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Slope of the line indicates the rate of change



Incremental Ratio

Definition
Let f : [a, b] — R be a continuous function. Let xo, x1 € (a, b). We call
incremental ratio the ratio

f(xa) — f(x)

X1 — Xo

This ratio represents the slope of the line through A = (xo; f(xo)) and
B = (x1;f(x1))
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Incremental Ratio

Definition
Let f : [a, b] — R be a continuous function. Let xo € (a, b) and let h € R such
that xo + h € (a, b). We call incremental ratio the ratio

f(Xo + h) — f(X())
h

This ratio represents the slope of the line through A = (xo; f(xp)) and
B = (xo + h; f(xo + h))
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Derivatives

Definition
Let f : D — R be a function and let [a, b] C D. We say that f is differentiable
at x if:

® Xp € (a, b)
o fim FOOER) = FO0) _ 4 its and it is finite.
h—0 h

If this is the case we call d = f’ (xp) and we say that d is the derivative of f at
the point xp.
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Derivatives of elementary functions

® let f(x) = k, with kK € R (i.e. the constant function). D =R
Using the definition of derivative we get that, for any x € R:

lim M — lim u =0
h—0 h h—0 h

The last equality is not an undetermined form since the numerator is equal
to 0 no matter the value of h.

® letf(x)=x. D=R
Using the definition of derivative we get that, for any x € R:

”mwz “mm: Iimﬁzl
h—0 h h—0 h h—0 h
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Derivatives of elementary functions

® let f(x)=x2. D=R
Using the definition of derivative we get that, for any x € R:

_ 2 2
i FER — ) L (x+h)” —x
h—0 h h—0 h
. 2hx+ h?
= lim =
h—0 h

° letf(x)=¢*. D=R
Using the definition of derivative we get that, for any x € R:

f h—f x+h _ .x
lim —(X+ ) (x) —fim & —C
h—0 h h—0
eh—1
= lim &* = e~
h—0 h
——
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Derivatives of elementary functions

® Let f(x) =log(x). D = (0,+400)
Using the definition of derivative we get that, for any x € (0, +00):

i fXHR) = F(x) . log(x + h) — log(x)

h—0 h iLo h
log (14 4 1log (144 1
= lim g( X)—Iimf g( +X):f
h—0 h h—0 X g X
N———

® Let f(x) =sin(x). D=R
Using the definition of derivative we get that, for any x € R:
im f(x+ h) — f(x) sin(x + h) — sin(x)
im—~— "\

= lim

h—0 h h—0 h
— Im sin(x) cos(h) + sin(h) cos(x) — sin(x)
h—0 h
— Im sin(x)(cos(h) — 1) 4 lim sin(h) cos(x) — cos(x)
h—0 h h—0 h
0 cos(x)
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Derivatives of elementary functions

® Let f(x) =cos(x). D=R
Using the definition of derivative we get that, for any x € R:
f(x+ h) — f(x)

cos(x + h) — cos(x)

lim = lim

h—0 h h—0 h
~lim cos(x) cos(h) — sin(h) sin(x) — cos(x)
h—0 h
. cos(x)(cos(h) —1) . sin(h)sin(x) .
N I|1T>10 h a flwﬂqo h = —sin(x)
0 sin(x)
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Derivatives of elementary functions: Summary

Function f(x) f'(x)

Constant k
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Derivatives of elementary functions: Summary

Function f(x) f'(x)
Constant k 0
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Derivatives of elementary functions: Summary

Function f(x) f'(x)
Constant k 0
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Derivatives of elementary functions: Summary

Function f(x) f'(x)
Constant k 0
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Derivatives of elementary functions: Summary

Function f(x) f'(x)
Constant k 0
Powers x* a#0 | ax®!
Sine sin x COS X
Cosine cos X —sinx
Exponential ex e
Logarithm log(x) %
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Operations with derivatives

Let f: Dr — R and g : D, — R be two differentiable functions. Then:

D[f(x) + g(x)] = f'(x) + &'(x)
D[f(x) — g(x)] = f'(x) — &'(x)
D[kf(x)] = kf'(x)
D[f(x) - g(X)]Zf( ) (X)+f(><) g'(x)
[ f'(x) (x)-&'(x)
g(x)

DI(f o g)(x)] = D[f(g(x ))]—f’(g(X)) '(x)
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Differentiation rules: exercises

Compute the derivative of the following functions:
O f(x)=43-3%+x+3
@ f(x) =sinx+cosx

O f(x)=x
O f(x)=tanx
O f(x)=x"2

@ f(x) =logx + logg x
@ f(x)=2x+ 3¢

O f(x)=(x+1)?

O f(x)=(2x+3)* + ¥
M f(x) = cosx?

® f(x)=cos®x

® f(x)=sinxlogx

® f(x) = x?sin3x

@ f(x) = 2oex
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Checklist for differentiability

Let f : D — R be a function. Then f is differentiable at xq if
® f{ is continuous in xg
® |eft and right limits of the incremental ratio at xp must coincide

® the limit must be finite
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Non-differentiability points

e if f is not defined at xg, that is xo ¢ D, then clearly it cannot be
differentiable (because in this case the function does not exists at the
point xp)

o if
f(Xo + h) — f(Xo)

li = +
A h %, 7 £o0
f h)—f
lim (xo + h) (*o) = dy, dy # Foo
h—0— h

but di # d>, then the function is NOT differentiable at xg, and (xg, f(xo))
is called an angle point
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Non-differentiability points

o if im f(xo—+h)—f(x) oo, (—0)
h—0+ h

lim fFloth) —fx) = +o00, (—o0)
h—0— h

(i.e. left and right limits are infinite of the same sign!) then the function is
NOT differentiable at xo, and (xo, f(xo)) is called an inflection point
with vertical tangent

o if
. f(xo+h)—f(x)
han8+ : h == oo (7o)
. f(Xo-l—h)—f(X())_
hILr(r)L h - (+20)

(i.e. left and right limits are infinite of the different sign!) then the
function is NOT differentiable at xo, and (xo, f(x0)) is called a cusp point
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First order Taylor approximation

Suppose that
L FO) (o)
x=x (X —Xxp)

= f'(x0) (1)
Then if x is close to xg, we can say that

- f)
(x — x0)

f'(x0)

Equivalently
f(x) ~ f(x0) + ' (x)(x — x0)
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fx) ~ f(xo0) + f'(x0) (x = Xo)

Blue line: f(x)

0 . 1
/’ Orange line: tangent at x, = "



First order Taylor approximation

® The function

P(x) = f(x0) + f'(x0)(x — x0)
is called the first order Taylor approximation of f or the linearization of f

or the first order Taylor polynomial of f.

® The quantity
R(x1) = f(x1) — P(x1)
is the reminder or the (absolute) error, for every x; # xg
® The relative error (or error in percentage) is €(x1) = %

The approximation P(x) is good (i.e. if we use P(x) in place of f(x) we are not
making a large error) if

e if x is close to xg, i.e. |x — xp| < &

® f is almost flat
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Differentiability and continuity

Theorem

Let f: D — R and let xo € D. If f is differentiable in xo then it is continuous in
X0-

Proof: Notice that we already know that xo € D. Therefore we need to show
that lim,_,, f(x) exists and it is equal to f(xp).
For all x £ xp we can write
f(x) = f(x) — f(x0) + f(x0)
f(x)—f
f(X) _ (X) (XO)
x —

X0

(x — x0) + f(x0)

Now, we take the limit as x — xg on both sides:

. . f(x) = f(x)
lim f(x) = lim ———2(x — f =f
xl—r;r;o (X) X—>In>1<0 X — X0 LX ,—/XO) + (XO) (XO)
f’(x0)

This concludes the proof.
18/49



Differentiability and continuity

Problem: If a function is continuous, is it differentiable ? N 0!
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Differentiability and continuity

Problem: If a function is continuous, is it differentiable ? N 0!
Example: The function absolute value

—X if x<0
f(X)_|X|_{ x if x>0

This function is continuous in for all x € R.
However, if we compute the left and right limit of incremental ratio at xo =0

we get
A G ) Rt G ) TR
h—0+ h h—0+ h
jim fO0EN = F00) o =h
h—0~ h h—0—- h

Hence f is not differentiable at xo = 0 and x9p = 0 is an angle point.
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Increasing and decreasing functions

Theorem ( conditions for monotonicity of

differentiable functions)

Let f : D — R be a function and assume that f is differentiable in an open
interval | C D. Then:
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Increasing and decreasing functions

Theorem ( conditions for monotonicity of

differentiable functions)

Let f : D — R be a function and assume that f is differentiable in an open
interval | C D. Then:

® f s strictly increasing in | if and only if f' (x) > 0 Vx € |
® f js increasing in | if and only if ' (x) > 0 Vx € |
® f is strictly decreasing in | if and only if f' (x) <0 Vx € |
® f is decreasing in | if and only if f' (x) <0 Vx € |

Pay attention: the open interval / can be unbounded.
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Increasing and decreasing functions: examples
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Increasing and decreasing functions: examples

The function f(x) = e~ is differentiable in R. The derivative is f'(x) = e* > 0,
Vx € R.

22/49



Increasing and decreasing functions: examples

The function f(x) = e~ is differentiable in R. The derivative is f'(x) = e* > 0,
Vx € R. Thus, the function is strictly increasing in R.
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Increasing and decreasing functions: examples,

cont’d
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Increasing and decreasing functions: examples,

cont’d

The function f(x) = (%)X is differentiable in R.
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Increasing and decreasing functions: examples,

cont’d

The function f(x) = (%)X is differentiable in R. The derivative is
f'(x)=—(%)" <0, vxeR.
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Increasing and decreasing functions: examples,

cont’d

The function f(x) = (%)X is differentiable in R. The derivative is
f'(x)=— (%)X < 0, Vx € R. Thus, the function is strictly decreasing in R.
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Increasing and decreasing functions: examples

-2 -1 L 1 2

The function f(x) = x? is differentiable in R.
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Increasing and decreasing functions: examples

-2 -1 L 1 2

The function f(x) = x? is differentiable in R. The derivative is f’(x) = 2x
which is positive for x > 0 and negative for x < 0.
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Increasing and decreasing functions: examples

The function f(x) = x? is differentiable in R. The derivative is f’(x) = 2x

which is positive for x > 0 and negative for x < 0. Thus, the function is strictly
increasing in (0, +00) and strictly decreasing in (—o0,0).

24/49



Increasing and decreasing functions: exercises

Determine in which subsets of their domain the following functions are
increasing and decreasing:

f(x) = log x

f(x) =logx — x

f(x) = sin(x)

f(x) =x3—6x%+4x + 12
f(x) = logx — x?
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Local maxima and local minima

Let f : D — R be a function. Local maxima and minima are defined as follows:
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Vx € (xo — d,x0 + 0)

26/49



Local maxima and local minima

Let f : D — R be a function. Local maxima and minima are defined as follows:

® A point xg € D is a local maximum if 36 > 0 : f(x) < f(xo)
Vx € (xo — d,x0 + 0)

® A point xg € D is a local minimum 36 > 0 : f(x) > f(xo)
Vx € (Xo — 0, X0 +5)

26/49



Local maxima and local minima
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® A point xg € D is a local minimum 36 > 0 : f(x) > f(xo)
Vx € (Xo — 0, X0 +5)

Pay attention: Note the difference between local maxima/minima and
maxima/minima in an interval that we saw in the Weierstrass theorem.
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Local maxima and local minima

Let f : D — R be a function. Local maxima and minima are defined as follows:

® A point xg € D is a local maximum if 36 > 0 : f(x) < f(xo)
Vx € (xo — d,x0 + 0)

® A point xg € D is a local minimum 36 > 0 : f(x) > f(xo)
Vx € (Xo — 0, X0 +5)

Pay attention: Note the difference between local maxima/minima and
maxima/minima in an interval that we saw in the Weierstrass theorem.

In a closed and bounded interval [a, b] a function may have multiple
local maxima/minima but ONLY one maximum/minimum.

26 /49



Local maxima and local minima: examples

1 x=0

20 N\ \/ \/ 14 2

-0.5-
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Local maxima and local minima: examples

1 x=0

-0.5-

This function is continuous in R.

By the Weierstrass theorem, it admits a maximum and a minimum in every
closed bounded interval [a, b].

However, the function may have multiple local maxima and minima in [a, b]. 2145



Fermat's theorem: the intuition
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Fermat's theorem: the intuition

f(x) = x? g(x) =sinx

If a function is differentiable, the tangent line at local maxima and local minima
is horizontal: that means, the derivative at local maxima and local minima is
zero

28/49



70

60

50

40

30

20

10

f(x) =x%—2x+35

10

15

20

25

30

35



f(x) =x%—2x+35

10 15 20 25

30

35









Fermat's theorem

Theorem (First order necessary condition for local maxima/minima)

Let f : D — R and let f be differentiable in xo € D.
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a local minimum then f'(xp) = 0.
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Does the converse hold?
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Fermat's theorem

Theorem (First order necessary condition for local maxima/minima)

Let f : D — R and let f be differentiable in xo € D. If xq is a local maximum or
a local minimum then f'(xp) = 0.

Does the converse hold? Namely, if a function f : D — R is differentiable in
xo € D and if f'(xp) = 0, can we conclude that xp is a local maximum or a local
minimum? NO! (see next slide)
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Fermat's theorem, cont'd

Indeed, consider the function f(x) = x3:
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Fermat's theorem, cont'd

Indeed, consider the function f(x) = x3:

This function is differentiable in R and we have:
flix)=3x> = f(0)=0

However, x = 0 is NOT a local maximum/minimum. It is an inflection point
with an horizontal tangent.
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Fermat's theorem, cont'd

What if the function is not differentiable?
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31/49



Fermat's theorem, cont'd

What if the function is not differentiable?

The function is not differentiable in x = 0, i.e. '(0) does not exist. However
note that x = 0 is a local minimum.
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Fermat's theorem, cont'd

What if the function is not differentiable?

The function is not differentiable in x = 0, i.e. '(0) does not exist. However
note that x = 0 is a local minimum. We CANNOT use derivatives to find
the local maxima/minima if a function is not differentiable. In that case,
we need to use the definition!!
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Stationary points

Let f : D — R be differentiable in xo € D.
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Stationary points

Definition
Let £ : D — R be differentiable in xo € D. If f' (xp) = 0, the point xg is called a
stationary point or a critical point.

Based on what we have seen so far, stationary points can be:

® | ocal maxima

® | ocal minima

® [nflection points with horizontal tangent
Thus, the condition f'(xp) = 0 necessary but not sufficient for xq to be a
local maximum or minimum for f.

In order to understand whether xg is a local minimum, a local maximum or an
inflection point, we need additional conditions that involve the second
derivative.
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Concavity and Convexity: the definition

Definition
A function f : D — R is said to be concave in (a, b) C D if for all x1,x € (a, b)
the segment that joins the point (xi, f(x1)) and the point (x, f(x2)) lies below
the graph of f(x) in the interval (x1,x2).
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Concavity and Convexity: the definition

A function f : D — R is said to be concave in (a, b) C D if for all x1,x € (a, b)

the segment that joins the point (xi, f(x1)) and the point (x, f(x2)) lies below
the graph of f(x) in the interval (x1,x2).

A function f : D — R is said to be convex in (a, b) C D if for all x1, x> € (a, b)

the segment from the point (x, f(x1)) to the point (x2, f(x2)) lies above the
graph of f(x) in the interval (xi, x2).
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The derivative of concave and convex functions

Theorem ( conditions for concavity/convexity
of differentiable functions)

Let f : D — R be a function. Assume that f is differentiable on (a, b) C D.
Then:

® f js concave on (a, b) if and only if f' is strictly decreasing on (a, b)
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The derivative of concave and convex functions

Theorem ( conditions for concavity/convexity

of differentiable functions)

Let f : D — R be a function. Assume that f is differentiable on (a, b) C D.
Then:

® f js concave on (a, b) if and only if f' is strictly decreasing on (a, b)

® f js convex on (a, b) if and only if f' is strictly increasing on (a, b)

Intuition: observe that, if a function is concave, the slope of the line tangent to

a point decreases. Instead, if a function is convex, the slope of the line tangent
to a point increases.
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Higher order derivatives

Let f : D — R be a differentiable function and let f/(x) denote the derivative of
f(x). Suppose that also f’ is differentiable.
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denoted by 7”(x), is defined as the derivative of f'(x), that is:

F(x) = IFF ()

Examples
* f(x)=x2 f(x)=2x, f"(x) =2

® f(x) =sinx,
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Examples
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Higher order derivatives

Definition
Let f : D — R be a differentiable function and let f/(x) denote the derivative of

f(x). Suppose that also f’ is differentiable. Then the second derivative of f(x),
denoted by 7”(x), is defined as the derivative of f'(x), that is:

F(x) = IFF ()

Examples
* f(x)=x2 f(x)=2x, f"(x) =2

® f(x)=sinx, f'(x) =cosx, f’(x) = —sinx
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The derivative of concave and convex functions,

cont’d

We have seen that
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The derivative of concave and convex functions,

cont’d

We have seen that:

e A differentiable function is concave if and only if f/(x) is strictly
decreasing.

o A differentiable function is convex if and only if f'(x) is strictly increasing.

Then we have the following result

Theorem ( conditions for concavity/convexity

of differentiable functions)

Let f : D — R be a twice differentiable function in an interval (a, b) C D. Then
® f js concave in (a, b) if and only if f"'(x) < O for all x € (a, b).
® f is convex in (a, b) if and only if f"(x) > 0 for all x € (a, b).
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Second order sufficient condition for local maxima

and minima

Theorem (Second order sufficient condition for local maxima and minima)

Let f : D — R be twice differentiable on (a,b) C D and let xo € (a, b) be such
that f' (xo) = 0 (that is, xo is a critical point). Then:
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Second order sufficient condition for local maxima

and minima

Theorem (Second order sufficient condition for local maxima and minima)

Let f : D — R be twice differentiable on (a,b) C D and let xo € (a, b) be such
that f' (xo) = 0 (that is, xo is a critical point). Then:

e [ff"(xp) <O then xo is a local maximum.

e |ff"(xo) > 0 then xo is a local minimum.

Intuition: observe that, if xg is a local maximum, the function is concave in a
neighborhood of xp and therefore f/(x) < 0.

Similarly, if xg is a local minimum, the function is convex in a neighborhood of
xo and therefore " (xg) > 0.
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Second order sufficient condition for local maxima

and minima

What if £”(x) = 07

Let f : D — R be three times differentiable on (a, b) C D and let xg € (a, b). If
" (x0) = 0 and """ (x0) # 0, then X is an inflection point.

Example: Consider the function f(x) = x> and note it is three times
differentiable with f'(x) = 3x2, f”/(x) = 6x, f"(x) = 6. The point x =0 is a
critical point because f'(0) = 0. Moreover, f”(0) = 0. Since f"/(0) =6 # 0,
x = 0 is an inflection point.
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Second order sufficient condition for local maxima

and minima

Find the local maxima and minima of the following functions. Determine also in
which intervals the function is convex and/or concave.

O f(x)= Iogxfx
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Derivative of the inverse function

Let f : X — Y be differentiable in X.

40/49



Derivative of the inverse function

Theorem
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Derivative of the inverse function

Let f : X — Y be differentiable in X. Assume f is invertible and call
f(=1) . Y — X the inverse function.
Then f1) s differentiable in Y and

() () = 5

for all y € Y such that f’ (f(_l) (v)) #0.
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Derivative of the inverse function: an example

The function sin(x) : [-5, 5] — [~1,1] is injective and surjective and therefore

it can be inverted. The inverse is called “arcsin”:
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Derivative of the inverse function: an example

The function sin(x) : [-5, 5] — [~1,1] is injective and surjective and therefore
it can be inverted. The inverse is called “arcsin”:
T
in(x): [-1,1 —>[—f,f} 2
arcsin(x) : [ ] '3 (2)
15

—sin(z)
_y—x
—arcsin(z)| |

41/49



Derivative of the inverse function: an example

By definition of inverse function:

f
Xo—)f(Xo):yo =
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Derivative of the inverse function: an example

By definition of inverse function:

-1
X0 fx) =y < y Lo 0 (o) = xo

sin(0)=0 = arcsin(0)=0
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Derivative of the inverse function: an example

By definition of inverse function:

sin(0)=0 = arcsin(0)=0
sin(Z) =1 = arcsin(l) = =
(5 2

sin (—%) =-1 = arcsin(—1)= —g

T
4 42/49



Derivative of the inverse function: an example

Let's compute the derivative of arcsin (x) using the previous theorem.
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Derivative of the inverse function: an example

Let's compute the derivative of arcsin (x) using the previous theorem. Recall the
formula for the derivative of the inverse:

[f(fl)]/ (v)= ﬁ

In our case, we have:

SRS S
(arcsin (x)) = cos (arcsin (x))

Using the fact that, in [-7, 7], cosx = V1 — sin® x, we have:

cos (arcsin (x)) = \/1 — sin? (arcsin (x)) = V/1 — x2

and thus:

(arcsin (x)) =

Vv1—x2

43 /49



Derivative of the inverse function: other examples

Using the same method it is possible to compute the derivative of the inverse of
the cosine and tangent.
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Using the same method it is possible to compute the derivative of the inverse of
the cosine and tangent.

The inverse of the function cosx : [0, 7] — [—1,1] is the function
arccosx : [-1,1] — [0, 7]
which is differentiable in [—1,1] and its derivative is given by:
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Derivative of the inverse function: other examples

Using the same method it is possible to compute the derivative of the inverse of
the cosine and tangent.

The inverse of the function cosx : [0, 7] — [—1,1] is the function
arccosx : [-1,1] — [0, 7]

which is differentiable in [—1,1] and its derivative is given by:

(arccos x)' = I
V1-—x2
The inverse of the function tanx : [~%, 2] — R is the function
m™ T
xR [2.7]
arctan x 55

which is differentiable in R and its derivative is given by:

1

tanx) = ——
(arctan x) T2
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De L'Hopital rule
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De L'Hopital rule

Let f : D — R and g : D — R be continuous on D and let xy be a limit point of
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De L'Hopital rule

Let f : D — R and g : D — R be continuous on D and let xy be a limit point of
D. Assume that f and g are both differentiable in D\ {xo} and g (x) # 0. If:

lim £(x) = lim g(x) =0 AND 3 fim )
[ x)=li x) = i =
X—X0 xexog x—x0 g’ (X)
or if

: : . (%)

lim f(x) =400, lim g(x)==xc0c AND 3 lim =L,

X—X0 X—=Xo x=x g’ (x)
then .

3 im 00 .
x—x0 g x)

The point xo can be either finite or +cc.

45 /49



De L'Hopital rule: examples

Compute the following limit:
lim xlog x
x—0F 8
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De L'Hopital rule: examples

Compute the following limit:

lim xlogx
x—0t

We have an indeterminate form 0 x (—o0). However, applying the De L'Hopital
rule we have:

. . log (x)
| I = |
g xtos () = g, 7
| /
i (08 (X))
B
1 2
= lim Xl = lim X lim —x =0
x—=0t —= x—0*t X x—0t
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De L'Hopital rule
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De L'Hopital rule

Compute the following limit:

i log()  toon | (log(x))
X—r+0o0 \/)? 400 X—+00 (\/})/ X—r+o0 2\1/; x—+o0o X
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De L'Hopital rule
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De L'Hopital rule

Compute the following limit:

. ™
lim (arctanx — =) e
X—>00 2

us

Since the arc whose tangent is +00 is 5 we have:

l tan (x) = +~
XHITOOEFC an(x) = 2
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De L'Hopital rule

Compute the following limit:

. ™
lim (arctanx — =) e
X—>00 2

us

> we have:

Since the arc whose tangent is +oc is

lim t ( )* +
. I arctan (x) = 5
and thus:

- arctanx—g
lim (arctanx - 5) e =0x (+00) = lim

X—00 X—00 e—X
1
0w . . X
=—= lim 1+ x = — lim
0 x—o00 —e X x—00 1 + x2
o0 H e* o0 H X
:7:*||m7:7:*||m7:700
o0 x—00 2X o0 x—o0 2
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De L'Hopital rule
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Pay attention: The hypothesis:
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S im £
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is fundamental. If this limit does not exist, we CANNOT say that the original
limit does not exist as well. Let's consider this limit:
x+sin(x) 400 H 1 + cos (x)

X—>+00 % 400  x—Hoo 1

Remind that the limit for x — +o00 of sin x and cos x do not exist because
these functions oscillate between —1 and 1. However

im x—f—sin(x): im 1+sin(x)
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X
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