1 Eigenvalues and Eigenvectors

1.1 Characteristic Polynomial and Characteristic Equa-
tion

Procedure. How to find the eigenvalues?

A vector x is an e.vector if 2 is nonzero and
satisfies Ax = \x

= (A — M)z = 0 must have nontrivial solutions

= (A — M) is not invertible by the theorem on prop-
erties of determinants

= det(A — \) =0

= Solve det(A — M) = 0 for A to find eigenvalues.

Definition. P(\) = det(A — AI) is called the charac-
teristic polynomial. det(A — AI) = 0 is called a charac-
teristic equation.

Proposition. A scalar A is an e.v. of a n X n matrix if
A satisfies P(\) = det(A — A\I) = 0.

Example. Find the e.v. of A = <—06 é) .



: 0 1 A0 - 1
SmceA—)J-(_6 5)—(0 A)_(—fi 5_)\>;

we have the characteristic equation
det(A—=AX)==-A6-XN)+6=(N—-2)(A—3)=0.
So A =2, A = 3 are eigenvalues of A.

Theorem. Let A be a nxn matrix. Then A is invertible
if and only if:
a) A =0 is not an e.v. of A;
or

b) det A # 0.

Proof. For b) we have discussed the proof on the de-
terminant section.

For a):
(=): Let A be invertible = det A # 0 = det(A—01) # 0
= A =0 is not an e.v.

(«<). Let 0 be not an e.v of A = det(A —0I) # 0
= det A # 0 = A is invertible.

Theorem. The eigenvalues of a triangular matrix are
the entries of the main diagonal.



Proof. Recall that a determinant of a triangular ma-
trix is a product of main diagonal elements. Hence, if

air a2 ... QAip
0 a a
A ?2 M ’
0 0 ... apy
then the characteristic equation is
ajg — A ai2 . Q1n
0 A — A ... a
det(A — \I) = _ = 2
0 0 cee Qpp — A

= (a;1 — A)(aza — A) ... (@pp — A) =0

= ay1, a9, - . . , Gy, are the eigenvalues of A.
32 3
Example. Find the eigenvalues of A= |0 6 10
00 2

3—A 2 3
Solution. det(A — AI) = det 0 6-—X 10
0 0 2—-A
Thus the characteristic equation is (3—\)(6—\)(2—\) =
0 = eigenvalues are 3, 6, 2.

Example. Suppose A is e.v. of A. Determine an e.v. of
A? and A3%. What is an e.v. of A"?



Solution. Since \ is e.v. of A
= 1 nonzero vector x such that Az = \x
= AAr = Az = \Azx = \2x.

Therefore A2 is an e.v. of A2,

Analogously for A3. We have Az = Az and A%z = X’z
= AA%r = A3z = AN’z = N2 Ax = N
Thus A2 is an e.v. of A3.

In general, A" is an e.v. of A”.

1.2 Similar Matrices

Definition. A n X n matrix B is called similar to matrix

A if there exists an invertible matrix P such that B =
P 1AP.

Theorem. If n x n-matrices A and B are similar, then
they have the same characteristic polynomial and hence
the same eigenvalues.

Proof. If B = P"'AP, then B — A\
= P AP - AP7'P = PTYAP—-\P) = P~ Y(A-)\I)P.

Using the multiplicative property of determinant, we
have det(B — AI) = det(P~1(A — \I)P)
= det P71 det(A — X )det P = det(A — \I).

Hence, matrices A and B have the same e.v.



Theorem. Hamilton-Caley. (Without proof. Try to
prove it as an exercise) If P(A\) = det(A — A\I) = \" +
Co I A" e Ay = 0 then P(A) = A" +¢, A" 1+
.t A+l =0.

1.3 Algebraic and Geometric Multiplicity of Eigenvalues

Definition. The algebraic multiplicity of an eigenvalue is
its multiplicity as a root of the characteristic equation

(mult,(A)).

S O O

Example. Find the polynomial of A =

_ O Ot N
N = W O
ot w O O

and find e.v. with the algebraic multiplicity.

Solution. The characteristic equation is det(A — A1)
2—X 0 0 0
5 3-X 0 0
9 1 3-A 0
1 2 5 —1—-2A
=2-XM)B-XN)B-MN(-1-X)=0

= det

Thus the e.v. are A\; =2, \y3 =3 and A\y = —1.
The algebraic multiplicity of A = 3 is 2, or mult,(3) = 2.



Definition. The eigenspace E\ consists of the zero vec-
tor and all eigenvectors corresponding to an e. v. .

Definition. The geometric multiplicity of an e.v. X is
the dimension of the corresponding eigenspace E (mult,(\)).
Recall that the dimension of a vector space is equal to
the number of linearly independent vectors it contains.

Example. Find e.v. and their algebraic and geometric
011

multiplicity for A= |1 0 1

110

Solution. The characteristic equation is det(A — A1)

-2 1 1
=det | 1T =X 1 | ==XN4+3A+2=—-(A=2)(A+1)%
I 1 =\

So the e.v. are \j =2, A\y3 = —1.

Solving the equation (A — \;I)x =0 for i = 1,2,3 we
find that

1
Ey_o=Span{| 1]}
1



1 1

Thus mult,(2)=mult,(2) =1
mult,(—1)=mult,(—1) =2

-1 0
Exe—y=Span{| 0 |,[—-1]}
a

nd

Example. Find e.v. and their algebraic and geometric
00 1
multiplicity for A= |1 0 -3
01 3

Solution. The characteristic equation is det(A — A1)
- 0 1

=det| 1 —-X =3 | =XM-3\24+3A-1=(0\-1)3
0 1 3—2AX
So the e.v. are A\j23 = 1.

Solving the equation (A — A\;I)x = 0 for i = 1,2,3 we
find that

1
Eyx_1 =Span{| -2 |}
1

Thus mult,(1) = 3 and mult,(1) = 1.



Multiplicity Theorem.

For any eigenvalue \;,i = 1,2,...,n of a n X n-matrix

A holds

mult,(A) <mult,(A).

Proof. Let A\; be an eigenvalue of A.

Let By, = {v1,... vy} be a basis of the corresponding
eigenspace E), where mult,();) = m.

Note that each v; in B), is an eigenvector of A corre-
sponding to A;.

Thus
A’Uj:)\ﬂ}j, j:1,2,...,m

Extend B), to form a basis B = {v1, ... Un, Uity -+, Unt

Note that B is now a basis in the whole n-dimensional
space (R" or C") while By, is only a basis in the eigenspace
corresponding to e.v. \;.

Note that eigenspace E)y, is only subspace of the whole
n-dimensional space (E), € R" or E\, € C").



Let @ = (vi|va| ... |um|vmy1] - - . |vn) be a matrix which
columns are vectors vy,... U, Upit, ..., U, of the vector
basis B.

Since these vectors are linearly independent, the ma-
trix () is invertible.

Notice that v; = Qe; where e; = (0,0, ...,0, i, 0...,0)T.
Such vector e; is called a j-th ort.

Now using the definition of e.v.:
Q_lAUj = Q_l)\ﬂ}j = )\Z-Q_lvj = )\Z-ej, ] = 1, 2, .o, M.
Thus A= Q'AQ = Q 'Alv1, . .. Uy, Unsts - - - » U]
= [)\i61|)\i62| ! ‘Aiem’Q_lAvm%-” S ’Q_lAUnH
(il C
- 0 D)’
where [, is the m X m-identity matrix.

The matrix A is similar to the matrix A since A =

O-1AQ.



Hence using the property of determinant for the block
diagonal matrixes (see the assignment 2)

Pa(\) = P; = det(A — A1)

= det((A — \)Ln)det(D — ALi_n) = (A — \)™Pp ().

Here I, and I,,_,, are n X n- and (n —m) x (n — m)-
identity matrixes respectively.

Thus a characteristic polynomial P4(\) has a root of
A; of at least degree m, where m = multg()\;).

= mult, () <mult, ().

1000

Example. Find e.v. and eigenspace of A = 8 é ? (1)
0001

Define the algebraic and geometric multiplicities of e.v.

Solution. Since the matrix A is upper-triangular, its
the only e.v. is A1234 = 1.

Thus mult,(\) = 4.

To find the eigenspace and geometric multiplicity we
need to solve the equation (A — 1/)z = 0 and find basis

10



for the null space of (A — 11).

0000
0000
A== 0001
0000

Hence the solution is

x1, T2 and x3 are arbitrary numbers, x4 = 0.

Thus we can choose 3 linearly independent vectors, for
example,

~=
o O O -
o O~ O
o~ O O

Therefore, multy(\) = 3

Notice that the eigenspace F4 is a 3-dimensional hy-
perplane in R*.

11



Example. Suggest a 4 X 4-matrix with e.v. A =1 and
mult,(1) = 4 and mult,(1) # 3.

Solution. From the Multiplicity Theorem we have the
following options mult,(A) = 1, mult,(\) = 2 and mult,(\) =
4.

From the previous example it is easy to see that

1 000
| 0100
0001
00O0O0
0 00O
then mult,(1) =4 and A — 1/ =0, = 0000
00O00O0

Hence the solution of (A — 11)x = 0 is

x1, T2 3 and x4 are arbitrary numbers.

Thus we can choose 4 linearly independent vectors, for
example,

—_
o O O
OO\.HO
CD)—\:CDO
— o O O

12



Therefore, mult,(\) = 4. Notice that for this case the
eigenspace E; coincides with R?.

To get mult,(\) = 2, it is possible to think backward
and choose such a matrix A such

that the null space of (A — 17) has only 2 linearly
independent vectors.

This would imply that 3 = 0 and x4 = 0 while x; and
X9 are arbitrary.

0000
0010
For example, A — 11 = 000 1 and
0000
1 000
0110
hence A = 0011l
0001
1000
, 01 a0 :
Notice that A = 001 3 also works for arbi-
0001

trary a and 3, o, 3 # 0.

Exercise. Find a 4 x 4-matrix with e.v. A = 1 and
mult,(1) = 4 and mult,(1) = 3.

13



1.4 Trace of a Matrix

Definition. The trace of an n xn-matrix A is defined to be
Tr(A) = Sp(A) = > a;i, i.e., the sum of the diagonal
elements. (Tr is English, Sp is German from ”Spur”.)

Properties.

o Tr(A) = Tr(AT)

o Tr(aA) = aTr(A)

e Tr(A + B) =Tr(A) + Tr(B)
e Tr(AB) = Tr(BA)

Proof as an exercise.

Theorem. Let A be a n x n-matrix and A, Ao, ..., A,
be its e.v.

Then Tr(A) = >0 | A and det(A) = [T, i

Proof. Let for simplicity assume that A is similar to
a diagonal matrix D = diag{Ay, Ag,..., A\y}. Hence A =
P-1DP.

From the properties of trace
tr(A) = tr(P~'DP) = tr(PP~'D) = tr(D) = > | A
From the properties of determinants
det(A) = det(P71DP) = det(P)det(D)det(P~1)
= det(D) = [ i1 i

14



Example. Find eigenvalues of A = <Z Z) without

calculation.

Solution. Notice that det(A) = A\jA2 =0
and Tr(A) =\ + Xy =2a

= A =0 and Ay = 2a.

1.5 Diagonalization

Definition. The matrix is diagonal if all its entries are
only on the main diagonal.

10 ...0 100

01 ...0
Example. I = | . . |, D=10 20
: 003

00 . 1

If a matrix is diagonal, it is trivial to compute DF,
det D, etc.

20

Example 1. Let D = (O 3

) . Compute D?, D3, and
DF Vk e N.

15



. 2 0 2 0 4 0 22 0
Solution. D = (0 3> (O 3> = <0 9> = <0 32).
2 0\ /2% 0 230
Analogously, D = (O 3) <0 32> == (0 33> :

280
In general, D = (0 3k> .

Example 2. Let A = PDP~!, find a formula for AF,
Vk € N.

Solution. By induction, A*> = (PDP~Y)(PDP™!) =
(PD?PV).

If it is true for (n—1), then A" = (PDP~1)(PD" DV pP~1) =
pPD"pP1.

Definition. A n X n-matrix is said to be diagonalizable

if A is similar to a diagonal matrix, i.e. 4 P — invertible
such that A = PDP~!, where D is diagonal.

Theorem*. A n x n-matrix is diagonalizable iff A has
n independent eigenvectors. In fact, A = PDP~! with
D a diagonal matrix, iff the columns of P are n linearly
independent eigenvectors of A. In this case, the diagonal
entries of D are e.v. of A, corresponding to eigenvectors-
columns of P.

16



Proof. (=): Given A = PDP~!. Notice that if P is

a n X n-matrix with columns vy, ...,v,, and if D is any
diagonal matrix with diagonal entries Aq,..., A, then
AP:A[vl | v || vn]
= [Avy | Avy | ... | Avg],
while
A 0 ... 0
0 X ... O
PD = P\| . _
0 0 ... A\
= [)\11)1 | /\21)2 ‘ ce | Anvn] .

If A= PDP!'= PA=PD =

[Av | Avy | ... | Ay,

= [)\1’01 | /\QUQ | .. | /\nvn] =

Avy = My, avy = Moo, ..., Av, = A0,

Since P is invertible, vy, vo,...,v, are linearly inde-

pendent non-zero vectors.

Hence by definition A, Ao, ..., A\, are e.v. of A are
vy, V9, ..., U, are corresponding eigenvectors of A.

17



(«): Given n linearly independent eigenvectors vy, v, . . ., Uy,

use them to construct P and use n eigenvalues A1, Ao, ..., A\,
(not necessarily distinctive) to construct a diag D.

Then by definition of e.v. Av; = A\jvq, Avg = Aovg, ...,
Av, = A\,

= [Avy | Avy | ... | Ay,
= [)\1’01 | /\QUQ | Ce | /\nvn]
= AP = PD. Since P is invertible (all vy, vo,..., v,

are linearly independent) = A = PDP 1,

Definition. Linearly independent vectors vy, vs, ..., v,
form an eigenvector basis in R".
2

Example. Diagonalize A = | 1

S NN O

0
1| if possible.
—1 1

1) Find the eigenvalues of A:

18



2—-X 0 0
det(A — AI) = det I 2-X 1
—1 0 1—-2X

= 2-XN*(1-)) =0.

Thus, \; =1, A\y3 = 2 are e.v.

2) Find three linearly independent eigenvectors if pos-
sible.

By solving (A — N\ 1)z =0,i=1,2,3, we get

0 0 -1
V1 = —1 , U9 = 1 , U3 = 0 s
1 0 1

corresponding to A\; = 1, Ag3 = 2.

Vectors v1, v9, v3 are clearly linearly independent = for
a basis.

3) Construct P from vy, v, v3:

19



4) Construct D from the corresponding eigenvalues
A1, A2, Ag:

I
o o =
oo
N O O

5) Check your results by verifying that AP = PD:

=
e
I
| = o
[E—
S N O
e )
>—l|©
[
S = O
>—\O|
—_
I
>—l|©
[E—
S N O
|
MOM

0 0 —1 1 00 0 0 =2
PD=|-11 0 020]=1-12 0
1 0 1 00 2 1 0 2
2 46
Example. Diagonalize A= | 0 2 2 | if possible.
00 4

Solution.

1) Since A is triangular, it is clear that A\; =4, Ao 3 = 2
are e.v.

20



2) Solve (A — N I)x = 0, i = 1,2,3, and find the
eigenbasis.

5
Eigenvector for \y =4isv = |1],
1

1
Eigenvector for Ag3 =2isv = |0
0

Thus dimension of eigenspace corresponding to
A2g =11is 1 (multy(2) =1 and mult,(2) =1)

= P is singular (it is not enough eigenvectors to form
a basis for R?) = A is not diagonalizable.

50 4
Example. Diagonalize A= | 0 3 —1 | if possible.
00 —2

Solution. Since it is a triangular matrix, the e.v. are
A =05, A\ =5, \3g=—-2.

For each A1, A9, A3 we can find corresponding eigenvec-
tors

21



Clearly vq, v9, v are linearly independent
= form an eigenvector basis in R?
= P = [vl | vy | 1}3] is invertible

= A is diagonalizable and D = diag(5, 3, —2).

2 00
WhyA: 1 21 ()\1:1, )\273:2) and
-1 01
50 4
A=103 =1| (M =5 A=3 A=-2)
00 -2

are diagonalizable?

Theorem 1. If vy, v9, ..., v, are eigenvectors
corresponding to distinct eigenvalues Ay, Ao, ..., A\, for a
n X n-matrix A, then vy, v, ..., v, are linearly indepen-

dent.

22



Proof. From contradiction. Suppose vy, v9,...,v, are
linearly dependent.

Let (p — 1) be the last index such that v, is a lin-
ear combinations of the preceding linearly independent
vectors (p < n).

Then there exist ¢, co,...,c,—1 such that 3¢, ¢ € N,
¢i # 0 and civ; + cova + ...+ cp1Up_1 = U (%)

Multiply both sides of this equation by A =

c1Avy + coAvy + ...+ Cp—lAUp—l = Avp.

Using the fact that Av; = \jv;, we get

CIAV1 + oAUy + ... + cp_l)\p_lvp_l = )\pvp. (>I<>I<)

Multiply (%) by A, and subtract result from (xx):
Cl>\1?}1 — Cl>\p’U1 + CQ)\QUQ — 62)\p1}2 +...+ Cp_1>\p_11)p_1 —
Cp—1ApUp—1 = ApUp — Apvp = 0

= Cl()\l—)\p)Ul—i—CQ()\Q—)\p)UQ—l—. . .+cp,1()\p,1—/\p)vp,1
= 0.

Notice that by construction vy, v, ..., v,_1 are linearly
independent

= by definition of linear independence

23



Cl()\l — )\p) = CQ()\Q - )‘p) = ...= Cp—l()\p—l - /\p) = 0.

Butﬂi,iEN:ci#O:Hi,ieN:)\i—)\p:0=>
contradiction since by statement of Theorem A\ #£ Ay #

o

Corollary. If a n x n-matrix A has n distinct eigenval-
ues, A is disgonalizable.

Proof. If A has distinct eigenvalues Ai, Ao, ..., A\,

= eigenvectors vy, vs, ..., v, are linearly independent
and form an eigenvector basis

= p = (v1 | vy | | vn) is invertible and A is
diagonalizable.

Diagonalization theorem 2. A n x n-matrix A is diag-
onalizable iff mult,()\;) =mult,(\;), Vi = 1,2,...,n, ie.
eigenvectors of A form a basis in R".

Proof. («<): Let mult,(\;) =mult,(\;), Vi =1,2,...,n

= each eigenspace of dimension n; has n; linearly in-
dependent vectors but

24



n; = mult, (\;)

and

mult, (A1) + multy(Ag) + ... + multy(Ay) =n

= ny+n9+...+n, =n = there are n linearly inde-
pendent eigenvectors which form an eigenvector basis in
R"™ = A is diagonalizable by Theorem ().

(«<): Let A be diagonalizable. Then by the Theorem™
Jn linearly independent eigenvectors vy, vo, ..., v, which
form the matrix P such that A = P~ 'DP and D is
diagonal. Let B be a set of {vy,vs,...,v,}.

If all ev. Ay, Ao, ..., A\, have algebraic multiplicity 1
(mult,\y = 1,7 =1,2,...,n) then clearly

mult,A\j = mult,\j = 1,i=1,2,...,n

since dimension of any vector space cannot be less than
1 (trivial case).

(General case.) Assume for simplicity that 3 only one
eigenvalue \; such that mult,\; = p and all other e.v.
A, A9, ..., Ay1, © # k have single algebraic multiplicity
(mult, A = 1).

25



Since clearly eigenspaces do not intersect,
L.e. eigenvector v; corresponding to the e.v. A;

do not belong to the eigenspace E), corresponding to
the e.v. A; (A\j # Aj) (verify it at home)

= the eigenvectors vy, v9, ..., vy—p, © # k, correspond-
ing to A1, Ag, ..., \y_1, @ # k, do not belong to E):.

= vectors which belong to the set B/{vi, va, ..., vn_p}tizk
belong to the eigenspace F):. Note that these vectors are
linearly independent by statement of the Theorem and
dimB/{v1, vy, ..., Vo_ptizx = dimE): = p = mult, A
2 00
Example. Why is A= | 2 6 0| diagonalizable?
3 21

Solution. A has 3 disticnt e.v. \{ =2, \g =6, A3 =1
= A is diagonalizable.

-2 0 00
: . : 0 —2 00
Example. Diagonalize if possible A = o4 —19 2 0
0O 0 0 2
Solution. A has two e.v. of mult, = 2: Ao = —2,

A34 = 2. Solve (A — \;E)x =0 and find eigenvectors.
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1 0

. 0 1
Basis for Ao = —2: v = sl2= 3] Thus

6 0

mult,(—2) = 2.

0 0

. 0 0
Basis for A\34 = 2: vz = = Thus

0 1

mult,(2) = 2.
Hence by The Diagonalization Theorem, since
mult,(—2) = mult,(—2) = 2

and
mult,(2) = mult,(2) = 2,

the matrix A is diagonalizable.
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