
Quadratic functions

f : R→ R such that f(x) = ax2 + bx + c, a,b , c ∈ R, a , 0

• Graphically, this is the equation of a parabola.

• The parabola is convex if a > 0

• The parabola is concave if a < 0

• the vertex of the parabola is the point with coordinates V =
(
−

b
2a ,−

∆
4a

)
,

with ∆ = b2
− 4ac
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Position of a parabola with respect to the
x-axis

Let ∆ = b2
− 4ac. Suppose that a > 0

1 If ∆ > 0 The parabola intercepts the x-axis at two points, which are the
solutions of

ax2 + bx + c = 0

2 If ∆ = 0 The parabola intercepts the x-axis at one point, which is the
unique solution of

ax2 + bx + c = 0

3 If ∆ < 0 The parabola stays always above the x-axis: the equation
ax2 + bx + c = 0 does not have any solution

Figure: a > 0, ∆ > 0 Figure: a > 0, ∆ = 0 Figure: a > 0, ∆ < 0
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Position of a parabola with respect to the
x-axis

Let ∆ = b2
− 4ac. Suppose that a < 0

1 If ∆ > 0 The parabola intercepts the x-axis at two points, which are the
solutions of

ax2 + bx + c = 0

2 If ∆ = 0 The parabola intercepts the x-axis at one point, which is the
unique solution of

ax2 + bx + c = 0

3 If ∆ < 0 The parabola stays always below the x-axis: the equation
ax2 + bx + c = 0 does not have any solution

Figure: a < 0, ∆ > 0 Figure: a < 0, ∆ = 0 Figure: a < 0, ∆ < 0
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The function “Absolute Value”
Definition
The function “absolute value” of x, is given by

f(x) = |x | =

x if x ≥ 0
−x if x < 0

-4 -3 -2 -1 0 1 2 3 4

0

1

2

3

4

• D = R, Rf = [0,+∞)
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Power functions
For all n ∈N we define the function:

f(x) = xn

which is nothing but the multiplication of x by itself n times

• This function is defined for all x ∈ R, D = R

• If n is even, the range is Rf = [0,+∞)

• If n is odd, the range is Rf = R

Figure: f(x) = x4 Figure: f(x) = x3
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A few characteristics of Power function with
exponent n ∈N

If n is even, the function is not globally invertible. However if we consider
only

f(x) : [0,+∞)→ [0,+∞)

the function is invertible and

f−1(y) = y
1
n = n
√

y

If n is odd, the function is globally invertible and

f−1(y) = y
1
n = n
√

y
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The inverse function: graphical
representation

The graph of f−1(x) is obtained by reflecting the graph of f(x) over the line
y = x.
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Power functions

Consider the function:
f(x) = x r , r ∈ R

This is a power function with real exponent (which generalizes the case of a
power function with natural exponent)
A few examples

1 f(x) = x−1 =
1
x

2 f(x) = x
1
2 =
√

x

3 f(x) = x
1
3 =

3√x

4 f(x) = x1.3

Notice that an extra care must be applied in computing the domain power
functions with real exponent. In particular they are well defined when x > 0,
but they may be undefined for x = 0 or x < 0. For instance function 1 is not
defined when x = 0, functions 3 and 4 are not defined when x < 0.
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Figure: f(x) = 1
x Figure: f(x) =

√
x

Figure: f(x) = 3√x Figure: f(x) = x1.3
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The exponential function

f(x) = ax , a > 0

Main characteristics:

• D = R

• Rf = (0,+∞) meaning that ax > 0 for all x ∈ R

• f(0) = a0 = 1

• if a > 0 the function is monotonic strictly increasing

• if 0 < a < 1 the function is monotonic strictly decreasing

• if a = 1 we get the flat line
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The exponential function

Figure: f(x) = ax , a > 1 Figure: f(x) = ax , 0 < a < 1

Figure: f(x) = 1x
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The logarithmic function

f(x) = loga(x), a > 0, a , 1

This is the inverse of the exponential function.

• D = (0,+∞),

• Rf = R

• f(1) = loga(1) = 0 (this is a consequence of the fact that a0 = 1)

• if a > 0 the function is monotonic strictly increasing

• if 0 < a < 1 the function is monotonic strictly decreasing
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The logarithmic function

Figure: f(x) = loga(x), a > 1 Figure: f(x) = loga(x), 0 < a < 1
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The composite function: the intuition

Intuitively, the composition of two functions, f : X → Y and g : Y → Z , is a
function h : X → Z such that applying h to x ∈ X produces the same results
as applying first f to x ∈ X and then applying g to f(x) ∈ Y .
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The composite function: the definition

Definition
Consider a function f : X → Y and another function g : Y → Z . The
composite function, denoted by g ◦ f , is defined as:

g ◦ f : X → Z

(g ◦ f)(x) = g(f(x)), ∀x ∈ X

Important: The order of composition matters. That is, in general,

g(f(x)) , f(g(x))
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The composite function: examples

• f : R→ R, f(x) = x + 1, g : R→ R, g(x) = x2
− 1

We set y = f(x) = x + 1

(g ◦ f)(x) = g(f(x)) = g(y) = y2
− 1 = (x + 1)2

− 1 = x2 + 2x

• f : R→ (0,+∞), f(x) = x2 + 1, g : (0,+∞)→ (0,+∞), g(y) = 1/y

We set y = f(x) = x2 + 1. Thus:

(g ◦ f)(x) = g(f(x)) = g(y) =
1
y

=
1

x2 + 1
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Intuitive plots of functions

Let g : D → R be a function. For instance g(x) = x3 + 6x2
− 15.

How can we plot few composite function starting form the plot of g(x)?

Figure: g(x) = x3 + 6x2
− 15

We want to derive the plot of a few composite functions, from the plot of
g(x).
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Intuitive plots of functions

To plot −g(x) we invert the graph of g(x) along the x-axis: that is the
negative part becomes positive and the positive part becomes negative.

Figure: −g(x) = −(x3 + 6x2
− 15)
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Intuitive plots of functions
To plot |g(x)| we recall the definition of the absolute value:

|g(x)| =

g(x) if g(x) ≥ 0
−g(x) if g(x) < 0

Then to plot |g(x)| it is enough to overturn the negative part of the function
above the x-axis

Figure: |g(x)| = |x3 + 6x2
− 15|
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Intuitive plots of functions

To plot g(x) + c we shift the plot of g(x) up by the quantity c, if c is positive
and down if c is negative.

Figure: g(x) + 20 = x3 + 6x2
− 15 + 20
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Intuitive plots of functions

To plot g(x + a) we shift the plot of g(x) on the left by the quantity c, if c is
positive and on the right if c is negative.

Figure: g(x + 2) = (x + 2)3 + 6(x + 2)2
− 15
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Sequences: the intuition

Intuitively, a sequence is a function which associates to each natural
number n ∈N a real number sn ∈ R.

Examples

• sn = 1
n ⇒ s1 = 1, s2 = 1

2 , s3 = 1
3 , s4 = 1

4 , . . .

• sn =
√

n ⇒ s1 = 1, s2 =
√

2, s3 =
√

3, s4 = 2, . . .

• sn = n
n+1 ⇒ s1 = 1

2 , s2 = 2
3 , s3 = 3

4 , s4 = 4
5 , . . .

• sn = (−1)n
⇒ s1 = −1, s2 = 1, s3 = −1, s4 = 1, . . .
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Sequences: the definition

Definition
A sequence is any function s :N→ R. A sequence is denoted by (sn)n∈N,
whereas we denote by sn the n-th element of the sequence.
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Limit of sequences
What happens when n is “very large”?

Examples

sn =
1
n

n 1 2 3 4 5 . . .

1
n 1 1

2 = 0.5 1
3 = 0.3333 1

4 = 0.25 1
5 = 0.2 . . .

sn =
n

n + 1

n 1 2 3 4 5 . . .

n
n+1

1
2 = 0.5 2

3 = 0.6667 3
4 = 0.75 4

5 = 0.8 5
6 = 0.8333 . . .

sn = (−1)n

n 1 2 3 4 5 . . .

(−1)n
−1 1 −1 1 −1 . . .
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Limit of sequences

• The elements of sn = 1
n approach 0 as n grows

• The elements of sn = n
n+1 approach 1 as n grows

• The elements of sn = (−1)n swing between 1 and −1
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Limit of sequences, cont’d
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Limit of sequences, cont’d
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Limit of sequences, cont’d
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Limit of sequences: the definition
Definition (Convergent sequence)

Let (sn)n∈N be a sequence. We say that (sn)n∈N converges and we write

lim
n→∞

sn = `

where ` ∈ R is a finite real number, if:

∀ε > 0 ∃ n∗ ∈N : ∀n > n∗ ⇒ |sn − `| < ε

Sometimes we also use the notation sn → ` to indicate limn→∞ sn = `.

Remark The above definition says that,

• for all length ε (as small as we like)

• we can find a natural number n∗

• such that for all indices n that are larger than n∗

• the distance between sn and the limit ` is smaller than ε

That means, sn approaches `, when n is very large.
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Limit of sequences, cont’d
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Limit of sequences, cont’d
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If we choose a smaller ε, the number n∗ for which the definition is true gets
larger!
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Limit of sequences: exercises
Prove that:

lim
n→∞

1
n

= 0

Solution

We have to find an n∗ such that, for n > n∗, we have∣∣∣∣∣1n − 0
∣∣∣∣∣ < ε

Let’s solve the above inequality:∣∣∣∣∣1n − 0
∣∣∣∣∣ < ε ⇔ 1

n
< ε⇔ n >

1
ε

We fix n∗ =
[

1
ε

]
. Then for all n > n∗ we get that

∣∣∣ 1
n − 0

∣∣∣ < ε, and hence the
definition is verified.

For example, if ε = 0.2, then n∗ = 5; if ε = 0.1, then n∗ = 10; if ε = 0.014,
then n∗ = 72, etc.
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Limit of sequences: exercises, cont’d

Prove that:
lim

n→∞

n
n + 1

= 1

Solution

We have to find an n∗ such that, for n > n∗, we have∣∣∣∣∣ n
n + 1

− 1
∣∣∣∣∣ < ε

Let’s solve the above inequality:∣∣∣∣∣ n
n + 1

− 1
∣∣∣∣∣ =

∣∣∣∣∣n − n − 1
n + 1

∣∣∣∣∣ =

∣∣∣∣∣ −1
n + 1

∣∣∣∣∣ =
1

n + 1
< ε

which is solved for n > 1−ε
ε . We can set n∗ =

[
1−ε
ε

]
. Then, for all n > n∗ it

holds that
∣∣∣ n
n+1 − 1

∣∣∣ < ε, and hence the definition is verified.
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Limit of sequences: cont’d
Consider the following sequence:

sn =
√

n

Does it have a limit?
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Limit of sequences, cont’d

Definition
Let (sn)n∈N be a sequence. We say that (sn)n∈N diverges to +∞, and we
write

lim
n→+∞

sn = +∞

if:
∀M > 0, ∃ n∗ : ∀n > n∗ ⇒ sn > M

Definition
Let (sn)n∈N be a sequence. We say that (sn)n∈N diverges to −∞, and we
write

lim
n→+∞

sn = −∞

if:
∀M > 0, ∃ n∗ : ∀n > n∗ ⇒ sn < −M
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Limit of sequences, cont’d
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Sequences: the limit may not exist
The limit of a sequence may not exist.
For instance consider the sequence (sn)n∈N, with sn = (−1)n
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When n is large this sequence does not approach any specific value.
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Sequences: the limit may not exist

Definition
Let (sn)n∈N be a sequence, and let (kn)n∈N be a sequence

kn :N→N

with kn < kn+1. The sequence (skn )n∈N is called a subsequence of (sn)n∈N.

Example. Let sn = 1
n .

The even subsequence is:

s2 =
1
2
, s4 =

1
4
, s6 =

1
6
, s8 =

1
8
, . . .

and it is denotes as (s2n)n∈N.
The odd subsequence is:

s3 =
1
3
, s5 =

1
5
, s7 =

1
7
, s9 =

1
9
, . . .

and it is denotes as (s2n+1)n∈N.
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Sequences: the limit may not exist
Theorem
Let (sn)n∈N be a sequence. We have that

lim
n→∞

sn = `

if and only if for all subsequences (skn )n∈N it holds that

lim
n→∞

skn = `

Simplified formulation which is used in exercises:

Corollary

Let (sn)n∈N be a sequence. If

lim
n→∞

s2n = `1 and lim
n→∞

s2n+1 = `2

with `1 , `2 then the sequence (sn)n∈N does not have a limit.
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Sequences: the limit may not exist, cont’d
If the limit exists, it does not change when considering “sub-sequences”.

If we find two subsequences that converge to different limits, then the
original sequence does not converge.

Notice that, if the even and the odd subsequences converge to the same
limit, this does not tell us anything about the sequence (sn)n∈N, which may
converge or not.
Example

Consider the following sequence:

sn = (−1)n

Then:
s2n = (−1)2n = 1→ 1

s2n+1 = (−1)2n+1 = −1→ −1

Since the two sub-sequences converge to different limits, the limit of
sn = (−1)n does not exist.

What about limn→∞ cos(nπ)?
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Sequences: some useful theorems

Theorem (Uniqueness of the limit)

Let (sn)n∈N be a sequence. If the sequence converges then the limit is
unique.

This theorem says that it is impossible that a sequence converges to two
different limits.
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Sequences: some useful theorems, cont’d

Theorem (Absolute value theorem for sequences)

Let (sn)n∈N be a sequence. If |sn | → 0, then sn → 0.

Important: This theorem holds only if the limit is zero!
Exercise

Prove that limn→∞
(−1)n

n = 0.

Let’s compute first limn→∞

∣∣∣∣ (−1)n

n

∣∣∣∣. Observe that:∣∣∣∣∣ (−1)n

n

∣∣∣∣∣ =
|(−1)n

|

|n|
=

1
n

But we know that 1
n → 0. Thus, by the absolute value theorem, we conclude

that limn→∞
(−1)n

n = 0.
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Sequences: some useful theorems, cont’d

sn =
(−1)n

n

We easily see from the plot that the sequence converges to
zero.
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Sequences: some useful theorems, cont’d

Theorem (The comparison theorem)

Let (an)n∈N, (sn)n∈N, (bn)n∈N be three sequences such that

• an ≤ sn ≤ bn for every n

• limn→+∞ an = ` and limn→+∞ bn = `

Then
lim

n→+∞
sn = `
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Sequences: some useful theorems, cont’d

Example
Consider the sequence (sn)n∈N with sn =

sin(n)
n
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Sequences: some useful theorems, cont’d

Example
Consider the sequence (sn)n∈N with sn =

sin(n)
n .

Since
−1 ≤ sin(n) ≤ 1,

then
−1
n
≤

sin(n)

n
≤

1
n
, for every n.

We call an = −1
n and bn = 1

n and observe that limn→+∞
−1
n = 0 and

limn→+∞
1
n = 0. By the comparison theorem also

lim
n→+∞

sin(n)

n
= 0
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Sequences: some useful theorems, cont’d

Example, cont’d
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Sequences: some useful theorems, cont’d

Theorem
Let (sn)n∈N and (qn)n∈N be two sequences with sn → ` and qn → `′,
`, `′ ∈ R (finite numbers). Then:

• sn + qn → ` + `′

• sn − qn → ` − `′

• sn · qn → ` · `′.

• if `′ , 0, then sn
qn
→

`
`′ .

Moreover,

• If sn → +∞ and qn → +∞, then sn + qn → +∞ and sn · qn → +∞.

• If sn → −∞ and qn → −∞, then sn + qn → −∞ and sn · qn → +∞.

• If sn → +∞ and qn → −∞, then sn + qn is indetermined and
sn · qn → −∞.
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“Practical” rules
We have formally proved that:

lim
n→∞

1
n

= 0

This limit can also be computed using the following “practical” rule:

For α ∈ R,
α
∞

= 0

Similarly, for α ∈ R, we have:

α+∞ = +∞

so that, for instance:
lim

n→+∞
π+ n = +∞

Can we always use these rules?
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“Practical rules” and indeterminate forms

Let α ∈ R. Then:

• α+∞ = +∞, and α −∞ = −∞

• (+∞) + (+∞) = +∞ and (−∞) + (−∞) = −∞

• (+∞) × (+∞) = +∞ and (−∞) × (−∞) = +∞

• (+∞) × (−∞) = −∞ and (−∞) × (+∞) = −∞

• α
+∞ = 0, α

−∞
= 0, 0+∞ = 0.

• If α > 0 then α × (+∞) = +∞ and α × (−∞) = −∞

• If α < 0 then α × (+∞) = −∞ and α × (−∞) = +∞

• (+∞) − (+∞) and (−∞) + (+∞) are INDETERMINATE

• 0 × (+∞) and 0 × (−∞) are INDETERMINATE

• ∞

∞
and 0

0 are INDETERMINATE

• ∞0 and 00 and 1∞ are INDETERMINATE
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