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4.4 The Fundamental Theorem of Calculus

B Evaluate a definite integral using the FundamentaI_Theorem of Calculus.
Understand and use the Mean Value Theorem for Integrals.

H Find the average value of a function over a closed interval.

B Understand and use the Second Fundamental Theorem of Calculus.

B Understand and use the Net Change Theorem.

The Fundamental Theorem of Calculus

You have now been introduced to the two major branches of calculus: differential
caleulus (introduced with the tangent line problem) and integral calculus (introduced
with the area problem). So far, these two problems might seem unrelated—but there is
avery close connection. The connection was discovered independently by Isaac Newton
and Gottfried Leibniz and is stated in the Fundamental Theorem of Calculus.

Informally, the theorem states that differentiation and (definite) integration are
inverse operations, in the same sense that division and multiplication are inverse
operations. To see how Newton and Leibniz might have anticipated this relationship,
consider the approximations shown in Figure 4.27. The slope of the tangent line was
defined using the quotient Ay/Ax (the slope of the secant line). Similarly, the area of a
region under a curve was defined using the product AyAx (the area of a rectangle). So,
at least in the primitive approximation stage, the operations of differentiation and definite
integration appear to have an inverse relationship in the same sense that division and
multiplication are inverse operations. The Fundamental Theorem of Calculus states that
the limit processes (used to define the derivative and definite integral) preserve this
inverse relationship.
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Differentiation and definite integration have an “inverse” relationship.

Figure 4.27

ANTIDIFFERENTIATION AND DEFINITE INTEGRATION

Throughout this chapter, you have been using the integral sign to denote an antiderivative
(a family of functions) and a definite integral (a number). :

' b
Antidifferentiation: f flx) dx Definite integration: J‘ fx) dx
a

The use of the same symbol for both operations makes it appear that they are related.
. In the early work with caleulus, however, it was not known that the two operations were
. related. The symbol [ was first applied to the definite integral by Leibniz and was derived
from the letter S. (Leibniz calculated area as an infinite sum, thus, the letter S.)
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THEOREM 4.9 The Fundamental Theorem of Calculus

If a function fis continuous on the closed interval [a, b] and F is an
antiderivative of f on the interval [a, b], then

f f(x) dx = F(b) — F(a).

Proof The key to the proof is writing the difference F(b) — F(a) in a convenient
form. Let A be any partition of [a, b].

Q=X <X KXo <KX <X, =b
By pairwise subtraction and addition of like terms, you can write

F(b) — Fla) = Flx,) — F(x,_,) + F(x,_) — - - - — F(x;) + F(x,) — F(x;)
= SIF) — Fx, )

By the Mean Value Theorem, you know that there exists a number c; in the ith
subinterval such that
Flo) = Fla !

Py = ) = Floic)

X = X1
Because F'(c;} = f(c,), you can let Ax; = x; — x,_, and obtain

Fib) — Fla) = Ef(q)Ax,-.

=11

This important equation tells you that by repeatedly applying the Mean Value Theorem,
you can always find a collection of ¢;’s such that the constant F(b) — F(a) is a Riemann
sum of f on [a, b] for any partition. Theorem 4.4 guarantees that the limit of Riemann
sums over the partition with [|A[| = 0 exists. So, taking the limit (as |A|| — 0) produces

F(b) — Fla) = f f(x) dx.

See LarsonCalculus.com for Bruce Edwards's video of this proof. 7 |

| GUIDELINES FOR USING THE FUNDAMENTAL THEOREM OF
CALCULUS

1. Provided you can find an antiderivative of f, you now have a way to evaluate
a definite integral without having to use the limit of a sum.
2. When applying the Fundamental Theorem of Calculus, the notation shown
below is convenient.
b
a

b
jf@ﬂ—ﬁm]=nwﬂ@

For instance, to evaluate [} x> dx, you can write

3 473 4 4
sge X o8 10 81 1 -
J:xdx 4]1 4 4 4 4 20 !

3. It is not necessary to include a constant of integration C in the antiderivative.

1
g
T
F

j flx) dx = [F(x) + CT = [F(b) + C] — [F(a) + C] = F(b) — F(a)
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The definite integral of y on [0, 2] is 3.

Sizure 4.28

} } } 4 x
1 2 3 4

= area of the region bounded by the
w=oh of v, the x-axis, x = 0, and

4.4 The Fundamental Theorem of Calculus

" EXAMPLE 1 Evaluating a Definite Integral

« «[> See LarsonCalculus.com for an interactive version of this type of example.

Evaluate each definite integral.

2 4 /4
a. j (%% —3) dx b. f 3/x dx c. J sec? x dx
1 1 0

Solution

jO(X3)dx—[§3x}=(¥ﬁ6) (,_3) =

3/2
b. f 3/xdx = 3[ V2 gy = 3[ i ] 247> — 2(172 = 14

/4

/4
(W8 f sec? x dx = tan x:l
0 0

EXAMPLE 2 A Definite Integral Involving Absolute Value

2
Evaluate f 125 — 1 .
0

=l=0=1

279

Solution Using Figure 4.28 and the definition of absolute value, you can rewrite the

integrand as shown.
|2x — 1] = {—(m -1,
Pcheasly

From this, you can rewrite the integral in two parts.

X <

P [ B2 =

X =

2

2 1/2
|2x—ldx—f —(2x—l)dx+J (2x
0 0

1/2

1/2 2
=[ xz—l-x} +[x2—x}
1/2
I 1

(-3 + ) ©+0)+(@—2) - (———)

— 1) gw

4 2
2
7

Using the Fundamental Theorem to Find Area
Find the area of the region bounded by the graph of

o= P — Jx+ 2
the x-axis, and the vertical lines x = 0 and x = 2, as shown in Figure 4.29.

Solution Note that y > 0 on the interval [0, 2].

Integrate between x = 0 and x = 2.

2
Area = J' (2x2 — 3x + 2) dx
0

3 . 2
= [& — 3i S Zx:l Find antiderivative.
3 2 0
16
=l 6+4)—{0—-0+0) Apply Fundamental Theorem.
_ 10

Simplify.
3 plily.
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fie)

Mean value rectangle:

b
e = a = [ s ax
Figure 4.30 ’

The Mean Value Theorem for Integrals

In Section 4.2, you saw that the area of a region under a curve is greater than the area
of an inscribed rectangle and less than the area of a circumscribed rectangle. The
Mean Value Theorem for Integrals states that somewhere “between” the inscribed and
circumscribed rectangles, there is a rectangle whose area is precisely equal to the area
of the region under the curve, as shown in Figure 4.30.

THEOREM 4.10 Mean Value Theorem for Integrals

If f is continuous on the closed interval [a, b], then there exists a number ¢ in
the closed interval [a, b] such that

f N e P )

Proof

Case I: If fis constant on the interval [a, b], then the theorem is clearly valid because
¢ can be any point in [a, b].

Case 2: If fis not constant on [a, b], then, by the Extreme Value Theorem, you can
choose f(m) and f(M) to be the minimum and maximum values of fon [a, b]. Because

flm) < f(x) < f(M)

for all x in [a, b], you can apply Theorem 4.8 to write the following.

b b b
j flm) dx = f fx)dx = J F(M) dx See Figure 4.31.
f{m)(b = a) = j f (x) dx =f (M)(b T a) Apply Fandamental Theorem.
b
flm) < 5 i aJ; fx) dx = f(M) Divide by b — a.

From the third inequality, you can apply the Intermediate Value Theorem to conclude
that there exists some ¢ in [a, b] such that

b b
fle) == f f)dx or F()b — a) = f F00) dx.

fom) {

a b a b a b
Inscribed rectangle Mean value rectangle Circumscribed rectangle
(less than actual area) (equal to actual area) (greater than actual area)
b 5 b

j flm) dx = flm)(b — a) J flx) dx f fM) dx = fM)(b — a)
a o a

Figure 4.31

See LarsonCalculus.com for Bruce Edwards’s video of this proof. e |

Notice that Theorem 4.10 does not specify how to determine ¢. It merely guarantees
the existence of at least one number c in the interval.
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Figure 4.
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Average Value of a Function

The value of f(c) given in the Mean Value Theorem for Integrals is called the average
value of f on the interval [a, b].

Definition of the Average Value of a Function on an Interval

If fis integrable on the closed interval [a, ], then the average value of f on the
interval is

See Figure 4.32.

To see why the average value of fis defined in this way, partition [a, 5] into n
subintervals of equal width

b —a

n

Ax =

If ¢; is any point in the ith subinterval, then the arithmetic average (or mean) of the
function values at the ¢;’s is

a, = 217l + fle) + - - + £le,)]

Average of f(¢,),. . ., f(c,)

By multiplying and dividing by (b — a), you can write the average as

an:li.f(q)(b 2)
e (H)
i)

If(c

Finally, taking the limit as 7 — co produces the average value of fon the interval [a, b],
as given in the definition above. In Figure 4.32, notice that the area of the region under
the graph of fis equal to the area of the rectangle whose height is the average value.

This development of the average value of a function on an interval is only one
of many practical uses of definite integrals to represent summation processes. In
Chapter 7, you will study other applications, such as volume, arc length, centers of
mass, and work.

" EXAMPLE 4

Finding the Average Value of a Function

Find the average value of f(x) = 3x% — 2x on the interval [1, 4].

Solution The average value is

dx——f (3x% — 2x) d
3[)‘3*"}1

1
25[64* 16 — (1 — 1)]

= 28
3
= 16. See Figure 4.33. L
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The first person to fly at a speed
greater than the speed of sound
was Charles Yeager. On October
14, 1947 Yeager was clocked at
295.9 meters per second at an
altitude of 12.2 kilometers. If
Yeager had been flying at an
altitude below 11.275 kilometers,
this speed would not have
“broken the sound barrier” The
photo shows an F/A-18F Super
Hornet, a supersonic twin-engine
strike fighter. A “green Hornet”
using a 50/50 mixture of biofuel
made from camelina oil became
the first U.S. naval tactical
aircraft to exceed 1 mach.

 EXAMPLE 5

The Speed of Sound

At different altitudes in Earth’s atmosphere, sound travels at different speeds. The spee-

of sound s(x) (in meters per second) can be modeled by

—4x + 341, 0<x<1l5
295, 1S = x 29

s(x) = {3x + 278.5, Pk A e )
3y + 25455, 32 =x<50
—3x + 4045, 50 < x < 80

where x is the altitude in kilometers (see Figure 4.34). What is the average speed o

sound over the interval [0, 80]7

350 e

o 7
310 \ /
300 \ / :

290

Speed of sound (in m/sec)

280 e

Altitude (in km)

Speed of sound depends on altitude.
Figure 4.34

Solution Begin by integrating s(x) over the interval [0, 80]. To do this, you can break

the integral into five parts.
11.5 11.5
f s(x) dx = f (—dx + 341) dx = I:*sz - 341x:|
0 0

11.5

= 3657
0

22 92, 22
J s(x) dx = j 295dx = [2954 = 3097.5
1 1

L5 1=3 11.5
32 32 32
J s(x) dx = j (3x + 278.5) dx = [%;;2 + 278.5x] = 29875
22 22 27

50 50 I 50
f s(x) dx = j (3x + 254.5) dx = [gxz + 254.5x] = 5688
3 3

2 2 32
80

80 80
f s(x) dx = f (—3x + 404.5) dx = [ -2+ 404.5x] = 9210
) 5

0 50 50

By adding the values of the five integrals, you have

50
f s(x) dx = 24,640.
0

So, the average speed of sound from an altitude of O kilometers to an altitude of

80 kilometers is

80

o) dx = 2640

1
Average speed = — 20

80 J, = 308 meters per second.

Lukich/Shutterstock.com
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The Second Fundamental Theorem of Calculus

Earlier you saw that the definite integral of fon the interval [a, b] was defined using the
constant b as the upper limit of integration and x as the variable of integration. However,
a slightly different situation may arise in which the variable x is used in the upper limit
of integration. To avoid the confusion of using x in two different ways,  is temporarily
used as the variable of integration. (Remember that the definite integral is not a
function of its variable of integration.)

The Definite Integral as a Number  The Definite Integral as a Function of x

Constant F is a function of x.

b X
f flx) dx F(x) = f fl) dt
I fisa fisa
Constant function of x. Constant function of 7.
Exploration 'EXAMPLE 6 The Definite Integral as a Function
Use a graphing utility to graph Evaluate the function
the function ;.
x F(x) = J cos 1 dt
Flx) = J cos rdt 0
' g w
for0 = x = m Do you atx = 0,4, 5,7, and 5.
recognize this graph? Explain. |
Solution You could evaluate five different definite integrals, one for each of the

given upper limits. However, it is much simpler to fix x (as a constant) temporarily
to obtain

X X
J. cos tdtf = sin 1‘]
0 0

=sinx — sin 0
= gin X.

Now, using F(x) = sin x, you can obtain the results shown in Figure 4.35.

y ¥ y y
- _ m_1 my V2 zy_ V3
% v, S0 F(E)’z %\F(ct)‘ 2 F(3)‘ 2
\‘ \\ |
Y A ! Y |
N N | ‘\ A

\\ \\ b ‘ )

\ \ S \
lvr=0 el ! T BT T e rr\ wi
x= | _TF I _I
Wi g 55 2 =3

F(x):j cos ¢ dr is the area under the curve f(r) = cos t from 0 to x.
0
Figure 4.35 |

You can think of the function F(x) as accumulating the area under the curve
£(r) = cos t from ¢ = 0 to t = x. For x = 0, the area is 0 and F(0) = 0. For x = /2,
F(7/2) = 1 gives the accumulated area under the cosine curve on the entire interval
[0, 7/2]. This interpretation of an integral as an accumulation function is used often
in applications of integration.
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In Example 6, note that the derivative of F is the original integrand (with only the
variable changed). That is,

X

;—X[F(x)] = %[sin x| = %U; cos tdr} = oS X.

This result is generalized in the next theorem, called the Second Fundamental
Theorem of Calculus.

THEOREM 4.17 The Second Fundamental Theorem of Calculus

If fis continuous on an open interval I containing a, then, for every x in the
interval,

4 f 70 ] = 10

Proof Begin by defining F as

F©) = j £(0) d.

Then, by the definition of the derivative, you can write

+ —
P = im, P

1 r (x+Ax X
= Aljglog_f fl@)dt — J £ dt]

a

1 r fx+Ax a
= lim — j f@) dt+f f() dt]

B Hx+£\.’c
=" lim L, J b)) dt:|.

From the Mean Value Theorem for Integrals (assuming Ax > 0), you know there exists
a number ¢ in the interval [x, x + Ax] such that the integral in the expression above i
equal to f(c) Ax. Moreover, because x < ¢ = x + Au, it follows that c —>x as Ax— (.
So, you obtain

F) = fim [ 710 Ax| = Jim 5(0) = 109

A

A similar argument can be made for Ax < 0.

See LarsonCalculus.com for Bruce Edwards’s video of this proof. |
Using the area model for definite integrals, 7@
the approximation W
p———

x4+ Ax !

flx) Ax = f f(o) dt

X

can be viewed as saying that the area of the
rectangle of height f(x) and width Ax is £
approximately equal to the area of the region
lying between the graph of f and the x-axis !
on the interval x  x+Ax

x+Ax

[x, x + Ax] f(x) Ax ~ J‘ F0) dt

as shown in the figure at the right.
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Note that the Second Fundamental Theorem of Calculus tells you that when a
function is continuous, you can be sure that it has an antiderivative. This antiderivative
need not, however, be an elementary function. (Recall the discussion of elementary
functions in Section P.3.)

EXAM&LE 7 The Second Fundamental Theorem of Calculus

Evaluate% [f | dti|.
0

Solution Note that () = /2 + 1 is continuous on the entire real number line. So,
using the Second Fundamental Theorem of Calculus, you can write

%[[ ~fret dr} = /x2+ 1. i |
0 :

The differentiation shown in Example 7 is a straightforward application of the
Second Fundamental Theorem of Calculus. The next example shows how this theorem
can be combined with the Chain Rule to find the derivative of a function.

EXAMPLE Su The Second Fundamental Theorem of Calculus

o
Find the derivative of F(x) = J cos tdt.

/2

Solution Using u = x?, you can apply the Second Fundamental Theorem of Calculus
with the Chain Rule as shown.

dF du
Flx) = Ea Chain Rule
d du dF
= — Definition of =~
= [F(X)J i efinition of -
d % it 53
i costdt|— Substitute cos t dt for F(x).
dul )./ dx /2
u du
= *[ cos Idtj]* Substitute « for x*.
dul ), dx
= (COS u)(sz) Apply Second Fundamental Theorem of Calculus.
= (COS x3)(3x2) Rewrite as function of x.

Because the integrand in Example 8 is easily integrated, you can verify the
derivative as follows.

X3
F(x) = J cos ¢ dt

/2

x3
sin t}
w2

sin x3 — sin —
—BIINEG == e
2

=sinx® — |
In this form, you can apply the Power Rule to verify that the derivative of F' is the same

as that obtained in Example 8.

% [sinx® — 1] = (cos x*)(3x2) Derivative of £




