/m. This can be done by comparing

the first-order conditions for the profits given by (64) and (67), and this would be the case
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if and only if

ι− rη

1− η
[ρτ` + ω(τ − τ`)] + τ − (1 + r)φ

≥ ι− rη

1− η
[ρτ` + ω(τ − τ`)] + τ − (1 + r)φ

+qτh + (1− q)τ` − τ + (1− q)ω(τ − τ`) + (1 + r)e,

which holds if and only if ω ≤ ω1.

Proof of Theorem 5.1 First we show that for any given m, it is optimal to set ω = ω1.

Note that since m determines asset-management efficiency, the regulator’s goal is only to

increase liquidity, or, equivalently, to have the lowest equilibrium ι among all (κ, ω) that are

incentive compatible. To do this, we consider a relaxed problem. Instead of working with

the constraint (75), we consider a relaxed constraint: we assume that the shirking bank also

chooses Ā/m. In this case, the gain from gambling is the difference between two expressions

(71) and (74) with a = Ā/m, which is given by

Φ ≡ β{[ω(1−q)(τ−τ`)+q(τh−τ)−(τ−qτ−(1−q)τ`)]Ā/m+(1+r)eĀ/m+(1−q)κ}. (89)

Thus, for banks holding Ā/m units of trees not to shirk it requires

−Φ + (1− q)
β

1− β

[
Π

(
Ā

m

)
− γ +

ι · κ
1 + r

]
≥ 0,

which can be simplified to

−r [(ω − 1)(1− q)(τ − τ`) + (1 + r)e+ q(τh − τ)]
Ā

m

+ (1− q)

{
−(r − ι)κ+ (1 + r)

[
Π

(
Ā

m

)
− γ

]}
≥ 0. (90)
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Note that we could rewrite (75) as

−r(1 + r)

[
Π(As)− (1− q)Π

(
Ā

m

)]
+ (1− q)

{
−(r − ι)κ+ (1 + r)

[
Π

(
Ā

m

)
− γ

]}
≥ 0.

Moreover, Π(As)−Π
(
Ā
m

)
and [(ω − 1)(1− q)(τ − τ`) + (1 + r)e+ q(τh − τ)] have the same

sign for all ω (it is positive for ω > ω1, negative for ω < ω1, zero for ω = ω1), and

Π(As)− Π

(
Ā

m

)
> [(ω − 1)(1− q)(τ − τ`) + (1 + r)e+ q(τh − τ)]

(
Ā

m

)

for all ω > ω1. Since when both terms are negative the corresponding constraints are weaker

than (33), (90), combined with (33), is indeed weaker than (75) combined with (33). When

ω = ω1, they are equivalent.

Now, define

S(ι) = max
ω,κ

rρτ` + ωr(τ − τ`)

r − ι
Ā+mκ

subject to (90) and (33). We claim that the minimum equilibrium ι subject to (90) and

(33) is determined by D(ι) ≤ S(ι) (at equality whenever ι > 0). Note that S(ι) is strictly

increasing in ι: as ι increases both constraints (90) and (33) are more relaxed, and the

objective function is strictly increasing in ι.

For any fixed ι, the maximization problem in S(ι) is a linear programming problem in

(κ, ω) and can be reduced to

max
κ,ω

ωr(τ − τ`)

r − ι
Ā+mκ,

s.t. −rω(τ − τ`)
Ā

m
− (r − ι)κ+ C ≥ 0,

−(r − ι)κ+D ≥ 0.
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where by (62),

C = r

[
(τ − τ`)

Ā

m
− (1 + r)e+ q(τh − τ)

1− q

Ā

m

]
+ (1 + r)

[
Π

(
Ā

m

)
− γ

]
> (1 + r)

[
Π

(
Ā

m

)
− γ

]
= D.

Since ρ < 1, the optimal choice is given by

κ =
D

r − ι
, ω =

C −D

r(τ − τ`)
Ā
m

= ω1.

Proof of Theorem 5.2 The social planner’s problem is given by

max
m≥0,ι≥0

σ[u(q)− c(q)]−
[
mγ +mψ

(
Ā

m

)]
,

s.t. D(ι) ≤ r

r − ι
[ρτ` + ω1(τ − τ`)]Ā+m

(1 + r)[ψ′(Ā/m)Ā/m− ψ(Ā/m)− γ]

r − ι
,

q = D(ι),

where

ω1 = min

{
ρ, 1− (1 + r)e+ q(τh − τ)

(1− q)(τ − τ`)

}
.

Now, let

F (ι,m) = −D(ι) +
r

r − ι
[ρτ` + ω1(τ − τ`)]Ā+m

(1 + r)[ψ′(Ā/m)Ā/m− ψ(Ā/m)− γ]

r − ι
.

Then,

∂

∂m
F =

(1 + r)

r − ι

{[
ψ′
(
Ā

m

)
Ā

m
− ψ

(
Ā

m

)
− γ

]
− ψ′′

(
Ā

m

)(
Ā

m

)2
}
,

∂

∂i
F = −D′(ι) +

r[ρτ` + ω1(τ − τ`)]Ā+m(1 + r)
[
ψ′
(
Ā
m

)
Ā
m
− ψ

(
Ā
m

)
− γ
]

(r − ι)2
.
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Let ι(m) be the implicit function defined by F (ι,m) = 0, m ≤ m∗. Then,

ι′(m) = −
(1 + r)(r − ι)

{[
ψ′
(
Ā
m

)
Ā
m
− ψ

(
Ā
m

)
− γ
]
− ψ′′

(
Ā
m

)(
Ā
m

)2}
−D′(i)(r − ι)2 +

{
r[ρτ` + ω1(τ − τ`)]Ā+m(1 + r)

[
ψ′
(
Ā
m

)
Ā
m
− ψ

(
Ā
m

)
− γ
]}

= −
(1 + r)

{[
ψ′
(
Ā
m

)
Ā
m
− ψ

(
Ā
m

)
− γ
]
− ψ′′

(
Ā
m

)(
Ā
m

)2}
−D′(ι)(r − ι) +D(ι)

> 0.

Thus, the FOC for the social planer’s problem is given by

σ

[
u′(q)

c′(q)
− 1

]
D′(ι)ι′(m) +

[
Π

(
Ā

m

)
− γ

]
= 0,

that is,

σ

[
u′(q)

c′(q)
− 1

] (1 + r)

{[
Π
(
Ā
m

)
− γ
]
− ψ′′

(
Ā
m

)(
Ā
m

)2}
(r − ι) + D(ι)

−D′(ι)

+

[
Π

(
Ā

m

)
− γ

]
= 0. (91)

Now, if we plug in the functional form ψ(A) = λAx/x and c(q) = q, then We have the

following FOC:

σ {u′[D(ι)]− 1}
−(1 + r)

[
λ (x−1)2

x

(
Ā
m

)x
+ γ
]

(r − ι) + D(ι)
−D′(ι)

+

[
λ
x− 1

x

(
Ā

m

)x
− γ

]
= 0,

that is,

σ {u′[D(ι)]− 1}
(r − ι) + D(ι)

−D′(ι)

=

[
λx−1

x

(
Ā
m

)x
− γ
]

(1 + r)
[
λ (x−1)2

x

(
Ā
m

)x
+ γ
] , (92)

where ι is an implicit function of m with ι′(m) > 0. Now, by (76), the left-side of (92) is

strictly increasing in m, while the right-side is strictly decreasing. Since the first-best is not

implementable, there exists a unique m̃ that solves (92) which is the optimal m. As optimal
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ω1 decreases, i(m) increases for any m, and decreases the optimal m̃.

Proof of Theorem 5.3 First we show that banks have no incentive to be prudent if and

only if ρ ≤ ω1. Note that we only need to show that Ap ≤ Ā/m. This can be done by

comparing the first-order conditions for the profits given by (78) and (80), and this would

be the case if and only if

ι− rη

1− η
ρ[qτ + (1− q)τ`] + [qτh + (1− q)τ` − (1 + r)φ] + (1 + r)e

≥ ι− rη

1− η
ρ[qτ + (1− q)τ`] + [qτh + (1− q)τ` − (1 + r)φ]

+ [τ − qτh − (1− q)τ`)]a− ρ(1− q)(τ − τ`),

which holds if and only if ω1 ≤ ρ.

Now for any fixed m, it is easy to show that the optimal gambling equilibrium is charac-

terized by the following

D(ι) ≤ Sg(ι),

where

Sg(ι) = max
κ

ρr[qτ + (1− q)τ`]

r − ι
Ā+mκ, (93)

subject to (33). Note that under this equilibrium banks profits are still given by Π(Ā/m) +

ικ/(1 + r)− γ.

However, as shown in Theorem 5.1, the optimal prudent equilibrium is characterized by

D(ι) ≤ Sp(ι),
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where

Sp(ι) = max
κ

r[ρτ` + ω(τ − τ`)]

r − ι
Ā+mκ, (94)

subject to (33).

Since the κ term will be replaced by the same expression, Sg(ι) > Sp(ι) if and only if

ρr[qτ + (1− q)τ`]

> r[ρτ` + ω(τ − τ`)],

which is equivalent to (81).

References

[1] Allen, Franklin, Elena Carletti, and Agnese Leonello (2011) “Deposit insurance and risk

taking,” Oxford Review of Economic Policy 27, 464-478.

[2] Begenau, Juliane and Tim Landvoigt (2016) “Financial Regulation in a Quantitative

Model of the Modern Banking System,” working paper.

[3] Chan,Yuk-Shee, Stuart I. Greenbaum and Anjan V. Thakor (1992) “Is Fairly Priced

Deposit Insurance Possible?” The Journal of Finance 47, 227-245.

[4] Chari, V.V. and C. Phelan (2014) “On the social usefulness of fractional reserve bank-

ing,” Journal of Monetary Economics 65, 1-13

[5] Collard F, H. Dellas, B. Diba, and O. Loisel (2017) “Optimal Monetary and Prudential

Policies,” American Economic Journal: Macroeconomics 9, 40-87.

55



[6] Cooper, R. and T.W. Ross (2002), “Bank Runs: Deposit Insurance and Capital Re-

quirements,” International Economic Review 43, 55-72.

[7] Dang, Tri Vi, Gary Gorton, Bengt Holmstrom, Guillermo Ordonez (2017) “Banks as

Secret Keepers,” American Economic Review 107, 1005-1029.

[8] Gorton, Gary and Andrew Winton (2017) “Liquidity Provision, Bank Capital, and the

Macroeconomy,” Journal of Money, Credit and Banking 49, 5-37.

[9] Gu, Chao, Fabrizio Mattesini, Cyril Monnet, and Randall Wright (2013) “Banking: A

New Monetarist Approach,” Review of Economic Studies 80, 636-662.

[10] Harris, Milton, Christian C. Opp, and Marcus M. Opp (2015) “Macroprudential Bank

Capital Regulation in a Competitive Financial System,” working paper.

[11] Hellmann, Thomas F., Kevin C. Murdock and Joseph E. Stiglitz (2000) “Liberaliza-

tion, Moral Hazard in Banking, and Prudential Regulation: Are Capital Requirements

Enough?” American Economic Review 90, 147-165.

[12] Keister, Todd (2016) “Bailouts and Financial Fragility” Review of Economic Studies 83,

704-736.

[13] Koch, Christoffer, Gary Richardson, and Patrick Van Horn (2016) “Bank Leverage

and Regulatory Regimes: Evidence from the Great Depression and Great Recession,”

American Economic Review: Papers & Proceedings 106, 538-542.

[14] Lagos, Ricardo and Randall Wright (2005). “A unified framework for monetary theory

and policy analysis,” Journal of Political Economy 113, 463-484.

[15] Li, Y. (2011) “Currency and Checking Deposits as Means of Payment,” Review of Eco-

nomic Dynamics 14, 403-417.

56



[16] Morrison, D. Alan and Lucy White (2005) “Crises and Capital Requirements in Bank-

ing,” American Economic Review 95, 1548-1572.

[17] Monnet, C. and D. Sanches (2015) “Private Money and Banking Regulation,” Journal

of Money, Credit and Banking 47, 1031-1062.

[18] Phelan, G. (2016) “Financial Intermediation, Leverage, and Macroeconomic Instability,”

American Economic Journal: Macroeconomics 8, 199-224.

[19] Sanches, D. (2016) “On the Welfare Properties of Fractional Reserve Banking,” Inter-

national Economic Review 57, 935-954.

[20] Williamson, S. (2016a). “Scarce Collateral, the Term Premium, and Quantitative Eas-

ing,” Journal of Economic Theory 164, 136-165.

[21] Williamson, S. (2016b) “Low Real Interest Rates, Collateral Misrepresentation, and

Monetary Policy” Federal Reserve Bank of St. Louis, Working Paper 2014-026B.

57



Appendix

A1. General linear pledgeability constraint

In this section we show that the pledgeability constraint (28) is optimal among all other

linear constraints of the form:

d ≤ (η0φ+ η1τ)a+ κ. (95)

For the given η0 and η1, one can show that in equilibrium we have

φ =
(1 + ιη1)τ − (1 + r)

[
ψ′
(
Ā
m

)
+ γ
]

r − ιη0
.

Hence, the total liquidity banks provide is given by

S =
(rη1 + η0)τ − η0(1 + r)

[
ψ′
(
Ā
m

)
+ γ
]

r − ιη0
Ā+mκ

=
[r(η1 − ρ) + (η0 − ρ) + ρ(η1 − η0)ι]τ − (η0 − ρ)(1 + r)

[
ψ′
(
Ā
m

)
+ γ
]

r − ιη0
Ā+mκ+ ρ(φ+ τ)Ā.
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