
1 Eigenvalues and Eigenvectors

1.1 Characteristic Polynomial and Characteristic Equa-
tion

Procedure. How to find the eigenvalues?

A vector x is an e.vector if x is nonzero and
satisfies Ax = λx

⇒ (A− λI)x = 0 must have nontrivial solutions

⇒ (A − λI) is not invertible by the theorem on prop-
erties of determinants

⇒ det(A− λI) = 0

⇒ Solve det(A− λI) = 0 for λ to find eigenvalues.

Definition. P (λ) = det(A − λI) is called the charac-
teristic polynomial. det(A − λI) = 0 is called a charac-
teristic equation.

Proposition. A scalar λ is an e.v. of a n× n matrix if
λ satisfies P (λ) = det(A− λI) = 0.

Example. Find the e.v. of A =

(
0 1
−6 5

)
.
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Since A− λI =

(
0 1
−6 5

)
−

(
λ 0
0 λ

)
=

(−λ 1
−6 5− λ

)
,

we have the characteristic equation
det(A− λI) = −λ(5− λ) + 6 = (λ− 2)(λ− 3) = 0.
So λ = 2, λ = 3 are eigenvalues of A.

Theorem. Let A be a n×n matrix. Then A is invertible
if and only if:
a) λ = 0 is not an e.v. of A;
or
b) det A 6= 0.

Proof. For b) we have discussed the proof on the de-
terminant section.

For a):
(⇒): Let A be invertible⇒ det A 6= 0⇒ det(A−0I) 6= 0
⇒ λ = 0 is not an e.v.

(⇐). Let 0 be not an e.v of A ⇒ det(A − 0I) 6= 0
⇒ det A 6= 0 ⇒ A is invertible.

Theorem. The eigenvalues of a triangular matrix are
the entries of the main diagonal.
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Proof. Recall that a determinant of a triangular ma-
trix is a product of main diagonal elements. Hence, if

A =




a11 a12 . . . a1n

0 a22 . . . a2n
...

... . . . ...
0 0 . . . ann


,

then the characteristic equation is

det(A− λI) =




a11 − λ a12 . . . a1n

0 a22 − λ . . . a2n
...

... . . . ...
0 0 . . . ann − λ




= (a11 − λ)(a22 − λ) . . . (ann − λ) = 0

⇒ a11, a22, . . . , ann are the eigenvalues of A.

Example. Find the eigenvalues of A =




3 2 3
0 6 10
0 0 2




Solution. det(A − λI) = det




3− λ 2 3
0 6− λ 10
0 0 2− λ


 .

Thus the characteristic equation is (3−λ)(6−λ)(2−λ) =
0 ⇒ eigenvalues are 3, 6, 2.

Example. Suppose λ is e.v. of A. Determine an e.v. of
A2 and A3. What is an e.v. of An?
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Solution. Since λ is e.v. of A

⇒ ∃ nonzero vector x such that Ax = λx
⇒ AAx = Aλx = λAx = λ2x.
Therefore λ2 is an e.v. of A2.

Analogously for A3. We have Ax = λx and A2x = λ2x
⇒ AA2x = A3x = Aλ2x = λ2Ax = λ3x.

Thus λ3 is an e.v. of A3.

In general, λn is an e.v. of An.

1.2 Similar Matrices

Definition. A n× n matrix B is called similar to matrix
A if there exists an invertible matrix P such that B =
P−1AP .

Theorem. If n× n-matrices A and B are similar, then
they have the same characteristic polynomial and hence
the same eigenvalues.

Proof. If B = P−1AP , then B − λI

= P−1AP−λP−1P = P−1(AP−λP ) = P−1(A−λI)P .

Using the multiplicative property of determinant, we
have det(B − λI) = det(P−1(A− λI)P )
= det P−1 det(A− λI) det P = det(A− λI).

Hence, matrices A and B have the same e.v.
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Theorem. Hamilton-Caley. (Without proof. Try to
prove it as an exercise) If P (λ) = det(A − λI) = λn +
cn−1λ

n−1+. . .+c1λ+c0 = 0 then P (A) = An+cn−1A
n−1+

. . . + c1A + c0I = 0.

1.3 Algebraic and Geometric Multiplicity of Eigenvalues

Definition. The algebraic multiplicity of an eigenvalue is
its multiplicity as a root of the characteristic equation
(multa(λ)).

Example. Find the polynomial of A =




2 0 0 0
5 3 0 0
9 1 3 0
1 2 5 −1




and find e.v. with the algebraic multiplicity.

Solution. The characteristic equation is det(A− λI)

= det




2− λ 0 0 0
5 3− λ 0 0
9 1 3− λ 0
1 2 5 −1− λ




= (2− λ)(3− λ)(3− λ)(−1− λ) = 0

Thus the e.v. are λ1 = 2, λ2,3 = 3 and λ4 = −1.
The algebraic multiplicity of λ = 3 is 2, or multa(3) = 2.
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Definition. The eigenspace Eλ consists of the zero vec-
tor and all eigenvectors corresponding to an e. v. λ.

Definition. The geometric multiplicity of an e.v. λ is
the dimension of the corresponding eigenspace Eλ (multg(λ)).
Recall that the dimension of a vector space is equal to
the number of linearly independent vectors it contains.

Example. Find e.v. and their algebraic and geometric

multiplicity for A =




0 1 1
1 0 1
1 1 0


.

Solution. The characteristic equation is det(A− λI)

= det



−λ 1 1
1 −λ 1
1 1 −λ


 = −λ3+3λ+2 = −(λ−2)(λ+1)2.

So the e.v. are λ1 = 2, λ2,3 = −1.

Solving the equation (A− λiI)x = 0 for i = 1, 2, 3 we
find that

Eλ=2 = Span{



1
1
1


}
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Eλ=−1 = Span{


−1
0
1


 ,




0
−1
1


}

Thus multa(2)=multg(2) = 1 and
multa(−1)=multg(−1) = 2

Example. Find e.v. and their algebraic and geometric

multiplicity for A =




0 0 1
1 0 −3
0 1 3


.

Solution. The characteristic equation is det(A− λI)

= det



−λ 0 1
1 −λ −3
0 1 3− λ


 = λ3−3λ2 +3λ−1 = (λ−1)3.

So the e.v. are λ1,2,3 = 1.

Solving the equation (A− λiI)x = 0 for i = 1, 2, 3 we
find that

Eλ=1 = Span{



1
−2
1


}

Thus multa(1) = 3 and multg(1) = 1.
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Multiplicity Theorem.

For any eigenvalue λi, i = 1, 2, . . . , n of a n×n-matrix
A holds

multg(λ) ≤multa(λ).

Proof. Let λi be an eigenvalue of A.

Let Bλi
= {v1, . . . vm} be a basis of the corresponding

eigenspace Eλi
where multg(λi) = m.

Note that each vj in Bλi
is an eigenvector of A corre-

sponding to λi.

Thus
Avj = λivj, j = 1, 2, . . . , m

Extend Bλi
to form a basis B = {v1, . . . vm, vm+1, . . . , vn}.

Note that B is now a basis in the whole n-dimensional
space (Rn or Cn) while Bλi

is only a basis in the eigenspace
corresponding to e.v. λi.

Note that eigenspace Eλi
is only subspace of the whole

n-dimensional space (Eλi
∈ Rn or Eλi

∈ Cn).
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Let Q = (v1|v2| . . . |vm|vm+1| . . . |vn) be a matrix which
columns are vectors v1, . . . vm, vm+1, . . . , vn of the vector
basis B.

Since these vectors are linearly independent, the ma-
trix Q is invertible.

Notice that vj = Qej where ej = (0, 0, . . . , 0,
j

1, 0 . . . , 0)T .

Such vector ej is called a j-th ort.

Now using the definition of e.v.:

Q−1Avj = Q−1λivj = λiQ
−1vj = λiej, j = 1, 2, . . . , m.

Thus Ã = Q−1AQ = Q−1A[v1, . . . vm, vm+1, . . . , vn]

= [λie1|λie2| . . . , |λiem|Q−1Avm+1| . . . |Q−1Avn]]

=

(
λiIm C

0 D

)
,

where Im is the m×m-identity matrix.

The matrix Ã is similar to the matrix A since Ã =
Q−1AQ.
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Hence using the property of determinant for the block
diagonal matrixes (see the assignment 2)

PA(λ) = PÃ = det(Ã− λIn)

= det((λ− λi)Im)det(D− λIn−m) = (λ− λi)
mPD(λ).

Here In and In−m are n× n- and (n−m)× (n−m)-
identity matrixes respectively.

Thus a characteristic polynomial PA(λ) has a root of
λi of at least degree m, where m = multg(λi).

⇒ multg(λ) ≤multa(λ).

Example. Find e.v. and eigenspace of A =




1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1


.

Define the algebraic and geometric multiplicities of e.v.

Solution. Since the matrix A is upper-triangular, its
the only e.v. is λ1,2,3,4 = 1.

Thus multa(λ) = 4.

To find the eigenspace and geometric multiplicity we
need to solve the equation (A− 1I)x = 0 and find basis
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for the null space of (A− 1I).

A− 1I =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0




Hence the solution is

x1, x2 and x3 are arbitrary numbers, x4 = 0.

Thus we can choose 3 linearly independent vectors, for
example,

{




1
0
0
0


 ,




0
1
0
0


 ,




0
0
1
0


}

Therefore, multg(λ) = 3

Notice that the eigenspace E1 is a 3-dimensional hy-
perplane in R4.
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Example. Suggest a 4× 4-matrix with e.v. λ = 1 and
multa(1) = 4 and multg(1) 6= 3.

Solution. From the Multiplicity Theorem we have the
following options multg(λ) = 1, multg(λ) = 2 and multg(λ) =
4.

From the previous example it is easy to see that

if A = I =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




then multa(1) = 4 and A− 1I = 0n =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


.

Hence the solution of (A− 1I)x = 0 is

x1, x2 x3 and x4 are arbitrary numbers.

Thus we can choose 4 linearly independent vectors, for
example,

{




1
0
0
0


 ,




0
1
0
0


 ,




0
0
1
0


 ,




0
0
0
1


}
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Therefore, multg(λ) = 4. Notice that for this case the
eigenspace E1 coincides with R4.

To get multg(λ) = 2, it is possible to think backward
and choose such a matrix A such

that the null space of (A − 1I) has only 2 linearly
independent vectors.

This would imply that x3 = 0 and x4 = 0 while x1 and
x2 are arbitrary.

For example, A− 1I =




0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 and

hence A =




1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1


.

Notice that A =




1 0 0 0
0 1 α 0
0 0 1 β

0 0 0 1


 also works for arbi-

trary α and β, α, β 6= 0.

Exercise. Find a 4 × 4-matrix with e.v. λ = 1 and
multa(1) = 4 and multg(1) = 3.
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1.4 Trace of a Matrix

Definition. The trace of an n×n-matrix A is defined to be
Tr(A) = Sp(A) =

∑n
i=1 aii, i.e., the sum of the diagonal

elements. (Tr is English, Sp is German from ”Spur”.)

Properties.

• Tr(A) = Tr(AT)

• Tr(αA) = αTr(A)

• Tr(A + B) = Tr(A) + Tr(B)

• Tr(AB) = Tr(BA)

Proof as an exercise.

Theorem. Let A be a n × n-matrix and λ1, λ2, . . . , λn

be its e.v.

Then Tr(A) =
∑n

i=1 λi and det(A) =
∏n

i=1 λi.

Proof. Let for simplicity assume that A is similar to
a diagonal matrix D = diag{λ1, λ2, . . . , λn}. Hence A =
P−1DP .

From the properties of trace

tr(A) = tr(P−1DP) = tr(PP−1D) = tr(D) =
∑n

i=1 λi.

From the properties of determinants

det(A) = det(P−1DP) = det(P)det(D)det(P−1)

= det(D) =
∏n

i=1 λi.
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Example. Find eigenvalues of A =

(
a a
a a

)
without

calculation.

Solution. Notice that det(A) = λ1λ2 = 0

and Tr(A) = λ1 + λ2 = 2a

⇒ λ1 = 0 and λ2 = 2a.

1.5 Diagonalization

Definition. The matrix is diagonal if all its entries are
only on the main diagonal.

Example. I =




1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1


 , D =




1 0 0
0 2 0
0 0 3


 .

If a matrix is diagonal, it is trivial to compute Dk,
det D, etc.

Example 1. Let D =

(
2 0
0 3

)
. Compute D2, D3, and

Dk, ∀k ∈ N.
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Solution. D =

(
2 0
0 3

)(
2 0
0 3

)
=

(
4 0
0 9

)
=

(
22 0
0 32

)
.

Analogously, D =

(
2 0
0 3

)(
22 0
0 32

)
==

(
23 0
0 33

)
.

In general, Dk =

(
2k 0
0 3k

)
.

Example 2. Let A = PDP−1, find a formula for Ak,
∀k ∈ N.

Solution. By induction, A2 = (PDP−1)(PDP−1) =
(PD2P−1).

If it is true for (n−1), then An = (PDP−1)(PD(n−1)P−1) =
PDnP−1.

Definition. A n×n-matrix is said to be diagonalizable
if A is similar to a diagonal matrix, i.e. ∃ P — invertible
such that A = PDP−1, where D is diagonal.

Theorem?. A n × n-matrix is diagonalizable iff A has
n independent eigenvectors. In fact, A = PDP−1, with
D a diagonal matrix, iff the columns of P are n linearly
independent eigenvectors of A. In this case, the diagonal
entries of D are e.v. of A, corresponding to eigenvectors-
columns of P .
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Proof. (⇒): Given A = PDP−1. Notice that if P is
a n× n-matrix with columns v1, . . . , vn, and if D is any
diagonal matrix with diagonal entries λ1, . . . , λn, then

AP = A
[
v1 | v2 | . . . | vn

]

=
[
Av1 | Av2 | . . . | Avn

]
,

while

PD = P




λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λn




=
[
λ1v1 | λ2v2 | . . . | λnvn

]
.

If A = PDP−1 ⇒ PA = PD ⇒

[
Av1 | Av2 | . . . | Avn

]
=

[
λ1v1 | λ2v2 | . . . | λnvn

] ⇒

Av1 = λv1, av2 = λ2v2, . . . , Avn = λnvn.

Since P is invertible, v1, v2, . . . , vn are linearly inde-
pendent non-zero vectors.

Hence by definition λ1, λ2, . . . , λn are e.v. of A are
v1, v2, . . . , vn are corresponding eigenvectors of A.
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(⇐): Given n linearly independent eigenvectors v1, v2, . . . , vn,

use them to construct P and use n eigenvalues λ1, λ2, . . . , λn

(not necessarily distinctive) to construct a diag D.

Then by definition of e.v. Av1 = λ1v1, Av2 = λ2v2, . . . ,

Avn = λnvn.

⇒ [
Av1 | Av2 | . . . | Avn

]

=
[
λ1v1 | λ2v2 | . . . | λnvn

]

⇒ AP = PD. Since P is invertible (all v1, v2, . . . , vn

are linearly independent) ⇒ A = PDP−1.

Definition. Linearly independent vectors v1, v2, . . . , vn

form an eigenvector basis in Rn.

Example. Diagonalize A =




2 0 0
1 2 1
−1 0 1


 if possible.

1) Find the eigenvalues of A:
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det(A− λI) = det




2− λ 0 0
1 2− λ 1
−1 0 1− λ




= (2− λ)2(1− λ) = 0.

Thus, λ1 = 1, λ2,3 = 2 are e.v.

2) Find three linearly independent eigenvectors if pos-
sible.

By solving (A− λiI)x = 0, i = 1, 2, 3, we get

v1 =




0
−1
1


 , v2 =




0
1
0


 , v3 =



−1
0
1


 ,

corresponding to λ1 = 1, λ2,3 = 2.

Vectors v1, v2, v3 are clearly linearly independent⇒ for
a basis.

3) Construct P from v1, v2, v3:

P =




0 0 −1
−1 1 0
1 0 1


 .
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4) Construct D from the corresponding eigenvalues
λ1, λ2, λ3:

D =




1 0 0
0 2 0
0 0 2


 .

5) Check your results by verifying that AP = PD:

AP =




2 0 0
1 2 1
−1 0 1







0 0 −1
−1 1 0
1 0 1


 =




0 0 −2
−1 2 0
1 0 2


 ,

PD =




0 0 −1
−1 1 0
1 0 1







1 0 0
0 2 0
0 0 2


 =




0 0 −2
−1 2 0
1 0 2


 .

Example. Diagonalize A =




2 4 6
0 2 2
0 0 4


 if possible.

Solution.

1) Since A is triangular, it is clear that λ1 = 4, λ2,3 = 2
are e.v.
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2) Solve (A − λiI)x = 0, i = 1, 2, 3, and find the
eigenbasis.

Eigenvector for λ1 = 4 is v =




5
1
1


,

Eigenvector for λ2,3 = 2 is v =




1
0
0


.

Thus dimension of eigenspace corresponding to
λ2,3 = 1 is 1 (multg(2) = 1 and multa(2) = 1)

⇒ P is singular (it is not enough eigenvectors to form
a basis for R3) ⇒ A is not diagonalizable.

Example. Diagonalize A =




5 0 4
0 3 −1
0 0 −2


 if possible.

Solution. Since it is a triangular matrix, the e.v. are
λ1 = 5, λ1 = 5, λ3 = −2.

For each λ1, λ2, λ3 we can find corresponding eigenvec-
tors
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v1 =




1
0
0


 , v2 =




0
1
0


 , v3 =



−4

7
1
5
1


 .

Clearly v1, v2, v3 are linearly independent

⇒ form an eigenvector basis in R3

⇒ P =
[
v1 | v2 | v3

]
is invertible

⇒ A is diagonalizable and D = diag(5, 3,−2).

Why A =




2 0 0
1 2 1
−1 0 1


 (λ1 = 1, λ2,3 = 2) and

A =




5 0 4
0 3 −1
0 0 −2


 (λ1 = 5, λ2 = 3, λ3 = −2)

are diagonalizable?

Theorem 1. If v1, v2, . . . , vr are eigenvectors

corresponding to distinct eigenvalues λ1, λ2, . . . , λr for a
n× n-matrix A, then v1, v2, . . . , vn are linearly indepen-
dent.
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Proof. From contradiction. Suppose v1, v2, . . . , vr are
linearly dependent.

Let (p − 1) be the last index such that vp is a lin-
ear combinations of the preceding linearly independent
vectors (p ≤ n).

Then there exist c1, c2, . . . , cp−1 such that ∃i, i ∈ N,

ci 6= 0 and c1v1 + c2v2 + . . . + cp−1vp−1 = vp. (∗)

Multiply both sides of this equation by A ⇒
c1Av1 + c2Av2 + . . . + cp−1Avp−1 = Avp.
Using the fact that Avi = λivi, we get
c1λ1v1 + c2λ2v2 + . . . + cp−1λp−1vp−1 = λpvp. (∗∗)

Multiply (∗) by λp and subtract result from (∗∗):
c1λ1v1− c1λpv1 + c2λ2v2− c2λpv2 + . . .+ cp−1λp−1vp−1−

cp−1λpvp−1 = λpvp − λpvp = 0

⇒ c1(λ1−λp)v1+c2(λ2−λp)v2+. . .+cp−1(λp−1−λp)vp−1

= 0.

Notice that by construction v1, v2, . . . , vp−1 are linearly
independent

⇒ by definition of linear independence
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c1(λ1 − λp) = c2(λ2 − λp) = . . . = cp−1(λp−1 − λp) = 0.

But ∃i, i ∈ N : ci 6= 0 ⇒ ∃i, i ∈ N : λi − λp = 0 ⇒
contradiction since by statement of Theorem λ1 6= λ2 6=
. . . 6= λn.

Corollary. If a n× n-matrix A has n distinct eigenval-
ues, A is disgonalizable.

Proof. If A has distinct eigenvalues λ1, λ2, . . . , λn

⇒ eigenvectors v1, v2, . . . , vn are linearly independent
and form an eigenvector basis

⇒ p =
(
v1 | v2 | . . . | vn

)
is invertible and A is

diagonalizable.

Diagonalization theorem 2. A n× n-matrix A is diag-
onalizable iff multg(λi) =multa(λi), ∀i = 1, 2, . . . , n, i.e.
eigenvectors of A form a basis in Rn.

Proof. (⇐): Let multg(λi) =multa(λi), ∀i = 1, 2, . . . , n

⇒ each eigenspace of dimension ni has ni linearly in-
dependent vectors but
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ni = multa(λi)

and

multa(λ1) + multa(λ2) + . . . + multa(λn) = n

⇒ n1 + n2 + . . . + nn = n ⇒ there are n linearly inde-
pendent eigenvectors which form an eigenvector basis in
Rn ⇒ A is diagonalizable by Theorem (∗).

(⇐): Let A be diagonalizable. Then by the Theorem*
∃n linearly independent eigenvectors v1, v2, . . . , vn which
form the matrix P such that A = P−1DP and D is
diagonal. Let B be a set of {v1, v2, . . . , vn}.

If all e.v. λ1, λ2, . . . , λn have algebraic multiplicity 1
(multaλi = 1, i = 1, 2, . . . , n) then clearly

multaλi = multgλi = 1, i = 1, 2, . . . , n

since dimension of any vector space cannot be less than
1 (trivial case).

(General case.) Assume for simplicity that ∃ only one
eigenvalue λ∗k such that multaλ

∗
k = p and all other e.v.

λ1, λ2, . . . , λn−1, i 6= k have single algebraic multiplicity
(multaλi = 1).
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Since clearly eigenspaces do not intersect,
i.e. eigenvector vj corresponding to the e.v. λj

do not belong to the eigenspace Eλi
corresponding to

the e.v. λi (λj 6= λj) (verify it at home)

⇒ the eigenvectors v1, v2, . . . , vn−p, i 6= k, correspond-
ing to λ1, λ2, . . . , λn−1, i 6= k, do not belong to Eλ∗k.

⇒ vectors which belong to the set B/{v1, v2, . . . , vn−p}i 6=k

belong to the eigenspace Eλ∗k. Note that these vectors are
linearly independent by statement of the Theorem and
dimB/{v1, v2, . . . , vn−p}i6=k = dimEλ∗k = p = multaλ

∗
k.

Example. Why is A =




2 0 0
2 6 0
3 2 1


 diagonalizable?

Solution. A has 3 disticnt e.v. λ1 = 2, λ2 = 6, λ3 = 1
⇒ A is diagonalizable.

Example. Diagonalize if possible A =




−2 0 0 0
0 −2 0 0
24 −12 2 0
0 0 0 2


.

Solution. A has two e.v. of multa = 2: λ1,2 = −2,
λ3,4 = 2. Solve (A− λiE)x = 0 and find eigenvectors.
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Basis for λ1,2 = −2: v1 =




1
0
−6
6


, v2 =




0
1
3
0


. Thus

multg(−2) = 2.

Basis for λ3,4 = 2: v3 =




0
0
1
0


, v4 =




0
0
0
1


. Thus

multg(2) = 2.
Hence by The Diagonalization Theorem, since

multa(−2) = multg(−2) = 2

and
multa(2) = multg(2) = 2,

the matrix A is diagonalizable.
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