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Natural numbers

We indicate withN the set of natural numbers:

N = {1,2,3, . . . }

We indicate withN0 the set of natural numbers with zero:

N0 = {0,1,2,3, . . . }

Of course,N ⊂N0.

On this sets the operation of sum is defined but subtraction cannot always
be performed.
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Integer numbers

We indicate with Z the set of integer numbers:

Z = {. . . ,−3,−2,−1,0,1,2,3, . . . }

Thus, Z is the union ofN0 and the set of negative numbers.
Note thatN ⊂N0 ⊂ Z.

In this set we can sum and subtract numbers. We can also multiply numbers
but division between number cannot always be performed
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Rational numbers

We indicate with Q the set of rational numbers. Rational numbers are
obtained by dividing an integer number by another integer number different
from zero. In symbols:

Q =
{m

n
such that m ∈ Z,n ∈ Z\{0}

}
Examples: 1

2 , −1
2 , 25

12 , 2
−3 , etc.

Note that, if we set n = 1, we obtain the set Z. Thus,N ⊂N0 ⊂ Z ⊂ Q.

The set Q is large enough to make sum, substraction, multiplication and
division.

5 / 55



Operations on Q
• Sum:

n
m

+
k
q

=
nq + km

mq
, Ex:

1
3
+

7
4
=

1 · 4 + 7 · 3
3 · 4

=
25
12

• Product:
n
m
·

k
q

=
n · k
m · q

, Ex:
1
3
·
−7
4

= −
7

12

• Inverse:
1
n
m

=
m
n
, Ex:

1
2
−3

= −
3
2

Note that 1
n
m

is also denoted by
(

n
m

)−1
, and therefore

(
n
m

)−1
= 1

n
m

= m
n .

• k -th power (k ∈N):

(m
n

)k
=

m
n
·

m
n
· · ·

m
n︸          ︷︷          ︸

k times

=
mk

nk
, Ex:

(1
2

)10
=

1
210

and (m
n

)−k
=

[(m
n

)−1
]k

=
[ n
m

]k
=

nk

mk
, Ex:

(1
2

)−10
= 210
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Operations on Q, cont’d
Given q ∈ Q, it is possible to show that:

qm
· qn = qm+n

for n,m ∈ Z.

Examples

•
(

2
5

)3
·

(
2
5

)2
=

(
2
5

)3+2
=

(
2
5

)5
= 25

55

•
(

2
5

)3
·

(
2
5

)−2
=

(
2
5

)3−2
=

(
2
5

)1
= 2

5

•
(

2
5

)2
·

(
2
5

)−3
=

(
2
5

)2−3
=

(
2
5

)−1
= 5

2

•
(
−

2
5

)2
·

(
−

2
5

)−3
=

(
−

2
5

)2−3
=

(
−

2
5

)−1
= − 5

2

Given q ∈ Q, q , 0, we have q0 = 1. Indeed, for an arbitrary k ∈N, we can
write:

q0 = qk−k = qk
· q−k = qk

·
1
qk

= 1
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Decimal representation of Q

So far we have expressed the elements of Q as fractions. They can also be
expressed in decimal notation.

Examples

• 3
10 = 0.3

• − 5
2 = −2.5

• 1
3 = 0.33333 . . .

• 1
22 = 0454545 . . .

• 7
12 = 0.5833333 . . .

The decimal representation of a rational number is either finite, as in 3
10 ,

−
5
2 , or infinite with a period, as in 1

3 , 1
22 , 7

12 .
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Decimal representation of Q, cont’d

Theorem
Let q = n

m be a rational number. Then there are two mutually exclusive
possibilities:

1 The decimal representation of q is made by a finite number of digits

2 The decimal representation of q is made by an infinite number of
digits but it is periodic. In this case the period contains at most m − 1
digits
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Decimal representation of Q, cont’d

Fraction Decimal representation Length of period

9
11 0.818181 . . . = 0.81 2

1
7 0.142857142857 . . . = 0.142857 6

1
81 0.012345679012345679 = 0.012345679 9

1
29 0.0344827586206896551724137931 28
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Incompleteness of Q
The set Q is insufficient for many purposes. For instance, assume we want
to solve the following equation:

x2 = 2

We know that the solutions are x = ±
√

2. What about the decimal
representation of

√
2?

√

2 =1.41421356237309504880168872420
9698078569671875376948073176679
7379907324784621070388503875343
276415727350138462309122970249248360...

There is no period!

This means that there exist numbers, such as
√

2, which are not rational,
meaning that they are NOT contained in Q.

These numbers are called irrational numbers.
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Irrational numbers

To summarize, numerical sets are:

N = {1,2,3, . . . } ⊂ Z = {. . . ,−1,0,1, . . . } ⊂ Q =
{m

n

∣∣∣∣m ∈ Z,n ∈ Z\{0}} ⊂ R
Which are the numbers of R that are not in Q? These numbers are
called “irrational numbers” and are those whose decimal representation is
not finite, nor periodic.

Examples of irrational numbers:

•
√

2,
√

3,
√

5 ... more generally all the square roots of numbers which
are not perfect square (e.g.
4 = 22,9 = 32,16 = 42,25 = 52,36 = 62, . . . )

• The Euler’s number
e = 2.718281828459045235360287471352662497 . . .

• The Pi number π = 3.141592653589793238462643383279502884 . . .
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Real Numbers: Axioms

Operations: The operations of sum (+) and multiplication (·) between
pairs of real numbers are defined and have the following properties

• Associative property: (a + b) + c = a + (b + c), (a · b) · c = a · (b · c),
for all a,b , c ∈ R

• Commutative property: a + b = b + a, a · b = b · a, for all a,b ∈ R

• Distributive property: a · (b + c) = a · b + a · c for all a,b , c ∈ R

• Existence of the neutral element: for any a ∈ R there are two distinct
numbers, namely 0 and 1 such that a + 0 = a and a · 1 = a. These
numbers are called the neutral number of sum and multiplication,
respectively.

• Existence of the opposite: for any a ∈ R there is a real number −a
such that a + (−a) = 0. −a is called the opposite of a

• Existence of the inverse: for any a ∈ R there is a real number 1
a such

that a · 1
a = 1. 1

a is called the inverse of a
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Real Numbers: Axioms

Order Relation There is a relation minor or equal to, ≤,
between pairs of real numbers with the properties
• For any pair of real numbers a,b either a ≤ b or b ≤ a.
• If a ≤ b and b ≤ a then necessarily a = b.
• If a ≤ b, then also a + c ≤ b + c, for any real number c.
• If 0 ≤ a and 0 ≤ b the 0 ≤ a + b and 0 ≤ a · b.
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Real Numbers: Axioms

Completeness: Let A ,B two non-empty subsets of real
numbers:

A ⊆ R, B ⊆ R, A , ∅, B , ∅.

Assume that any number in A is smaller than or equal to any
other number in B:

∀x ∈ A ⇒ x ≤ y , ∀y ∈ B .

Then there exists a real number c such that c is larger than a
and smaller than b, for any a in A and for any b in B.

∃c ∈ R : a ≤ c ≤ b ,∀a ∈ A ,∀b ∈ B .

The number c is called the separating point of A and B.
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Illustrative example

Consider sets A = {x ∈ R : x ≤ 1} and B = {x ∈ R : 2 ≤ x ≤ 3}

In this example the separating point is not unique.
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Illustrative example

Consider sets A = {x ∈ R : x ≤ 1} and B = {x ∈ R : 2 ≤ x ≤ 3}

For instance this is another possible value for c.
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Illustrative example

Consider sets A = {x ∈ R : x ≤ 0} and B = {x ∈ R : 0 ≤ x ≤ 1}

In this case the separating point is unique.
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Q is not R

It is clear that the set Q satisfies all axioms of operations and
ordering. Does it satisfy the axiom of completeness?

The answer is no!
Consider the sets:

A = {q ∈ Q : q ≥ 0 and q2 < 2}

B = {q ∈ Q : q ≥ 0 and q2
≥ 2}

These sets are disjoint, i.e. A ∩ B = ∅ and the separation point
is c =

√
2 < Q. Hence the axiom of completeness is not

satisfied since the separation point is not rational.
The axiom of completeness is not valid for natural numbersN,
integer numbers Z, rational numbers Q.
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In summary

Real ℝ

… − 3, −
3

2
, − 2, −1, −

3

4
, −

1

2
, 0,

1

3
, 1, 2, 2, 3, 𝜋, … 

Rational ℚ

… −
3

2
, −1, −

7

8
, −

3

4
, −

1

2
, −

1

3
, 0,

1

4
,
1

2
, 1,

5

4
, … .

Integers ℤ
… − 3, −2, −1,0,1,2,3,4, …

Natural including zero (Whole) 
ℕ଴

0,1,2,3,4, …

Natural ℕ
 1,2,3,4, …
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Extensional and intensional definitions

Observation
A set may contain infinite objects, so it may be complicated listing all of
them. For this reason, sometimes we use intensional definitions instead of
extensional definitions

Extensional definition
All objects are explicitly listed:

• A = {4,©,�}

• B = {1,7,99,1.23,−2}

• C = {New York,London,Sydney}

Intensional definition
We state the property which unambiguously defines the objects in the set:

• A = {All cities in Europe}

• B = {All natural numbers larger than 100}

• C = {All people in this class whose surname has ’A’ as a first letter}
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The ∈, < quantifiers

To say that the object a is contained in the set A , we write a ∈ A

To say that the object a is not contained in the set A , we write a < A

Examples

• If A = {4,©,�}, then 4 ∈ A , © ∈ A , � ∈ A but ♦ < A

• If A = {1,7,99,1.23,−2}, then 1 ∈ A , 7 ∈ A , but 5 < A

• If A = {All cities in Europe}, then Paris ∈ A , but New York < A

• If A = {All natural numbers larger than 100}, then 101 ∈ A , but 100 < A

Remark: The ∈ symbol is often used in intensional definitions:

A = {All cities in Europe}, B = {x ∈ A | x is a capital}

The set B includes the European cities that are capitals, so that Milan ∈ A ,
but Milan < B.
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The ∀ quantifier

To say that a certain property holds for ALL objects in A we write ∀a ∈ A

Examples

• If A = {0,0.5,44.5,2}, then we can write ∀a ∈ A , a ≥ 0

• If A = {1,77,31,5}, then we can write ∀a ∈ A , a is odd

• If A = {0.2,0.5,0.7}, then we can write ∀a ∈ A , 0 < a < 1
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The ∃, @ quantifiers

To say that a certain property holds for AT LEAST ONE object in A we write
∃a ∈ A

To say that a certain property holds for NO objects in A we write @a ∈ A

Examples

• If A = {0,0.5,44.5,2}, then we can write ∃a ∈ A such that a ≤ 1
2 .

Indeed 0 ≤ 1
2 and 0.5 ≤ 1

2

• If A = {0,0.5,44.5,2}, then we can write ∃a ∈ A such that 0 < a ≤ 1
2 .

Indeed 0 < 0.5 ≤ 1
2

• If A = {0,0.5,44.5,2}, then we can write @a ∈ A such that a < 0.
Indeed all objects in A are larger or equal to zero

Remark: In the second example, there exists ONLY ONE element in A
such that 0 < a ≤ 1

2 . In this case we can write ∃!a ∈ A . Writing ∃a ∈ A is
correct as well, however ∃!a ∈ A is more informative

24 / 55



Summary of quantifiers

• a ∈ A means “the element a belongs to the set A ”

• ∀a ∈ A means “for all elements a in the set A ”

• ∃a ∈ A means “there exists at least one element a in the set A ”

• @a ∈ A means “there exists no element in the set A ”

• ∃!a ∈ A means “there exists a unique element a in the set A ”
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Union of sets: the ∪ operator

Definition
Let A and B be two sets. We denote by A ∪ B the set containing all the
elements of A and all the elements of B. In symbols:

A ∪ B = {x : x ∈ A or x ∈ B}

Examples

• A = {4,©,�}, B = {4,♦,�} ⇒ A ∪ B = {4,©,♦,�}

• A = {Milan,Rome}, B = {Sydney} ⇒ A ∪ B = {Milan,Rome,Sydney}

• A = {1,100,4.4}, B = {4.4} ⇒ A ∪ B = {1,100,4.4}

• A = {1,3,−5}, B = {1,2}, C = {1,55} ⇒ A ∪ B ∪ C = {1,3,−5,2,55}
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Intersection of sets: the ∩ operator

Definition
Let A and B be two sets. We denote by A ∩ B the set containing the
elements in common between A and B. In symbols:

A ∩ B = {x : x ∈ A and x ∈ B}

Examples

• A = {4,©,�}, B = {4,♦,�} ⇒ A ∩ B = {4,�}

• A = {Milan,Rome}, B = {Sydney} ⇒ A ∩ B = ∅

• A = {1,100,4.4}, B = {4.4} ⇒ A ∩ B = {4.4}

• A = {1,3,−5}, B = {1,2}, C = {1,55} ⇒ A ∩ B ∩ C = {1}
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The empty set

Definition
An empty set is a set with no elements, and is denoted by ∅

Remark
For any set A , A ∪ ∅ = A , A ∩ ∅ = ∅
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Subsets
Let A and B be two sets. We write A ⊆ B if all the elements of A are also
elements of B.

Examples

• A = {1,100}, B = {1,100,4.4} ⇒ A ⊆ B

• A = {All cities in Europe}, B = {Paris,Milan} ⇒ B ⊆ A

• A = {4,©,�}, B = {4,©,�} ⇒ A ⊆ B and B ⊆ A

Let A and B be two sets. We write A ⊂ B if all the elements of A are also
elements of B and we known that some elements of B are not in A

Examples

• A = {1,100}, B = {1,100,4.4} ⇒ A ⊂ B

• A = {All cities in Europe}, B = {Paris,Milan} ⇒ B ⊂ A

• A = {4,©,�}, B = {4,©,�}. This time we CANNOT write A ⊂ B
because B has no elements which are not in A . For the same reason,
we CANNOT write B ⊂ A
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Subsets, cont’d

Remark

• A = {1,100}, B = {1,100,4.4}

• A = {All cities in Europe}, B = {Paris,Milan}

In the first example, it is correct writing either A ⊆ B or A ⊂ B. However,
A ⊂ B is more informative, because it says us not only that all elements of A
are in B, but also that B has some elements which are not in A . Similarly, in
the second example, it is correct writing either B ⊆ A or B ⊂ A , but the
second is more informative.

The two relations A ⊆ B, A ⊂ B, can also be read from right to left:

• We write B ⊇ A if A ⊆ B

• We write B ⊃ A if A ⊂ B

30 / 55



Subtraction between sets

Definition
Let A and B be two sets. The “A minus B” set, denoted by A\B, is the set
containing the elements in A which are not in B. In symbols:

A\B = {x ∈ A : x < B}

Examples

• A = {1,100,4}, B = {1} ⇒ A\B = {100,4}

• A = {1,100,4}, B = {2,3} ⇒ A\B = {1,100,4}

• A = {4,♦,�}, B = {4,©} ⇒ A\B = {♦�}

• A = {All natural numbers}, B = {All natural numbers larger than 10}

A\B = {All natural numbers lower or equal to 10} = {1, . . . ,10}
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The complement set

Definition
Let S be the universal set and B a subset of S. The complement set of B is
the “S minus B” set, namely the set of elements of S that are not contained
in B. In symbols:

Bc = S\B = {x ∈ S : x < B}

Example

• S = {1,100,4}, B = {1} ⇒ Bc = {100,4}

• S = {All cities in Europe}, B = {x ∈ S |x is a capital city}

Bc = {x ∈ S |x is not a capital city}
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Some subsets in R: The intervals

Definition
A real interval with extremes a,b ∈ R such that a ≤ b, is the set of all real
numbers between a and b.
We say that a real interval is

• open if extremes a and b are not included and we denote it by (a,b)

• closed if extremes a and b are included and we denote it by [a,b]

• not open nor closed one of the extreme is included and the other is
not, that is [a,b) or (a,b]

• bounded if both a and b are finite numbers

• unbounded if either a, or b or both are infinite, e.g. (−∞,1], (−3,+∞),
(−∞,+∞)

Important: Numeric sets with just one element are denoted
with the curly parentheses, for instance {2} is the set that
contains only the number 2.
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Statements

An assertion that can be either true or false is a statement.

Consider two statements, say statements P and statement Q .

We say
P ⇒ Q

to mean If P holds true than also Q holds true or P implies Q .

Example:
• If it rains, then we open the umbrella
• If x = 0, then x · y = 0

The arrow in⇒ gives the direction of the implication.
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Statements

If
P ⇒ Q and Q ⇒ P

then assertion P and assertion Q are equivalent. In this case
we write

P ⇔ Q

to mean P if and only if Q, or P is equivalent to Q .

Example:
• If x = 0 and y = 0, then x2 + y2 = 0
• If x2 + y2 = 0, then x = 0 and y = 0

In this case assertion P (x = 0 and y = 0) and assertion Q
(x2 + y2 = 0) are equivalent.

35 / 55



Sufficient and necessary conditions

Suppose that
P ⇒ Q

We say that P is a sufficient condition for Q . Indeed it is
sufficient that P is true to get that also Q is true.

We also say that Q is a necessary condition for P. Indeed, if
P is true then necessarily Q is true.

In summary the following are equivalent:
• P ⇒ Q
• P implies Q
• If P then Q
• P is a sufficient condition for Q
• P is a necessary condition for P
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Sufficient and necessary conditions
Suppose that

P ⇔ Q

We know that this expression means that both the implications
P ⇒ Q and Q ⇒ P hold at the same time.

In this case P is a sufficient condition for Q (from the first
implication) and P is also a necessary condition for Q (from the
second implication). Hence we say that P is a sufficient and
necessary condition for Q .

In summary the following are equivalent:
• P ⇔ Q
• P is equivalent to Q
• P if and only if Q
• P is a sufficient and necessary condition for Q
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The structure of a theorem

A theorem is made of
• Hypotheses: these are the premises under which the

conclusion holds
• Thesis: this is the conclusion which follows from the

premises
When stating a theorem it must be clear what the hypotheses
are and what the thesis is!
Example: The Pythagorean Theorem
Hypothesis: If a triangle is right-angled
Thesis: the square of the hypothenuse is equal to the sum of
the squares of the other two sides
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The absolute value

Definition
Let a ∈ R. The absolute value of a, denoted by |a |, is given by:

|a | =

a if a ≥ 0
−a if a < 0

Examples

• |1| = 1, | − 1| = 1,
∣∣∣ 1
2

∣∣∣ = 1
2 ,

∣∣∣− 2
127

∣∣∣ = 2
127 , | − π| = π
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Distance between a point in R and the origin

Definition
Let a ∈ R. The distance between a and the origin is the length of the
segment line between the origin and point a, hence it corresponds to a if
a > 0 and −a if a < 0. Put in other words

d(a,0) = |a |

Notice that the length must be positive (or equal to zero).
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Distance between two points in R
Definition
Let x1 ∈ R and x2 ∈ R. The distance between x1 and x2 is given by:

d(x1, x2) = |x1 − x2|

Note that, by definition:

• d(x1, x2) ≥ 0, ∀x1, x2 ∈ R

• d(x1, x2) = 0 if and only if x1 and x2 are the same point

• d(x1, x2) = d(x2, x1), since |x1 − x2| = |x2 − x1| (that is the order does
not matter when we measure distances).

Examples

• d(1,2) = |1 − 2| = 1, d(2,1) = |2 − 1| = 1

• d(1,−1) = |1 − (−1)| = 2, d(−1,1) = | − 1 − 1| = 2

• d
(
0,− 1

2

)
=

∣∣∣∣0 − (
−

1
2

)∣∣∣∣ = 1
2 , d

(
−

1
2 ,0

)
=

∣∣∣− 1
2 − 0

∣∣∣ = 1
2
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Distance between two points in R: example
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Functions

Definition (General definition)

Let A and B be two sets. A function f defined on A and with values in B is a
law that associates to any element x ∈ A one and only one element y ∈ B

To indicate a function we use the notation

f : A → B or y = f(x).
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Functions
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Functions
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Functions

Definition (Real function of a Real variable)

Let D ⊆ R (eventually D = R). A real function of a real variable is a law that
associates to any real number x ∈ D one and only one real number y ∈ R
such that y = f(x).

The variable x is called the independent variable, the variable
y is called the dependent variable. In Economics x is also
called the exogenous variable and y the endogenous variable.

y is called the image of x through the function f
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Functions

Definition (Domain and Range)

The set D of all real values for which the law f makes sense is called the
domain of the function f :

D = {x ∈ R : f(x) is well defined }

The set of all images f(x), for all x ∈ D is called the range of the function

R = {y ∈ R : y = f(x), ∀x ∈ D}

Definition (Graph)

Let f : D → R be a real function of a real variable. The graph of f is the set

G = {(x , f(x)) : x ∈ D}

The plot of the function f is the representation of the graph on a
Cartesian plane. 47 / 55



Functions: the intuition

Intuitively, a function is a rule that associates to each element of a set X ,
only and only one element in another set Y .

This is a function between X and Y
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Functions: the intuition, cont’d

This is not a function between X and Y
because x2 ∈ X is not mapped into any

element in Y

This is not a function between X and Y
because x2 is mapped into more than one

element in Y
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Functions: the definition

Definition
Let D ⊆ R be a subset of R. A function is a rule that associates to each
element of D one and only one element of R. In symbols we write:

f : D → R

meaning that
∀x ∈ D ⇒ ∃! y ∈ R : y = f(x)

The set D is called the domain of the function.

• The variable x is called “independent variable”, it can take values in D

• The variable y is called the “dependent variable”, it can take values in
R.

• In economics x is called the exogenous variable and y is called the
endogenous variable
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The domain of a function

Definition
Let f : D → R be a function. The domain of the function, D ⊆ R, is the set of
all values x ∈ R for which the expression f(x) makes sense.

Three cases require computations:

1 f(x) contains a division

2 f(x) contains a root with even power

3 f(x) contains a logarithm

or any combinations of the above conditions.
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Domain of rational functions

Let f(x) =
P(x)
Q(x)

, and assume that Q(x) makes sense for all x ∈ R.

Then the function f(x) is well defined if and only if Q(x) , 0. This means
that

D = {x ∈ R : Q(x) , 0}

Examples

• f(x) =
x + 3
x2 − 1

D = {x ∈ R : x , ±1}

• f(x) = e
x+5
x−3

D = {x ∈ R : x , 3}
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Domain of irrational functions
Let f(x) = n

√
G(x), and assume that G(x) makes sense for all x ∈ R.

There are two possibilities:

• if n is even, then the function f(x) is well defined if and only if
G(x) ≥ 0. This means that

D = {x ∈ R : G(x) ≥ 0}

• if n is odd, then the function f(x) is well defined for all x ∈ R

Examples

• f(x) =
√

x2 − 5
This is an irrational function with even index (n = 2). Then we have

D = {x ∈ R : x ≤ −
√

5 or x ≥
√

5}

• f(x) = 3√x + 2
This is an irrational function with odd index (n = 3). Then we have

D = R
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Domain of logarithmic functions

Let f(x) = log H(x), and assume that H(x) makes sense for all x ∈ R.
Then the function f(x) is well defined if and only if H(x) > 0. This means that

D = {x ∈ R : H(x) ≥ 0}

Examples

• f(x) = log(1 − x2)

D = {x ∈ R : −1 < x < 1}

• f(x) = log(x2 + 2)
Since x2 + 2 > 0 for all x ∈ R we get that

D = R
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Example

These three condition must be combined together if a function contains
fractions, roots and logarithms.

Example
f(x) =

x
log(x + 2)

We have that:

• log(x + 2) , 0 for the existence of the fraction

• x + 2 > 0 for the existence of the logarithm

Hence we have {
log(x + 2) , 0

x + 2 > 0

which implies that

D = {x ∈ R : x > −2 and x , −1}
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