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6.1 Introduction to Linear Transformations 

 A function T that maps a vector space V into a vector space W: 

mapping: ,      , : vector spacesT V W V W

V: the domain of T         W: the codomain of T 

 Image of v under T : 

If v is a vector in V and w is a vector in W such that 

( ) ,T v w

then w is called the image of v under T  

(For each v, there is only one w) 

 The range of  T : 

        The set of all images of vectors in V (see the figure on the 

next slide) 
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※ For example, V is R3, W is R3,  and T 

is the orthogonal projection of any 

vector (x, y, z) onto the xy-plane, i.e. 

T(x, y, z) = (x, y, 0)  

 (we will use the above example many 

times to explain abstract notions) 

※ Then the domain is R3, the codomain 

is R3, and the range is xy-plane (a 

subspace of the codomian R3) 

※ (2, 1, 0) is the image of (2, 1, 3) 

※ The preimage of (2, 1, 0) is (2, 1, s), 

where s is any real number 

 The preimage of  w: 

        The set of all v in V such that T(v)=w  

         (For each w, v may not be unique) 

 The graphical representations of the domain, codomain, and range 
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 Ex 1: A function from R2 into R2 

22: RRT 

)2,(),( 212121 vvvvvvT 

2

21 ),( Rvv v

(a) Find the image of v=(-1,2)  (b) Find the preimage of w=(-1,11) 

Sol: 

(a)  ( 1,  2)

       ( ) ( 1,  2) ( 1 2,  1 2(2)) ( 3,  3)T T

 

         

v

v

(b)  ( ) ( 1,  11)T   v w

)11 ,1()2,(),( 212121  vvvvvvT

11 2     

 1

21

21





vv

vv

4  ,3 21  vv Thus {(3, 4)} is the preimage of w=(-1, 11) 
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 Linear Transformation : 

 trueare properties  twofollowing                   

 theif  into  ofn nsformatiolinear traA  ：:

spacesvector ：,

WVWVT

WV



VTTT  vuvuvu ,    ),()()(  (1)

RccTcT       ),()(  )2( uu
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 Notes: 

(1) A linear transformation is said to be operation preserving 

)()()( vuvu TTT 

Addition 

in V 

Addition 

in W 

)()( uu cTcT 

Scalar 

multiplication 

in V 

Scalar 

multiplication 

in W 

(2) A linear transformation                    from a vector space into 

itself is called a linear operator 

VVT :

(because the same result occurs whether the operations of addition 

and scalar multiplication are performed before or after the linear 

transformation is applied) 
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 Ex 2: Verifying a linear transformation T from R2 into R2 

Pf: 

)2,(),( 212121 vvvvvvT 

number realany  :  ,in  vector : ),(  ),,( 2

2121 cRvvuu  vu

1 2 1 2 1 1 2 2

(1) Vector addition :

     ( , ) ( , ) ( , )u u v v u v u v     u v

)()(

)2,()2,(

))2()2(),()((

))(2)(),()((

),()(

21212121

21212121

22112211

2211

vu

vu

TT

vvvvuuuu

vvuuvvuu

vuvuvuvu

vuvuTT










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),(),(     

tionmultiplicaScalar  )2(

2121 cucuuucc u

)(

)2,(

)2,(),()(

2121

212121

u

u

cT

uuuuc

cucucucucucuTcT







Therefore, T is a linear transformation 
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 Ex 3: Functions that are not linear transformations 

(a) ( ) sinf x x

2(b) ( )f x x

(c) ( ) 1f x x 

)sin()sin()sin( 2121 xxxx 

)sin()sin()sin(
3232
 

2

2

2

1

2

21 )( xxxx 

222 21)21( 

1)( 2121  xxxxf

2)1()1()()( 212121  xxxxxfxf

)()()( 2121 xfxfxxf 

(f(x) = sin x is not a linear transformation) 

(f(x) = x2 is not a linear transformation) 

(f(x) = x+1 is not a linear transformation, 

although it is a linear function) 

In fact, ( ) ( )f cx cf x
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 Notes: Two uses of the term “linear”. 

(1)                      is called a linear function because its graph 

is a line 

1)(  xxf

(2)                      is not a linear transformation from a vector 

space R into R because it preserves neither vector 

addition nor scalar multiplication 

1)(  xxf



6.11 

 Zero transformation: 

VWVT  vu,   ,:

( ) ,   T V  v 0 v

 Identity transformation: 

VVT : VT  vvv   ,)(

 Theorem 6.1: Properties of linear transformations 

WVT :

00 )( (1)T

)()( (2) vv TT 

)()()( (3) vuvu TTT 

)()()(                     

)()(     then 

, If (4)

2211

2211

2211

nn

nn

nn

vTcvTcvTc

vcvcvcTT

vcvcvc













v

v

(T(cv) = cT(v) for c=-1) 

(T(u+(-v))=T(u)+T(-v) and property (2)) 

(T(cv) = cT(v) for c=0) 

(Iteratively using T(u+v)=T(u)+T(v) and T(cv) = cT(v)) 
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 Ex 4: Linear transformations and bases 

Let                       be a linear transformation such that  33: RRT 

)4,1,2()0,0,1( T

)2,5,1()0,1,0( T

)1,3,0()1,0,0( T

Sol: 

)1,0,0(2)0,1,0(3)0,0,1(2)2,3,2( 

)0,7,7(                

)1,3,0(2)2,5,1(3)4,1,2(2                

)1,0,0(2)0,1,0(3)0,0,1(2)2,3,2(







T

TTTT

Find T(2, 3, -2) 

1 1 2 2 1 1 2 2

According to the fourth property on the previous slide that

( ) ( ) ( ) ( )n n n nT c v c v c v c T v c T v c T v

 
 

       



6.13 

 Ex 5: A linear transformation defined by a matrix 

The function                     is defined as 32: RRT  

























2

1

21

12

03

)(
v

v
AT vv

2 3

(a) Find ( ), where (2, 1)  

(b) Show that  is a linear transformation form  into 

T

T R R

 v v

Sol: 

(a) (2, 1) v








































0

3

6

1

2

21

12

03

)( vv AT

)0,3,6()1,2( T

 vector2R vector 3R

(b) ( ) ( ) ( ) ( )T A A A T T      u v u v u v u v

)()()()( uuuu cTAccAcT 

(vector addition) 

(scalar multiplication) 
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 Theorem 6.2: The linear transformation defined by a matrix 

Let A be an mn matrix. The function T defined by 

vv AT )(

is a linear transformation from Rn into Rm 

 Note: 

































































nmnmm

nn

nn

nmnmm

n

n

vavava

vavava

vavava

v

v

v

aaa

aaa

aaa

A













2211

2222121

1212111

2

1

21

22221

11211

v

vv AT )( mn RRT :

 vectornR vector mR

※ If T(v) can represented by Av, then T is a linear transformation 

※ If the size of A is m×n, then the domain of T is Rn and the 

codomain of T is Rm 
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Show that the L.T.                      given by the matrix 

has the property that it rotates every vector in R2 

counterclockwise about the origin through the angle   

 Ex 7: Rotation in the plane 
22: RRT 








 






cossin

sincos
A

Sol: 
( , ) ( cos , sin )x y r r  v

(Polar coordinates: for every point on the xy-

plane, it can be represented by a set of (r, α)) 

 r：the length of v (                  ) 

：the angle from the positive 

x-axis counterclockwise to 

the vector v  

2 2x y 

v 

T(v) 
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










































 
















 


)sin(

)cos(
                  

sincoscossin

sinsincoscos
 

sin

cos

cossin

sincos

cossin

sincos
)(





















r

r

rr

rr

r

r

y

x
AT vv

       r：remain the same, that means the length of T(v) equals the 

             length of v  

 +：the angle from the positive x-axis counterclockwise to 

             the vector T(v) 

Thus, T(v) is the vector that results from rotating the vector v 

counterclockwise through the angle  

according to the addition 

formula of trigonometric 

identities 
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is called a projection in R3 

 Ex 8: A projection in R3 

The linear transformation                        is given by 33: RRT 

















000

010

001

A

1 0 0

If  is ( , , ), 0 1 0

0 0 0 0

x x

x y z A y y

z

     
     

 
     
          

v v

※ In other words, T maps every vector in R3 

to its orthogonal projection in the xy-plane, 

as shown in the right figure 
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Keywords in Section 6.1: 

 function 

 domain 

 codomain 

 image of v under T 

 range of T 

 preimage of w   

 linear transformation 

 linear operator 

 zero transformation 

 identity transformation 
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6.2 The Kernel and Range of a Linear Transformation 

 Kernel of a linear transformation T : 

Let                   be a linear transformation. Then the set of 

all vectors v in V that satisfy                is called the kernel 

of T and is denoted by ker(T) 

 

WVT :

0v )(T

} ,)(|{)ker( VTT  v0vv

※ For example, V is R3, W is R3,  and T is the 

orthogonal projection of any vector (x, y, z) 

onto the xy-plane, i.e. T(x, y, z) = (x, y, 0)  

※ Then the kernel of T is the set consisting of 

(0, 0, s), where s is a real number, i.e.  

ker( ) {(0,0, ) |  is a real number}T s s
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 Ex 2: The kernel of the zero and identity transformations 

(a) If T(v) = 0 (the zero transformation                   ), then WVT :

VT )ker(

(b) If T(v) = v (the identity transformation                  ), then VVT :

}{)ker( 0T



6.21 

 Ex 5: Finding the kernel of a linear transformation 

1

3 2

2

3

1 1 2
( )      ( : )

1 2 3

x

T A x T R R

x

 
    

         

x x

?)ker( T

Sol: 

3

1 2 3 1 2 3 1 2 3ker( ) {( , , ) | ( , , ) (0,0),  and ( , , ) }T x x x T x x x x x x R  

)0,0(),,( 321 xxxT


































0

0

321

211

3

2

1

x

x

x
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













































1

1

1

3

2

1

t

t

t

t

x

x

x

)}1,1,1span{(                

}number real a is |)1,1,1({)ker(



 ttT

G.-J. E.
1 1 2 0 1 0 1 0

1 2 3 0 0 1 1 0

     
   

   
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 Theorem 6.3: The kernel is a subspace of V 

The kernel of a linear transformation                     is a 

subspace of the domain V 

WVT :

)16. Theoremby (   )( 00 T
Pf: 

VT  ofsubset nonempty  a is )ker(

Then . of kernel in the  vectorsbe  and Let Tvu

000vuvu  )()()( TTT

00uu  ccTcT )()(

Thus, ker( ) is a subspace of  (according to Theorem 4.5

that a nonempty subset of   is a subspace of  if it is closed 

under vector addition and scalar multiplication)

T V

V V

T is a linear transformation 

( ker( ), ker( ) ker( ))T T T    u v u v

( ker( ) ker( ))T c T  u u
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 Ex 6: Finding a basis for the kernel 



























82000

10201

01312

11021

                        

and in  is   where,)(by  defined be :Let 545

A

RATRRT xxx

Find a basis for ker(T) as a subspace of R5 

Sol: 

To find ker(T) means to find all x satisfying T(x) = Ax = 0. 

Thus we need to form the augmented matrix             first   A 0
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 

G.-J. E.

1 2 0 1 1 0 1 0 2 0 1 0

2 1 3 1 0 0 0 1 1 0 2 0

1 0 2 0 1 0 0 0 0 1 4 0

0 0 0 2 8 0 0 0 0 0 0 0

A 

    
   

 
   
    
   
   

0

s t
1

2

3

4

5

2 2 1

2 1 2

1 0

4 0 4

0 1

x s t

x s t

x s ts

x t

x t

         
       


       
          
       

        
             

x

  TB  of kernel for the basis one:)1 ,4 ,0 ,2 ,1(),0 ,0 ,1 ,1 ,2( 
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 Corollary to Theorem 6.3: 

0x

xx





AT

ATRRT mn

 of spacesolution   the toequal is  of kernel Then the

.)(by given tion fransformalinear   thebe :Let 

 

( )    (a linear transformation  : )

ker( ) ( ) | 0,    (subspace of )

n m

n n

T A T R R

T NS A A R R

 

     

x x

x x x

※ The kernel of T equals the nullspace of A (which is defined 

in Theorem 4.16 on p.239) and these two are both subspaces 

of Rn ) 

※ So, the kernel of T is sometimes called the nullspace of T  
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 Range of a linear transformation T : 

)(rangeby  denoted is and  of range

  thecalled is in  sany vector of images are that in   vectors

 all ofset  Then the n.nsformatiolinear tra a be :Let 

TT

VW

WVT

w



}|)({)(range VTT  vv

※ For the orthogonal projection of 

any vector (x, y, z) onto the xy-

plane, i.e. T(x, y, z) = (x, y, 0)  

※ The domain is V=R3, the codomain 

is W=R3, and the range is xy-plane 

(a subspace of the codomian R3) 

※ Since T(0, 0, s) = (0, 0, 0) = 0, the 

kernel of T is the set consisting of 

(0, 0, s), where s is a real number  
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WWVT  of subspace a is :n nsformatiolinear tra a of range The 

 Theorem 6.4: The range of T is a subspace of W 

Pf: 

( )    (Theorem 6.1)T 0 0

WT  ofsubset nonempty  a is )(range

have  weand ),range(in   vectorsare )( and )( Since TTT vu

)(range)()()( TTTT  vuvu

)(range)()( TcTcT  uu

Thus, range( ) is a subspace of  (according to Theorem 4.5

that a nonempty subset of   is a subspace of  if it is closed 

under vector addition and scalar multiplication)

T W

W W

T is a linear transformation 

Range of  is closed under vector addition 

because ( ),  ( ),  ( ) range( )

T

T T T T

 
 

  u v u v

Range of  is closed under scalar multi- 

plication because ( ) and ( ) range( )

T

T T c T

 
 

 u u

because V u v

because c Vu
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 Notes: 

  of subspace is )ker( )1( VT

:  is a linear transformationT V W

  of subspace is )(range )2( WT

(Theorem 6.3) 

(Theorem 6.4) 
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 Corollary to Theorem 6.4: 

)()(range i.e. , of spacecolumn   the toequal is  of range The

.)(by given n nsformatiolinear tra  thebe :Let 

ACSTAT

ATRRT mn



 xx

(1)  According to the definition of the range of T(x) = Ax, we know that the 

range of T consists of all vectors b satisfying Ax=b, which is equivalent to 

find all vectors b such that the system Ax=b is consistent 

(2) Ax=b can be rewritten as 

 

 

 

 

 

   Therefore, the system Ax=b is consistent iff we can find (x1, x2,…, xn) 

such that b is a linear combination of the column vectors of A, i.e.  

11 12 1

21 22 2

1 2

1 2

n

n

n

m m mn

a a a

a a a
A x x x

a a a

     
     
         
     
     
     

x b

Thus, we can conclude that the range consists of all vectors b, which is a linear 

combination of the column vectors of A or said                  . So, the column space 

of the matrix A is the same as the range of T, i.e. range(T) = CS(A) 

( )CS Ab

( )CS Ab
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 Use our example to illustrate the corollary to Theorem 6.4: 

※ For the orthogonal projection of any vector (x, y, z) onto the xy-

plane, i.e. T(x, y, z) = (x, y, 0)  

※ According to the above analysis, we already knew that the range 

of T is the xy-plane, i.e. range(T)={(x, y, 0)| x and y are real 

numbers} 

※ T can be defined by a matrix A as follows 

 

 

 
 

 

※ The column space of A is as follows, which is just the xy-plane 

 

1 0 0 1 0 0

0 1 0 ,  such that 0 1 0

0 0 0 0 0 0 0

x x

A y y

z

       
       

 
       
              

1

1 2 3 2 1 2

1 0 0

( ) 0 1 0 ,  where ,

0 0 0 0

x

CS A x x x x x x R

       
       

    
       
              
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 Ex 7: Finding a basis for the range of a linear transformation 

5 4 5Let :  be defined by ( ) , where  is  and

1 2 0 1 1

2 1 3 1 0
                   

1 0 2 0 1

0 0 0 2 8

T R R T A R

A

 

 
 
 
  
 
 

x x x

Find a basis for the range of T 

Sol: 

Since range(T) = CS(A), finding a basis for the range of T is 

equivalent to fining a basis for the column space of A 
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G.-J. E.

1 2 0 1 1 1  0 2 0 1

2 1 3 1 0 0  1 1 0 2

1 0 2 0 1 0  0 0 1 4

0 0 0 2 8 0  0 0 0 0

A B

    
   


     
    
   
   

54321 ccccc 54321 wwwww

 

 

1 2 4 1 2 4

1 2 4 1 2 4

,  ,  and  are indepdnent, so ,  ,   can 

    form a basis for ( )

 Row operations will not affect the dependency among columns

 ,  ,  and  are indepdnent, and thus ,  ,  is 

    a b

w w w w w w

CS B

c c c c c c



  

 

asis for ( )

That is, (1,  2,  1,  0),  (2,  1,  0,  0),  (1,  1,  0,  2)  is a basis 

for the range of  

CS A

T


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 Rank of a linear transformation T:V→W : 

rank( ) the dimension of the range of dim(range( ))T T T 

 Nullity of a linear transformation T:V→W : 

nullity( ) the dimension of the kernel of dim(ker( ))T T T 

 Note: 

If  :  is a linear transformation given by ( ) , then

          dim(range( )) dim( ( ))

     

rank( ) rank( )

null     dim(kerity( ) nullity( )) dim( ( ) () )

n mT R R T A

T CS A

T NST A

T A

A





 

 

 

x x

※ The dimension of the row (or column) space of a matrix A is called the rank of A 

※ The dimension of the nullspace of A (                                )  is called the nullity 

of A 

( ) { | 0}NS A A x x

According to the corollary to Thm. 6.3, ker(T) = NS(A), so dim(ker(T)) = dim(NS(A)) 

According to the corollary to Thm. 6.4, range(T) = CS(A), so dim(range(T)) = dim(CS(A)) 
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 Theorem 6.5: Sum of rank and nullity 

(i.e. dim(range of ) dim(kernel of

rank( )

 )

n

dim(domain o

ullity

f ))

)

 

(

T

T

T T

T n

 

 

Let T: V →W be a linear transformation from an n-dimensional 

vector space V (i.e. the dim(domain of T) is n)  into a vector 

space W. Then 

※ You can image that the dim(domain of T) 

should equals the dim(range of T) 

originally 

※ But some dimensions of the domain of T 

is absorbed by the zero vector in W 

※ So the dim(range of T) is smaller than 

the dim(domain of T) by the number of 

how many dimensions of  the domain of 

T are absorbed by the zero vector, 

which is exactly the dim(kernel of T) 
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Pf: 

rAAnmT  )rank( assume and ,matrix  an by  drepresente be Let 

(1) rank( ) dim(range of ) dim(column space of ) rank( )T T A A r   

nrnrTT  )()(nullity)(rank

(2) nullity( ) dim(kernel of ) dim(null space of )T T A n r   

※ Here we only consider that T is represented by an m×n matrix A. In 

the next section, we will prove that any linear transformation from an 

n-dimensional space to an m-dimensional space can be represented 

by m×n matrix  

according to Thm. 4.17 where 

rank(A) + nullity(A) = n  
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 Ex 8: Finding the rank and nullity of a linear transformation 















 





000

110

201

                            

by define

 :n nsformatiolinear tra  theofnullity  andrank   theFind 33

A

RRT

Sol: 

123)(rank) ofdomain dim()(nullity

2)(rank)(rank





TTT

AT

※ The rank is determined by the number of leading 1’s, and the 

nullity by the number of free variables (columns without leading 

1’s) 
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 Ex 9: Finding the rank and nullity of a linear transformation 

5 7Let :  be a linear transformation

(a) Find the dimension of the kernel of  if the dimension 

      of the range of  is 2

(b) Find the rank of  if the nullity of  is 4

(c) Find the rank of   if  ke

T R R

T

T

T T

T



r( ) { }  T  0

Sol: 

(a) dim(domain of ) 5

      dim(kernel of ) dim(range of ) 5 2 3

T n

T n T

 

    

(b) rank( ) nullity( ) 5 4 1T n T    

(c) rank( ) nullity( ) 5 0 5T n T    
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A function :  is called one-to-one if the preimage of

every  in the range consists of a single vector. This is equivalent

to saying that  is one-to-one iff  for all  and  in ,  ( ) ( ) 

implies 

T V W

T V T T





w

u v u v

that u v

 One-to-one: 

one-to-one not one-to-one 
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 Theorem 6.6: One-to-one linear transformation 

Let :  be a linear transformation. Then 

 is one-to-one iff  ker( ) { }

T V W

T T



 0

Pf: 

( ) Suppose  is one-to-oneT

Then ( )  can have only one solution : T  v 0 v 0

}{)ker( i.e. 0T

( ) Suppose ker( )={ } and ( )= ( )T T T 0 u v

0vuvu  )()()( TTT

ker( )T       u v u v 0 u v

 is one-to-one (because ( ) ( ) implies that )T T T  u v u v

T is a linear transformation, see Property 3 in Thm. 6.1 

Due to the fact 

that T(0) = 0 in 

Thm. 6.1 
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 Ex 10: One-to-one and not one-to-one linear transformation 

(a) The linear transformation :  given by ( )  

      is one-to-one

T

m n n mT M M T A A  

3 3(b) The zero transformation :  is not one-to-oneT R R

because its kernel consists of only the m×n zero matrix 

because its kernel is all of R3 
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 in  preimage a has in 

element every  if onto be  tosaid is :function A 

VW

WVT 

 Onto: 

(T is onto W when W is equal to the range of T) 

 Theorem 6.7: Onto linear transformations 

Let T: V → W be a linear transformation, where W is finite 

dimensional. Then T is onto if and only if the rank of T is equal 

to the dimension of W 

)dim() of rangedim()(rank WTT 

The definition of 

the rank of a linear 

transformation 

The definition 

of onto linear 

transformations 
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 Theorem 6.8: One-to-one and onto linear transformations 

Let :  be a linear transformation with vector space  and  

both of  dimension . Then  is one-to-one if  and only if  it is onto

T V W V W

n T



Pf: 

( ) If  is one-to-one, then ker( ) { } and dim(ker( )) 0T T T  0

)dim())dim(ker())(rangedim(
6.5 Thm.

WnTnT 

Consequently,  is ontoT

}{)ker(0) of rangedim())dim(ker(
6.5 Thm.

0 TnnTnT

Therefore,  is one-to-oneT

nWTT  )dim() of rangedim( then onto, is  If )(

According to the definition of dimension 

(on p.227) that if a vector space V 

consists of the zero vector alone, the 

dimension of V is defined as zero 
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 Ex 11: 

The linear transformation :  is given by ( ) . Find the nullity 

and rank of   and determine whether  is one-to-one, onto, or neither

n mT R R T A

T T

 x x

1 2 0

(a) 0 1 1

0 0 1

A

 
 


 
  

1 2

(b) 0 1

0 0

A

 
 


 
  

1 2 0
(c) 

0 1 1
A

 
  

 

1 2 0

(d) 0 1 1

0 0 0

A

 
 


 
  

Sol: 

T:Rn→Rm dim(domain 

of T) (1) 

rank(T) 

(2) 
nullity(T) 1-1 onto 

(a) T:R3→R3 3 3 0 Yes Yes 

(b) T:R2→R3 2 2 0 Yes No 

(c) T:R3→R2 3 2 1 No Yes 

(d) T:R3→R3 3 2 1 No No 

= dim(range 

of T)   

= # of 

leading 1’s 
= (1) – (2) = 

dim(ker(T)) 

If nullity(T) 

= dim(ker(T)) 

= 0 

If rank(T) = 

dim(Rm) = 

m 

= dim(Rn) 

= n 
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 Isomorphism : 

othereach   toisomorphic be  tosaid are

 and   then ,  to from misomorphisan  exists theresuch that 

spaces vector are  and  if Moreover, m.isomorphisan  called is

 onto and one  toone is that :n nsformatiolinear traA 

WVWV

WV

WVT 

 Theorem 6.9: Isomorphic spaces and dimension 

Pf: 
nVWV dimension  has   where,  toisomorphic is  that Assume )(

onto and one  toone is that : L.T. a exists There WVT 

 is one-to-oneT

nnTTT

T





0))dim(ker() ofdomain dim() of rangedim(

0))dim(ker(

Two finite-dimensional vector space V and W are isomorphic 

if and only if they are of the same dimension 

dim(V) = n 
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nWV dimension  haveboth   and  that Assume )(

 is ontoT

nWT  )dim() of rangedim(

nWV  )dim()dim( Thus

 

 

1 2

1 2

Let ,  ,  ,  be a basis of   and

     ' ,  ,  ,  be a basis of  

n

n

B V

B W





v v v

w w w

nnccc

V

vvvv  2211

 as drepresente becan  in vector arbitrary an Then 

1 1 2 2

and you can define a L.T. :  as follows

( )  (by defining ( ) )n n i i

T V W

T c c c T



     w v w w w v w
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Since      is a basis for V, {w1, w2,…wn} is linearly 

independent, and the only solution for w=0 is c1=c2=…=cn=0 

So with w=0, the corresponding v is 0, i.e., ker(T) = {0} 

 

By Theorem 6.5, we can derive that dim(range of T) = 

dim(domain of T) – dim(ker(T)) = n –0 = n = dim(W) 

 

 

Since this linear transformation is both one-to-one and onto, 

then V and W are isomorphic 

'B

one-to-one is   T

onto is   T
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 Ex 12: (Isomorphic vector spaces) 

4(a) 4-spaceR 

4 1(b)  space of all 4 1 matricesM   

2 2(c)  space of all 2 2 matricesM   

3(d) ( )  space of all polynomials of degree 3 or lessP x 

5

1 2 3 4(e) {( ,  ,  ,  ,  0),  are real numbers}(a subspace of  )iV x x x x x R

The following vector spaces are isomorphic to each other 

 Note 

Theorem 6.9 tells us that every vector space with dimension 

n is isomorphic to Rn 
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Keywords in Section 6.2: 

 kernel of a linear transformation T 

 range of a linear transformation T 

 rank of a linear transformation T 

 nullity of a linear transformation T 

 one-to-one 

 onto 

 Isomorphism (one-to-one and onto) 

 isomorphic space 



6.50 

6.3 Matrices for Linear Transformations 

1 2 3 1 2 3 1 2 3 2 3(1) ( , , ) (2 , 3 2 ,3 4 )T x x x x x x x x x x x      

 Three reasons for matrix representation of a linear transformation: 

1

2

3

2 1 1

(2) ( ) 1 3 2

0 3 4

x

T A x

x

   
   

   
   
      

x x

 It is simpler to write 

  It is simpler to read 

  It is more easily adapted for computer use 

 Two representations of the linear transformation T:R3→R3 : 
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 Theorem 6.10:  Standard matrix for a linear transformation 

Let :  be a linear trtansformation such thatn mT R R

11 12 1

21 22 2

1 2

1 2

( ) ,    ( ) ,    ,    ( ) ,    

n

n

n

m m mn

a a a

a a a
T T T

a a a

     
     
       
     
     
     

e e e

1 2 nwhere { , , , } is a standard basis for . Then the   

matrix whose  columns correspond to ( ),

n

i

R m n

n T

e e e

e

 

11 12 1

21 22 2

1 2

1 2

( ) ( )  ( ) ,

n

n

n

m m mn

a a a

a a a
A T T T

a a a

 
 
  
 
 
 

e e e

is such that 𝑇 𝐯 = 𝐴𝐯 for every 𝐯 in 𝑅𝑛, 𝐴 is called the 

Standard matrix for T 
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Pf: 

1

2

1 2 1 1 2 2

1 0 0

0 1 0

0 0 1

n n n

n

v

v
v v v v v v

v

       
       
               
       
       

      

v e e e

1 1 2 2

1 1 2 2

1 1

 is a linear transformation ( ) ( )

                                                        ( ) ( ) ( )

                                                        ( )

n n

n n

T T T v v v

T v T v T v

v T

    

   

 

v e e e

e e e

e 2 2( ) ( )n nv T v T e e

































































nmnmm

nn

nn

nmnmm

n

n

vavava

vavava

vavava

v

v

v

aaa

aaa

aaa

A













2211

2222121

1212111

2

1

21

22221

11211

v

 1 2If ( ) ( )  ( ) ,  thennA T T T e e e
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11 12 1

21 22 2

1 2

1 2

1 1 2 2( ) ( ) ( )

n

n

n

m m mn

n n

a a a

a a a
v v v

a a a

v T v T v T

     
     
        
     
     
     

   e e e

nRAT in  each for  )( Therefore, vvv 

 Note 

Theorem 6.10 tells us that once we know the image of every 

vector in the standard basis (that is T(ei)), you can use the 

properties of linear transformations to determine T(v) for any 

v in V 
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 Ex 1: Finding the standard matrix of a linear transformation 

3 2Find the standard matrix for the L.T. :  defined byT R R

)2 ,2(),,( yxyxzyxT 

Sol: 

1( ) (1,  0,  0) (1,  2) T T e

2( ) (0,  1,  0) ( 2,  1) T T  e

3( ) (0,  0,  1) (0,  0) T T e

1

1
1

( ) ( 0 )  
2

0

T T

 
  

    
   

e

2

0
2

( ) ( 1 )  
1

0

T T

 
  

    
   

e

3

0
0

( ) ( 0 )  
0

1

T T

 
  

    
   

e

Vector Notation                      Matrix Notation 
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 1 2 3( ) ( ) ( )

1 2 0

2 1 0

A T T T

 
  
 

e e e

 Note: a more direct way to construct the standard matrix  

zyx

zyx
A

012

021
      

012

021















 

































 
















yx

yx

z

y

x

z

y

x

A
2

2

012

021

i.e., ( , , ) ( 2 ,2 )T x y z x y x y  

 Check: 

※ The first (second) row actually 

represents the linear transformation 

function to generate the first (second) 

component of the target vector 
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 Ex 2: Finding the standard matrix of a linear transformation 
2 2

2

The linear transformation :  is given by projecting 

each point in  onto the x - axis. Find the standard matrix for 

T R R

R T



Sol: 

)0 ,(),( xyxT 

   1 2

1 0
( ) ( ) (1,  0) (0,  1)

0 0
A T T T T

 
    

 
e e

 Notes: 

(1) The standard matrix for the zero transformation from Rn into Rm     

is the mn zero matrix 

(2) The standard matrix for the identity transformation from Rn into 

Rn  is the nn identity matrix In 
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 Composition of T1:R
n→Rm with T2:R

m→Rp : 

nRTTT  vvv    )),(()( 12

2 1This composition is denoted by T T T

 Theorem 6.11: Composition of linear transformations 

1 2

1 2

Let :  and :  be linear transformations 

with standard matrices  and  ,then

n m m pT R R T R R

A A

 

2 1(1) The composition : ,  defined by ( ) ( ( )), 

      is still a linear transformation

n pT R R T T T v v

2 1

(2) The standard matrix  for  is given by the matrix product 

      

A T

A A A
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Pf: 

(1) (  is a linear transformation)

      Let  and  be vectors in  and let  be any scalar. Thenn

T

R cu v

2 1(2) (  is the standard matrix for )A A T

)()())(())((

))()(())(()(

1212

11212

vuvu

vuvuvu

TTTTTT

TTTTTT





)())(())(())(()( 121212 vvvvv cTTcTcTTcTTcT 

vvvvv )()())(()( 12121212 AAAAATTTT 

 Note: 

1221 TTTT  
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 Ex 3: The standard matrix of a composition 
3 3

1 2Let  and  be linear transformations from  into  s.t.T T R R

) ,0 ,2(),,(1 zxyxzyxT 

) ,z ,(),,(2 yyxzyxT 

2 1

1 2

Find the standard matrices for the compositions  

and '

T T T

T T T





Sol: 

)for matrix  standard(   

101

000

012

11 TA



















)for matrix  standard(   

010

100

011

22 TA















 


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12for matrix  standard The TTT 

21'for matrix  standard The TTT 










































 



000

101

012

101

000

012

010

100

011

12 AAA















 

















 



















001

000

122

010

100

011

101

000

012

' 21AAA
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 Inverse linear transformation: 

1 2If  :  and :  are L.T. s.t. for every  in  n n n n nT R R T R R R  v

 ))((   and   ))(( 2112 vvvv  TTTT

invertible be  tosaid is  and  of inverse  thecalled is Then 112 TTT

 Note: 

If the transformation T  is invertible, then the inverse is 

unique and denoted by T–1  



6.62 

 Theorem 6.12: Existence of an inverse transformation 

Let :  be a linear transformation with standard matrix ,  

Then the following condition are equivalent

n nT R R A

 Note: 

If T is invertible with standard matrix A, then the standard 

matrix for T–1 is A–1  

(1) T is invertible 

(2) T is an isomorphism 

(3) A is invertible 

※ For (2)  (1), you can imagine that 

since T is one-to-one and onto, for every 

w in the codomain of T, there is only one 

preimage v, which implies that T-1(w) =v 

can be a L.T. and well-defined, so we can 

infer that T is invertible 

※ On the contrary, if there are many 

preimages for each w, it is impossible to 

find a L.T to represent T-1 (because for a 

L.T, there is always one input and one 

output), so T cannot be invertible 
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 Ex 4: Finding the inverse of a linear transformation 

3 3The linear transformation :  is defined byT R R

)42 ,33 ,32(),,( 321321321321 xxxxxxxxxxxxT 

Sol: 

   

142

133

132

for matrix  standard The

















A

T

321

321

321

42

33

32

xxx

xxx

xxx







 
















100142

010133

001132

3IA

Show that T is invertible, and find its inverse 
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G.-J. E. 1

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 6 2 3

I A

 
        
   

11  is for matrix  standard  theand invertible is  Therefore  ATT























326

101

011
1A
























































 

321

31

21

3

2

1
11

326326

101

011

)(

xxx

xx

xx

x

x

x

AT vv

)326 , ,(),,(

s,other wordIn 

3213121321

1 xxxxxxxxxxT 

※ Check T-1(T(2, 3, 4)) = T-1(17, 19, 20) = (2, 3, 4) 
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  The matrix of T relative to the bases B and B‘: 

1 2

:                   (a linear transformation)

{ , , , }      (a nonstandard basis for )

The coordinate matrix of any  relative to  is denoted by [ ]

n

B

T V W

B V

B



 v v v

v v

A matrix A can represent T if the result of A multiplied by a 

coordinate matrix of v relative to B is a coordinate matrix of v 

relative to B’, where B’ is a basis for W. That is, 

 

where A is called the matrix of T relative to the bases B and B’ 

 
'

( ) [ ] ,BB
T Av v

1

2

1 1 2 2if  can be represeted as , then [ ]n n B

n

c

c
c c c

c

  
  
     
  
   

  

v v v v v



6.66 

 Transformation matrix for nonstandard bases (the 

generalization of Theorem 6.10, in which standard bases are 

considered) : 

     

11 12 1

21 22 2

1 2' ' '

1 2

( ) ,    ( ) , ,    ( )

n

n

nB B B

m m mn

a a a

a a a
T T T

a a a

     
     
       
     
     
     

v v v

1 2

Let  and  be finite - dimensional vector spaces with bases  and ', 

respectively, where { , , , }n

V W B B

B  v v v

If :  is a linear transformation s.t.T V W

 
'

)(  tocorrespond columns  sematrix who  then the
BivTnnm
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 
'

is such that ( ) [ ]  for every  in BB
T A Vv v v

 

11 12 1

21 22 2

1 2

1 2

[ ( )]  [ ( )]   [ ( )]

n

n

B B n B

m m mn

a a a

a a a
A T T T

a a a

  

 
 
  
 
 
 

v v v

※The above result state that the coordinate of T(v) relative to the basis B’ 

equals the multiplication of A defined above and the coordinate of v 

relative to the basis B. 

※ Comparing to the result in Thm. 6.10 (T(v) = Av), it can infer that the 

linear transformation and the basis change can be achieved in one step 

through multiplying the matrix A defined above (see the figure on 6.74 

for illustration) 
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 Ex 5: Finding a matrix relative to nonstandard bases 

2 2Let :  be a linear transformation defined byT R R

)2 ,(),( 212121 xxxxxxT 

Find the matrix of   relative to the basis {(1,  2),  ( 1,  1)} 

and ' {(1,  0),  (0,  1)}

T B

B

 



Sol: 

)1 ,0(3)0 ,1(0)3 ,0()1 ,1(

)1 ,0(0)0 ,1(3)0 ,3()2 ,1(





T

T

    




















3

0
)1 ,1(   ,

0

3
)2 ,1( '' BB TT

 ' and   torelative for matrix  the BBT

     











30

03
)2 ,1()2 ,1( '' BB TTA
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 Ex 6: 
2 2For the L.T. :  given in Example 5, use the matrix 

to find ( ), where (2,  1)

T R R A

T



v v

Sol: 
)1 ,1(1)2 ,1(1)1 ,2( v

  











1

1
Bv

    





























3

3

1

1

30

03
)( ' BB AT vv

)3 ,3()1 ,0(3)0 ,1(3)(  vT )}1 ,0( ),0 ,1{('B

)}1 ,1( ),2 ,1{( B

)3 ,3()12(2) ,12()1 ,2( T

 Check: 
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 Notes: 

     

1 2

1 2

(2) If :  is the identity transformation

      { , , , }:  a basis for 

      the matrix of  relative to the basis 

1 0 0

0 1 0
     ( )  ( )   ( )

0 0 1

n

n nB B B

T V V

B V

T B

A T T T I







 
 
       
 
 

v v v

v v v

1  In the special case where  𝑉 = W (i.e., T:V → 𝑉) 𝑎𝑛𝑑 𝐵 = 𝐵′ 

       The matrix A is called the matrix of T relative to the basis B 
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Keywords in Section 6.3: 

 standard  matrix for T 

 composition of linear transformations 

 inverse linear transformation 

 matrix of T relative to the bases B and B' 

 matrix of T relative to the basis B: 
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6.4 Transition Matrices and Similarity 

1 2

1 2

:                    ( a linear transformation)

{ , , , }      ( a basis of )

' { , , , }   (a basis of )

n

n

T V V

B V

B V







v v v

w w w

     1 2( )  ( )   ( )  ( matrix of  relative to )nB B B
A T T T T B   v v v

     1 2' ' '
' ( )  ( )   ( )  (matrix of  relative to ')nB B B

A T T T T B   w w w

     1 2    ( transition matrix from '  to  )nB B B
P B B   w w w

     1

1 2' ' '
    ( transition matrix from  to ')nB B B

P B B    v v v

from the definition of the transition matrix on p.254 in the 

text book or on Slide 4.108 and 4.109 in the lecture notes 

       1

' '
,  and 

B B B B
P P  v v v v

       
' '

( ) ,  and ( )
B B B B

T A T A  v v v v
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 Two ways to get from         to             : 

' '(1) (direct) : '[ ] [ ( )]B BA Tv v

  'Bv  
'

)(
B

T v

1 1

' '(2) (indirect) : [ ] [ ( )] 'B BP AP T A P AP   v v

direct

indirect
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 Ex 1: (Finding a matrix for a linear transformation) 

Sol: 

  











1

3
)0 ,1(      )1 ,1(1)0 ,1(3)1 ,2()0 ,1( 'BTT

22：for  matrix   theFind RRTA' 

)3 ,22(),( 212121 xxxxxxT 

)}1 ,1( ),0 ,1{(' basis  the toreletive B

  









2

2
)1 ,1(      )1 ,1(2)0 ,1(2)2 ,0()1 ,1( 'BTT

     













21

23
)1 ,1()0 ,1(' '' BB TTA

   
' '

(1) ' (1,  0) (1,  1)
B B

A T T   
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(2) standard matrix for  (matrix of  relative to {(1,  0),  (0,  1)})T T B 

  













31

22
)1 ,0()0 ,1( TTA

     









10

11
)1 ,1()0 ,1(

  to' frommatrix  transition

BBP

BB

   1

' '

transition matrix from  to '

1 1
(1,  0) (0,  1)

0 1B B

B B

P
 

     
 









































 
 

21

23

10

11

31

22

10

11
'

' relative  ofmatrix 

1APPA

BT

※ Solve a(1, 0) + b(1, 1) = (1, 0)  

(a, b) = (1, 0) 

※ Solve c(1, 0) + d(1, 1) = (0, 1)  

(c, d) = (-1, 1) 

※ Solve a(1, 0) + b(0, 1) = (1, 0)  

(a, b) = (1, 0) 

※ Solve c(1, 0) + d(0, 1) = (1, 1)  

(c, d) = (1, 1) 
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 Ex 2: (Finding a matrix for a linear transformation) 

Sol: 

2 2 2

Let {( 3,  2),  (4,  2)} and ' {( 1,  2),  (2,  2)} be basis for 

2 7
, and let  be the matrix for :  relative to . 

3 7

Find the matrix of  relative to '

B B

R A T R R B

T B

     

 
  

 

     













12

23
)2 ,2()2 ,1(:   to' frommatrix  transition BBPBB

     













32

21
)2 ,4()2 ,3( :'  to frommatrix  transition ''

1

BBPBB
















































 

31

12

12

23

73

72

32

21
'                   

:'  torelative  ofmatrix 

1APPA

BT

 

Because the specific function is unknown, it is difficult to apply 

the direct method to derive A’, so we resort to the indirect 

method where A’ = P-1AP 
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 Ex 3: (Finding a matrix for a linear transformation) 

Sol: 

 

   

 

2 2

'

'

For the linear transformation :  given in Ex.2, find ,

( ) , and ( ) , for the vector  whose coordinate matrix is 

3
                                          

1

B

B B

B

T R R

T T



 
  

 

v

v v v

v

    






































5

7

1

3

12

23
'BB P vv

    






































14

21

5

7

73

72
)( BB AT vv

    
































 

0

7

14

21

32

21
)()( 1

' BB TPT vv

    
































0

7

1

3

31

12
')(  or '' BB AT vv
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 Similar matrix : 

 For square matrices A and A’ of order n, A’ is said to be similar 
to A if there exist an invertible matrix P s.t. A’=P-1AP 

 Theorem 6.13: (Properties of similar matrices) 

Let A, B, and C be square matrices of order n. 

Then the following properties are true. 

(1) A is similar to A 

(2) If A is similar to B, then B is similar to A 

(3) If A is similar to B and B is similar to C, then A is similar to C 

 Pf for (1) and (2) (the proof of (3) is left in Exercise 23): 

(1)  (the transition matrix from  to  is the )n n nA I AI A A I

1 1 1 1 1

1 1

(2)   ( )   

        (by defining ),  thus  is similar to 

A P BP PAP P P BP P PAP B

Q AQ B Q P B A

    

 

    

  
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 Ex 4: (Similar matrices) 

2 2 3 2
(a)  and '  are similar  

1 3 1 2
A A

    
    

    









 

10

11
  where,' because 1 PAPPA

2 7 2 1
(b)  and '  are similar 

3 7 1 3
A A

   
    

    













 

12

23
  where,' because 1 PAPPA
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 Ex 5: (A comparison of two matrices for a linear transformation) 

3 3

1 3 0

Suppose 3 1 0  is the matrix for :  relative 

0 0 2

to the standard basis. Find the matrix for  relative to the basis

                  ' {(1,  1,  0),  (1,  1,  0),  (0,  0,  1)}

A T R R

T

B

 
 

 
 
  

 

Sol: 

      



















100

011

011

)1 ,0 ,0()0 ,1 ,1()0 ,1 ,1(

matrix standard  the to frommatrix n  transitioThe

BBBP

B'















 

100

0

0

2
1

2
1

2
1

2
1

1P
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1 1
2 2

1 1 1
2 2

matrix of  relative to ' :

0 1 3 0 1 1 0

' 0 3 1 0 1 1 0

0 0 1 0 0 2 0 0 1

4 0 0

    0 2 0

0 0 2

T B

A P AP

     
     

   
     
         

 
 

 
 
  

※ You have seen that the standard matrix for a linear 

transformation T:V →V depends on the basis used for V. 

What choice of basis will make the standard matrix for T as 

simple as possible?  This case shows that it is not always 

the standard basis. 

(A’ is a diagonal matrix, which is 

simple and with some 

computational advantages) 
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 Notes:  Diagonal matrices have many computational advantages 

over nondiagonal ones (it will be used in the next chapter) 

1

2

0 0

0 0
for 

0 0 n

d

d
D

d

 
 
 
 
 
 

1

2

0 0

0 0
(1) 

0 0

k

k

k

k

n

d

d
D

d

 
 
 
 
 
  

(2) TD D

1

2

1

1

1

1

0 0

0 0
(3) ,    0

0 0
n

d

d

i

d

D d

 
 
 

  
 
 
 
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Keywords in Section 6.4: 

 matrix of T relative to B 

 matrix of T relative to B'  

 transition matrix from B' to B 

 transition matrix from B to B' 

 similar matrix 
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6.5 Applications of Linear Transformation 

 The geometry of linear transformation in the plane (p.407-p.110) 

 Reflection in x-axis, y-axis, and y=x 

 Horizontal and vertical expansion and contraction 

 Horizontal and vertical shear 

 Computer graphics (to produce any desired angle of view of a 3-

D figure) 


