
MATHEMATICS 1
ADDITIONAL EXERCISES N. 3

KATIA COLANERI

Notation: log stands for the natural logatithm (i.e. the logarithm with the basis e)

1. Inverse function, composite functions and plots

(1) For each of the following functions, say if they are invertible and if so, compute the inverse.

(a) f : R→ R f(x) = 4− 3x

This functions represents a line. It is strictly decreasing for all x ∈ R (You must prove that

it is strictly decreasing!) and its range is Rf = R, hence by the theorem on invertibility of

monotonic functions it is invertible and its inverse is f−1 : R→ R, f−1(y) =
4− y

3

(b) f : R→ R f(x) = 4− x2

this function is not injective, hence not bijective. Therefore it is not invertible.

(c) f : [0,+∞)→ (−∞, 4] f(x) = 4− x2

This functions represents a branch of a parabola. It is strictly decreasing for all x ∈ [0,+∞)

(You must prove that it is strictly decreasing!) and its range is Rf = (−∞, 4], hence

by the theorem on invertibility of monotonic functions it is invertible and its inverse is

f−1 : (−∞, 4]→ [0,+∞), f−1(y) =
√

4− y

(d) f : R \ {−1} → R \ {0} f(x) =
1

x+ 1

This function is bijective (You must prove that it is bijective!), hence invertible. Its inverse

is f−1 : R \ {0} → R \ {−1}, f−1(y) = 1−y
y

.

Notice that this function is not monotonic on R\{−1}, hence the theorem on invertibility

of monotonic functions cannot be applied.

(e) f : R→ [5,+∞) f(x) = x2 + 5

This function is not injective, hence not bijective. Then it is not invertible.
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(f) f : (−∞, 4]→ [0,+∞) f(x) =
√

8− 2x

This function is monotonic strictly decreasing (You must prove that it is strictly decreasing!)

for all x ∈ (−∞, 4] and its range is Rf = [0,+∞), hence by the theorem on invertibility of

monotonic functions it is invertible. The inverse is f−1 : [0,+∞)→ (−∞, 4], f−1(y) = 8−y2
2

.

(g) f : R→ (0,+∞) f(x) = e2x+1

This function is monotonic strictly increasing for all x ∈ R (You must prove that it is

strictly increasing!) and its range is Rf = (0,+∞), hence by the theorem on invertibility of

monotonic functions it is invertible. The inverse is f−1 : (0,+∞)→ R, f−1(y) = log(y)−1
2

.

(h) f : R \ {2} → R \ {1} f(x) =
x+ 1

x− 2

This function is bijective (You must prove that it is bijective!), hence invertible. Its inverse

is f−1 : R \ {1} → R \ {2}, f−1(y) = 1+2y
y−1 .

Notice that this function is not monotonic on R\{−1}, hence the theorem on invertibility

of monotonic functions cannot be applied.

(i) f : (3,+∞)→ R f(x) = log(x− 3)

This function is strictly increasing for all x ∈ (3,+∞) (You must prove that it is strictly

increasing!) and the range is Rf = R. Hence by the theorem on invertibility of monotonic

functions it is invertible. The inverse is f−1 : R→ (3,+∞), f−1(y) = ey + 3.

(2) Given the following plots of functions g(x), draw, if possible:

• the inverse function

• |g(x)| (red line)

• g(x+ 2) (green line)

• g(x)− 3 (black line)

(3) For each of the following pair of functions f and g, compute f(g(x)) and g(f(x)) and specify

their domain and range

(a) f : R→ R f(x) = 2x+ 1, g : R→ [0,+∞) g(x) = x2

f(g(x)) = 2x2 + 1, f ◦ g : R→ [1,+∞)

g(f(x)) = (2x+ 1)2, g ◦ f : R→ [0,+∞)

(b) f : R→ R f(x) = x3, g : R \ 1→ R \ {0} g(x) =
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f(g(x)) =

(
1

x− 1

)3

, f ◦ g : R \ 1→ R \ {0}

g(f(x)) =
1

x3 − 1
, g ◦ f : R \ 1→ R \ {0}

(c) f : R→ (0,+∞) f(x) = ex, g : R→ R g(x) = 3x+ 5

f(g(x)) = e3x+5, f ◦ g : R→ (0,+∞)

g(f(x)) = 3ex + 5, g ◦ f : R→ (5,+∞)

(d) f : (0,+∞)→ R f(x) = log(x), g : R→ [−1,+∞) g(x) = x2 − 1

f(g(x)) = log(x2 − 1), f ◦ g : (−∞,−1)→ (1,+∞)

g(f(x)) = log2(x)− 1, g ◦ f : (0,+∞)→ [−1,+∞)

(e) f : [−1, 1]→ [0, 1] f(x) =
√

1− x2, g : (−1,+∞)→ R g(x) = log(x+ 1)

f(g(x)) =

√
1− log2(x+ 1), f ◦ g : (e−1 − 1, e− 1)→ [0, 1]

g(f(x)) = log(
√

1− x2 + 1), g ◦ f : [−1, 1]→ [0, log(2)]

2. Sequences

(1) Prove the following limits using the definition.

(a) lim
n→∞

n+ 5

n2
= 0

We will show that

∀ε > 0 ∃n∗ ∈ N : n > n∗ ⇒
∣∣∣∣n+ 5

n2

∣∣∣∣ < ε
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To do this we consider the inequality

∣∣∣∣n+ 5

n2

∣∣∣∣ < ε and we solve it with respect to n:

Recall that n ∈ N, and hence n > 0, then we have∣∣∣∣n+ 5

n2

∣∣∣∣ < ε

n+ 5

n2
< ε

− εn2 + n+ 5 < 0

n >
1 +
√

1 + 20ε

2ε

Then we set n∗ =
[
1+
√
1+20ε
2ε

]
. Notice that if ε is small (for example ε = 0.01), then n∗ is

large (in case ε = 0.01, we get that n∗ = [104.7723] = 104).

By reading bottom-up the chain of inequalities above we get that for all n > n∗ =[
1+
√
1+20ε
2ε

]
, then

∣∣∣∣n+ 5

n2

∣∣∣∣ < ε, and hence the definition is verified.

(b) lim
n→∞

2n+ 1

n
= 2

We will show that

∀ε > 0 ∃n∗ ∈ N : n > n∗ ⇒
∣∣∣∣2n+ 1

n
− 2

∣∣∣∣ < ε

To do this we consider the inequality

∣∣∣∣2n+ 1

n
− 2

∣∣∣∣ < ε and we solve it with respect to n:

Recall that n ∈ N, and hence n > 0, then we have∣∣∣∣2n+ 1

n
− 2

∣∣∣∣ < ε∣∣∣∣ 1n
∣∣∣∣ < ε

1

n
< ε

n >
1

ε

Then we set n∗ =
[
1
ε

]
. Notice that if ε is small (for example ε = 0.01), then n∗ is large (in

case ε = 0.01, we get that n∗ = 100).

By reading bottom-up the chain of inequalities above we get that for all n > n∗ =
[
1
ε

]
,

then

∣∣∣∣2n+ 1

n
− 2

∣∣∣∣ < ε, and hence the definition is verified.

(c) lim
n→∞

n2 + n+ 1

n
= +∞
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We will show that

∀M > 0 ∃n∗ ∈ N : n > n∗ ⇒ n2 + n+ 1

n
> M

To do this we consider the inequality
n2 + n+ 1

n
> M and we solve it with respect to n:

n2 + n+ 1

n
> M

n2 − (M − 1)n+ 1 > 0

n >
M − 1 +

√
(M − 1)2 − 4

2

Then we set n∗ =

[
M−1+

√
(M−1)2−4
2

]
. Notice that if M is large (for example M = 1000),

then n∗ is large (in case M = 1000, we get that n∗ = [998.999] = 998).

By reading bottom-up the chain of inequalities above we get that for all n > n∗ =[
M−1+

√
(M−1)2−4
2

]
, then

n2 + n+ 1

n
> M , and hence the definition is verified.

(d) lim
n→∞

√
n = +∞

We will show that

∀M > 0 ∃n∗ ∈ N : n > n∗ ⇒
√
n > M

To do this we consider the inequality
√
n > M and we solve it with respect to n:

√
n > M

n > M2

Then we set n∗ = [M2]. Notice that if M is large (for example M = 100), then n∗ is large

(in case M = 100, we get that n∗ = 10000).

By reading bottom-up the chain of inequalities above we get that for all n > n∗ = [M2],

then
√
n > M , and hence the definition is verified.

(e) lim
n→∞

1− n2

n2
= −1

We will show that

∀ε > 0 ∃n∗ ∈ N : n > n∗ ⇒
∣∣∣∣1− n2

n2
+ 1

∣∣∣∣ < ε
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To do this we consider the inequality

∣∣∣∣1− n2

n2
+ 1

∣∣∣∣ < ε and we solve it with respect to n:

Recall that n ∈ N, and hence n > 0, then we have∣∣∣∣1− n2

n2
+ 1

∣∣∣∣ < ε∣∣∣∣ 1

n2

∣∣∣∣ < ε

1

n2
< ε

n >
1√
ε

Then we set n∗ =
[

1√
ε

]
. Notice that if ε is small (for example ε = 0.0001), then n∗ is large

(in case ε = 0.0001, we get that n∗ = 100).

By reading bottom-up the chain of inequalities above we get that for all n > n∗ =
[

1√
ε

]
,

then

∣∣∣∣1− n2

n2
+ 1

∣∣∣∣ < ε, and hence the definition is verified.

(f) lim
n→∞

1− n3 = −∞

We will show that

∀M > 0 ∃n∗ ∈ N : n > n∗ ⇒ |1− n3| > M

To do this we consider the inequality |1 − n3| > M and we solve it with respect to n:

Notice that n ≥ 1, then 1− n3 ≤ 0 and hence |1− n3| = n3 − 1

|1− n3| > M

n3 − 1 > M

n >
3
√
M + 1

Then we set n∗ =
[

3
√
M + 1

]
. Notice that if M is large (for example M = 10000), then n∗

is large (in case M = 10000, we get that n∗ = 21).

By reading bottom-up the chain of inequalities above we get that for all n > n∗ =[
3
√
M + 1

]
, then |1− n3| > M , and hence the definition is verified.

(g) lim
n→∞

5

n+ 3
= 0

We will show that

∀ε > 0 ∃n∗ ∈ N : n > n∗ ⇒
∣∣∣∣ 5

n+ 3

∣∣∣∣ < ε
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To do this we consider the inequality

∣∣∣∣ 5

n+ 3

∣∣∣∣ < ε and we solve it with respect to n:

Recall that n ∈ N, and hence n > 0, then we have∣∣∣∣ 5

n+ 3

∣∣∣∣ < ε

5

n+ 3
< ε

n >
5

ε
− 3

Then we set n∗ =
[
5
ε
− 3
]
. Notice that if ε is small (for example ε = 0.01), then n∗ is large

(in case ε = 0.01, we get that n∗ = 497).

By reading bottom-up the chain of inequalities above we get that for all n > n∗ =
[
5
ε
− 3
]
,

then

∣∣∣∣ 5

n+ 3

∣∣∣∣ < ε, and hence the definition is verified.

(h) lim
n→∞

n2 + 2n

3n2 + 1
=

1

3

We will show that

∀ε > 0 ∃n∗ ∈ N : n > n∗ ⇒
∣∣∣∣n2 + 2n

3n2 + 1
− 1

3

∣∣∣∣ < ε

To do this we consider the inequality

∣∣∣∣n2 + 2n

3n2 + 1
− 1

3

∣∣∣∣ < ε and we solve it with respect to

n: Recall that n ∈ N, and hence n > 0, then we have∣∣∣∣n2 + 2n

3n2 + 1
− 1

3

∣∣∣∣ < ε∣∣∣∣ 6n− 1

3(3n2 + 1)

∣∣∣∣ < ε

6n− 1

3(3n2 + 1)
< ε

n >
3 +

√
9− 9ε(1 + 3ε)

9ε

Then we set n∗ =

[
3+
√

9−9ε(1+3ε)

9ε

]
. Notice that if ε is small (for example ε = 0.01), then

n∗ is large (in case ε = 0.01, we get that n∗ = 66).

By reading bottom-up the chain of inequalities above we get that for all n > n∗ =[
3+
√

9−9ε(1+3ε)

9ε

]
, then

∣∣∣∣n2 + 2n

3n2 + 1
− 1

3

∣∣∣∣ < ε, and hence the definition is verified.

(i) lim
n→∞

en = +∞
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We will show that

∀M > 0 ∃n∗ ∈ N : n > n∗ ⇒ en > M

To do this we consider the inequality en > M and we solve it with respect to n:

en > M

n > log(M)

Then we set n∗ = [log(M)]. Notice that if M is large (for example M = 100000), then n∗

is large (in case M = 100000, we get that n∗ = 11).

By reading bottom-up the chain of inequalities above we get that for all n > n∗ =

[log(M)], then en > M , and hence the definition is verified.

(j) lim
n→∞

e−n = 0

We will show that

∀ε > 0 ∃n∗ ∈ N : n > n∗ ⇒
∣∣e−n∣∣ < ε

To do this we consider the inequality
∣∣e−n∣∣ < ε and we solve it with respect to n:

∣∣e−n∣∣ < ε

e−n < ε

− n < log(ε)

n > log

(
1

ε

)
Then we set n∗ =

[
log
(
1
ε

)]
. Notice that if ε is small (for example ε = 0.00001), then n∗ is

large (in case ε = 0.00001, we get that n∗ = 11).

By reading bottom-up the chain of inequalities above we get that for all n > n∗ =[
log
(
1
ε

)]
, then

∣∣e−n∣∣ < ε, and hence the definition is verified.

(k) lim
n→∞

log(n+ 1) = +∞

We will show that

∀M > 0 ∃n∗ ∈ N : n > n∗ ⇒ log(n+ 1) > M

To do this we consider the inequality log(n+ 1) > M and we solve it with respect to n:

log(n+ 1) > M

n+ 1 > eM

n > eM − 1
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Then we set n∗ =
[
eM − 1

]
. Notice that if M is large, then n∗ is large.

By reading bottom-up the chain of inequalities above we get that for all n > n∗ =[
eM − 1

]
, then log(n+ 1) > M , and hence the definition is verified.

(l) lim
n→∞

log

(
n

n+ 1

)
= 0

We will show that

∀ε > 0 ∃n∗ ∈ N : n > n∗ ⇒
∣∣∣∣log

(
n

n+ 1

)∣∣∣∣ < ε

To do this we consider the inequality

∣∣∣∣log

(
n

n+ 1

)∣∣∣∣ < ε and we solve it with respect to

n: notice first that n
n+1

< 1, and hence log
(

n
n+1

)
< 0, therefore

∣∣∣∣log

(
n

n+ 1

)∣∣∣∣ < ε

− log

(
n

n+ 1

)
< ε

log

(
n

n+ 1

)
> −ε

n

n+ 1
> e−ε

n >
e−ε

1− e−ε

Then we set n∗ =
[

e−ε

1−e−ε

]
. Notice that if ε is small (for example ε = 0.01), then n∗ is large

(in case ε = 0.01, we get that n∗ = 99).

By reading bottom-up the chain of inequalities above we get that for all n > n∗ =
[

e−ε

1−e−ε

]
,

then

∣∣∣∣log

(
n

n+ 1

)∣∣∣∣ < ε, and hence the definition is verified.

(m) lim
n→∞

e
n

n+1 = e

We will show that

∀ε > 0 ∃n∗ ∈ N : n > n∗ ⇒
∣∣∣e n

n+1 − e
∣∣∣ < ε
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To do this we consider the inequality
∣∣∣e n

n+1 − e
∣∣∣ < ε and we solve it with respect to n:

notice first that n
n+1

< 1, and hence e
n

n+1 − e < 0, therefore∣∣∣e n
n+1 − e

∣∣∣ < ε

e− e
n

n+1 < ε

e
n

n+1 > e− ε
n

n+ 1
> log(e− ε)

n >
log(e− ε)

1− log(e− ε)

Then we set n∗ =
[

log(e−ε)
1−log(e−ε)

]
. Notice that if ε is small (for example ε = 0.01), then n∗ is

large (in case ε = 0.01, we get that n∗ = 270).

By reading bottom-up the chain of inequalities above we get that for all n > n∗ =[
log(e−ε)

1−log(e−ε)

]
, then

∣∣∣e n
n+1 − e

∣∣∣ < ε, and hence the definition is verified.

(2) Show that the following limits do not exist

(a) lim
n→∞

cos(nπ)

Let sn = cos(nπ), and consider the even subsequence s2n = cos(2nπ) = 1 for all n and

the odd subsequence s2n+1 = cos((2n + 1)π) = −1 for all n. Since limn→∞ s2n = 1 and

limn→∞ s2n+1 = −1 (that is they are different), by the theorem on subsequences we get

that limn→∞ cos(nπ) does not exist.

(b) lim
n→∞

(−1)nn

n+ 1

Let sn = (−1)nn
n+1

, and consider the even subsequence s2n = 2n
2n+1

for all n and the

odd subsequence s2n+1 = −2n−1
2n+2

for all n. Since limn→∞ s2n = limn→∞
2n

2n+1
= 1 and

limn→∞ s2n+1 = limn→∞
−2n−1
2n+2

= −1 (that is they are different), by the theorem on subse-

quences we get that limn→∞
(−1)nn
n+1

does not exist.

(c) lim
n→∞

n(−1)n

Let sn = n(−1)n , and consider the even subsequence s2n = (2n)(−1)
2n

= 2n for all n and

the odd subsequence s2n+1 = (2n + 1)(−1)
2n+1n

= ( 1
2n+1

) for all n. Since limn→∞ s2n =

limn→∞ 2n = +∞ and limn→∞ s2n+1 = limn→∞
1

2n+1
= 0 (that is they are different), by the

theorem on subsequences we get that limn→∞ n
(−1)n does not exist.

(d) lim
n→∞

(−2)n
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Let sn = (−2)n, and consider the even subsequence s2n = (−2)2n = 22n for all n and the

odd subsequence s2n+1 = (−2)2n+1 = −2 · 22n for all n. Since limn→∞ s2n = limn→∞ 22n =

+∞ and limn→∞ s2n+1 = limn→∞−2 ·22n = −∞ (that is they are different), by the theorem

on subsequences we get that limn→∞(−2)n does not exist.

(e) lim
n→∞

(−n)n

Let sn = (−2)n, and consider the even subsequence s2n = (−2n)2n = (2n)2n for all n

and the odd subsequence s2n+1 = (−2n − 1)2n+1 = (−2n − 1) · (2n + 1)2n for all n. Since

limn→∞ s2n = limn→∞(2n)2n = +∞ and limn→∞ s2n+1 = limn→∞(−2n−1)·(2n+1)2n = −∞
(that is they are different), by the theorem on subsequences we get that limn→∞(−n)n does

not exist.

(3) Compute the following limits using the Absolute value Theorem or the Comparison Theo-

rem.

(a) lim
n→∞

cos(n)

n2

Let sn = cos(n)
n2 and observe that

−1 ≤ cos(n) ≤ 1

−1

n2
≤ cos(n)

n2
≤ 1

n2

Let an = −1
n2 and bn = 1

n2 . Since limn→∞
−1
n2 = 0 and limn→∞

1
n2 = 0, by the Comparison

Theorem we also get that limn→∞
cos(n)
n2 = 0.

(b) lim
n→∞

(−1)nn+ 1

1− n2

Let sn = (−1)nn+1
1−n2 and observe that

−n+ 1

1− n2
≤ (−1)nn+ 1

1− n2
≤ n+ 1

1− n2

Let an = −n+1
1−n2 and bn = n+1

1−n2 . Since limn→∞
−n+1
1−n2 = 0 and limn→∞

n+1
1−n2 = 0, by the

Comparison Theorem we also get that limn→∞
(−1)nn+1

1−n2 = 0.

(c) lim
n→∞

3 + sin(n)

n+ 4

Let sn = 3+sin(n)
n+4

and observe that
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−1 ≤ sin(n) ≤ 1

3− 1

n+ 4
≤ 3 + sin(n)

n+ 4
≤ 3 + 1

n+ 4

Let an = 2
n+4

and bn = 4
n+4

. Since limn→∞
2

n+4
= 0 and limn→∞

4
n+4

= 0, by the

Comparison Theorem we also get that limn→∞
3+sin(n)
n+4

= 0.

(d) lim
n→∞

3

n cos(nπ)

Let sn = 3
n cos(nπ)

and observe that |sn| =
∣∣∣ 3
n cos(nπ)

∣∣∣ = 3
n
. Since limn→∞ |sn| = limn→∞

3
n

=

0, by the Absolute Value Theorem we get that limn→∞
3

n cos(nπ)

(e) lim
n→∞

3

n cos(n) + 2n

Let sn = 3
n cos(n)+2n

and observe that

−1 ≤ cos(n) ≤ 1

3

n+ 2n
≤ 3

n cos(n) + 2n
≤ 3

n

Let an = 1
n

and bn = 3
n
. Since limn→∞

1
n

= 0 and limn→∞
3
n

= 0, by the Comparison

Theorem we also get that limn→∞
3

n cos(n)+2n
= 0.

(f) lim
n→∞

n+ n(−1)n

n2

Let sn = n+n(−1)n
n2 and observe that

0 ≤ n+ n(−1)n

n2
≤ 2n

n2

Let an = 0 and bn = 2
n
. Since limn→∞ an = 0 and limn→∞

2
n

= 0, by the Comparison

Theorem we also get that limn→∞
n+n(−1)n

n2 = 0.

(g) lim
n→∞

2n cos(nπ)

n+ n2

Let sn = 2n cos(nπ)
n+n2 and observe that |sn| =

∣∣∣2n cos(nπ)
n+n2

∣∣∣ = 2n
n(n+1)

= 2
n+1

. Since limn→∞ |sn| =

limn→∞
2

n+1
= 0, by the Absolute Value Theorem we get that limn→∞

2n cos(nπ)
n+n2 = 0
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