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6.1 Introduction to Linear Transformations

= A function T that maps a vector space V into a vector space W:
T v g s\ V,W :vector spaces

V: the domain of T W: the codomain of T

= Image of v under T :
If v is a vector In V and w iIs a vector in W such that
T(V)=w,

then w is called the image of v under T
(For each v, there is only one w)

- Therange of T:

The set of all images of vectors in V (see the figure on the

next slide)
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= The preimage of w:
The set of all v in V such that T(v)=w
(For each w, v may not be unique)

= The graphical representations of the domain, codomain, and range

> For example, VisR3, WisR3 and T
V: Domain is the orthogonal projection of any
vector (X, Yy, z) onto the xy-plane, i.e.
T(X,y,2) = (XY, 0)
(we will use the above example many
times to explain abstract notions)
> Then the domain is R?, the codomain
is R, and the range is xy-plane (a
- subspace of the codomian R?)
r:v—w  W:Codomain % (2, 1, 0) is the image of (2, 1, 3)
> The preimage of (2, 1, 0) is (2, 1, s),
where s is any real number 6.3




« Ex 1: A function from R?into R?
T:R* >R* v=(v,v,)eR’
T(v,V,) = (v, —V,, v, +2v,)
(a) Find the image of v=(-1,2) (b) Find the preimage of w=(-1,11)
Sol:
@) v=(-1 2)
=TWV)=T(-1 2)=(-1-2, -1+2(2)) =(-3, 3)
(b) T(v)=w=(-1 11)
T(V,V,)=(v,—V,,v,+2v,) =(-111)
=V, -V, =-1
v, +2v, =11
=V, =3, V, =4 Thus {(3, 4)} is the preimage of w=(-1, 11)
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« Linear Transformation :

V,W: wectorspaces
T:V —>W: Alinear transformation of V intoW if the
following two propertiesare true

(D) Tu+v)=TU)+T(v), YuveV
(2) T(cu)=cT(u), VceR
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= Notes:

(1) A linear transformation is said to be operation preserving

(because the same result occurs whether the operations of addition
and scalar multiplication are performed before or after the linear
transformation is applied)

TUu+v)=TU)+T(v) T(cu)=cT (u)
| | [ 1
Addition Addition Scalar Scalar
inV in W multiplication | | multiplication
inV in W

(2) A linear transformation T :VV —V from a vector space into
Itself is called a linear operator
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« Ex 2: Verifying a linear transformation T from R? into R?

T(vi,V,) = (v, —V,, vy +2V,)
Pf:
u=(u,u,), v=(v,v,):vectorin R, c:any real number

(1) Vector addition :
U+Vv= (u1’ uz) + (Vl’vz) — (u1 +Vi, Uy +V2)

TUu+v)=T(U,+Vv,U,+V,)
— ((Ul +V1) - (uz +V2)’ (ul +V1) T 2(“2 "'Vz))
— ((u1 _uz) + (Vl _Vz)’ (ul + 2U2) + (V1 + 2\/2))
= (U, —U,,u, +2u,)+ (v, =V,,V, +2V,)
=T(U)+T(V)
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(2) Scalar multiplication
cu =c(u,,U,) = (cu,,cu,)
T(cu)=T(cu,,cu,)=(cu, —cu,,cu, +2cu,)
=c(u, —u,,u, +2u,)
=CcT(u)

Therefore, T Is a linear transformation
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= EX 3: Functions that are not linear transformations
(a) f(X) =sinx
sin(x, + X,) # sin(x,) +sin(Xx,)
sin(Z + %) #sin(%) +sin(%)
(b) f(x) =x°
2 2 2
(X1 § XZ) R (f(x) = x? is not a linear transformation)
(1+2)* #1°+2°
(c) f(x)=x+1
fOX+X)=X+X+1
fF(x)+f()=X+D)+(X,+) =X +X, +2

(f(x) = sin x is not a linear transformation)

f(x +X,)# F(X)+ f(X,) (f(x) =x+1is not a linear transformation,
although it is a linear function)

In fact, f (cx) = cf (X) 6.9



= Notes: Two uses of the term “linear”.

(1) f(x)=x+1 is called a linear function because its graph
Is a line

(2) f(x)=x+1 Isnota linear transformation from a vector
space R into R because it preserves neither vector
addition nor scalar multiplication
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« Zero transformation:

T:V-o>W T(v)=0, YveV
= ldentity transformation:
T:V->V T(Vv)=v, YWweV

= Theorem 6.1: Properties of linear transformations
T:V—->W, uveV
(1)T(0) =0 (T(cv) =cT(v) for c=0)
(2)T(—Vv)==T(V) (T(cv)=cT(v) forc=-1)
(TU—=V)=TU)=T(V) (T(u+(-v))=T(u)+T(-v) and property (2))
(4)If v=cVv,+CV, +--+C.V,,
then T(v)=T(c,v, +C,V, +---+C.V,)

=C,T(v,)+C,T(v,)+---+CT(v,)
(Iteratively using T(u+v)=T(u)+T(v) and T(cv) = cT(Vv)) 6.11



= EX 4: Linear transformations and bases
Let T:R®— R’ be a linear transformation such that
T(1,0,0) = (2,-1,4)
T(0,1,0) = (L5,-2)
T(0,0,1) = (0,31)

Find T(2, 3, -2)
Sol:

(2,3,-2) =2(1,0,0) +3(0,1,0) —2(0,0,1)
(According to the fourth property on the previous slide thatj
T(cv,+CV, +---+cVv.)=cT(v)+C,T(v,)+---+CcT(Vv.)
T(2,3,-2)=2T(1,0,0)+3T7(0,1,0)—2T(0,0,1)
=2(2,-1,4)+3(1,5,-2)-2T(0,3,1)
= (7,7,0)
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= EX 5: A linear transformation defined by a matrix
The function T : R* = R’ is defined as T (v) = Av =
(@) Find T (v), wherev =(2,-1)

(b) Show that T is a linear transformation form R? into R®

Sol:
(a) v=(2,-1) R? vector R31vector
] b
3 0 5 6
T(v)=Av=| 2 1 LJ: 3
-1 -2] 0]

~T(2-1) = (6,3,0)

3 0
2 1

-1 -2

(b) Tw+Vv)=AUu+Vv)=Au+Av=T(u)+T(v) (vectoraddition)

T(cu)=A(cu)=c(Au) =cT(u)

(scalar multiplication)
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= Theorem 6.2: The linear transformation defined by a matrix
Let A be an mxn matrix. The function T defined by
T(v)=Av
IS a linear transformation from R" into R™

- Note: R" vefctor R" \llector
A, &, - Q| V) V) +a,V, +---+a,V,
AV = Ay Ayp o Ay ||V _ AyyVy AV, oo+ ay,V,
_aml Ao Ann i _Vn i _amlvl +an,V, +--+a,V, |

T(v)=Av T:R"—>R"

> If T(v) can represented by Av, then T is a linear transformation
> If the size of A is mxn, then the domain of T is R" and the
codomain of T iIs R™ 6.14



- EX 7: Rotation in the plane
Show that the L.T. T : R* — R* given by the matrix

A cosf -—sind
~|sin@ cosé

has the property that it rotates every vector in R?
counterclockwise about the origin through the angle &

Sol:
_ _ - (Polar coordinates: for every point on the xy-
V= (X’ y) B (I’ COsa, rsin 0() plane, it can be represented by a set of (r, a))

r : the length of v ( = /x?+y?) T(v)
« © the angle from the positive Yy
X-axis counterclockwise to

the vector v

Rotation in the Plane | 6.15



T(V)= Av = cos@ —sin 0}{x} :{cosé’

'sind cos@ |y

rcosdcosa —rsindsina
| rsin@cosa +rcosdsina

_ {r cos(f + a)}

rsin(@+ )

sin@

|

—SIN@ || rcosa
cosd || rsina

according to the addition
formula of trigonometric
Identities

r : remain the same, that means the length of T(v) equals the

length of v

6+« : the angle from the positive x-axis counterclockwise to

the vector T(v)

Thus, T(v) is the vector that results from rotating the vector v

counterclockwise through the angle 6
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« Ex 8: A projection in R3

The linear transformation T :R® — R’ is given by

1.0 0
A=[0 1 0
00 0

Is called a projection in R3

1 0 0} x X
Ifvis (x,y,2),Av=10 1 0| vy|=|Yy
0 0 0z] |0

>< In other words, T maps every vector in R3
to its orthogonal projection in the xy-plane,
as shown in the right figure

T(x, y,2) = (x,,0)

Projection onto xy-plane
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Keywords in Section 6.1:

- function

- domain

= codomain

- Image of vunder T

- range of T

= preimage of w

- linear transformation
- linear operator

= Zero transformation

- Identity transformation
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6.2 The Kernel and Range of a Linear Transformation

« Kernel of a linear transformation T :

Let T:V — W be a linear transformation. Then the set of
all vectors v in V that satisfy T (v) =0 is called the kernel

of T and is denoted by ker(T)

ker(T) ={v|T(v) =0, Vv eV}

>¢ For example, VisR3, WisR3, and T is the
orthogonal projection of any vector (X, Y, z)
onto the xy-plane, 1.e. T(X, Y, z) = (X, Y, 0)

& Then the kernel of T is the set consisting of
(0, 0, s), where s is a real number, I.e.

ker(T) ={(0,0,s)| s isa real number}

1 ©,0,2)

The kernel of T is the set
of all vectors on the z-axis.
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= EX 2: The kernel of the zero and identity transformations
(a) If T(v) = 0 (the zero transformation T :V —W ), then

ker(T)=V

(b) If T(v) = v (the identity transformation T :V —V ), then

ker(T) ={0}
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= EX 5: Finding the kernel of a linear transformation

(X)— —| |))((1 ( ' R® 2)
| = AX = , [ 'R°—> R
X3

Sol:
ker(T) ={(X, X,, %) | T (X, %, %) = (0,0), and (x,,%,, %;) € R’}
T(X1’X2’X3) — (O’O)

1 -1 -2] | _[o
1 2 3’7o
X3
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X, t 1
=>| X, |=|-t|=t -1
| X3 _t_ _1_

= ker(T) ={t(1,-1,1) |tisa real number}
=span{(1,-11)}
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= Theorem 6.3: The kernel is a subspace of V
The kernel of a linear transformation T:V —>W isa
subspace of the domain V

Pf:
-+ T(0)=0 (by Theorem6.1) ... ker(T) isa nonempty subset of V

et uand v be vectorsin the kernel of T. Then
T(u+ v) T(u) +T(V)=0+0=0 (ueker(T),veker(T)=u+vecker(T))

> Tisa I|near transformation

T(cu) = CT (u)=c0= (ueker(T) = cu e ker(T))

Thus, ker(T) Is a subspace of V (according to Theorem 4.5
that a nonempty subset of V is a subspace of V if it is closed
under vector addition and scalar multiplication)
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= EX 6: Finding a basis for the kernel
LetT : R°> — R* be defined by T (x) = Ax, where xisin R and

1 2 0 1 -1
2 1 3 1
A=

10 -20 1
00 0 2 8

Find a basis for ker(T) as a subspace of R®
Sol:
To find ker(T) means to find all x satisfying T(x) = Ax = 0.

Thus we need to form the augmented matrix [A | 0] first
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Al0]=

o o o
T
o O -«
N T o
O - O
- O O
/
uJ
&
o o o
T o -
- - O
o » 9
N« O
- o~ 7

1

s| 1 |+t| O

B=1{(-2,1,1,0,0),(1, 2,0, —4,1)}: one basis for the kernel of T
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= Corollary to Theorem 6.3:

LetT :R" — R™ be the linear fransformation given by T (x) = Ax.
Then the kernel of T is equal to the solutionspace of Ax=0

T(X) = Ax (alinear transformation T :R" - R™)
= ker(T) = NS(A) ={x| Ax=0, ¥xeR"} (subspace of R")
> The kernel of T equals the nullspace of A (which is defined

In Theorem 4.16 on p.239) and these two are both subspaces
of R")

><¢ S0, the kernel of T is sometimes called the nullspace of T
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= Range of a linear transformation T :
LetT :V —W be a linear transformation. Then the set of all

vectorsw InW that are images of any vectorsinV is calledthe
range of T and is denoted by range(T)

range(T) ={T(v)| Vv eV}

> For the orthogonal projection of
any vector (X, y, z) onto the xy-
plane, i.e. T(x, Y, 2) = (X, Y, 0)

> The domain is V=R3, the codomain
IS W=R3, and the range is xy-plane
(a subspace of the codomian R3)

> Since T(0, 0, s) = (0, 0, 0) =0, the
kernel of T is the set consisting of
(0, 0, s), where s is a real number .

Domain Kernel

Range



= Theorem 6.4: The range of T iIs a subspace of W

The range of a linear transformation T :V —W is a subspace of W

Pf:
'+ T(0)=0 (Theorem6l)

. range(T) isa nonempty subset of W

Since T (u) and T (v) are vectorsin range(T ), and we hawe
because u+v eV
T(U)+T(v)=T(u+v) &range(T) |
L Tis a linear transformation

I
=T ran Range of T is closed under scalar multi-
CT (u) =T (cu) e range(T) [ j

Range of T is closed under vector addition
because T (u), T(v), T(u+vVv) erange(T)

lication because T (u) and T (cu) € range(T
because cu eV P (u) and T (cu) e range(T)

Thus, range(T) iIs a subspace of W (according to Theorem 4.5
that a nonempty subset of W is a subspace of W if it is closed
under vector addition and scalar multiplication) 6 28



= Notes:
T:V —>W is a linear transformation
(1) ker(T) issubspace of V (Theorem 6.3)
(2) range(T ) issubspace of W (Theorem 6.4)
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= Corollary to Theorem 6.4:

LetT : R" — R™ be the linear transformation given by T (x) = Ax.

The range of T isequal to the columnspace of A, i.e.range(T)=CS(A)

(1) According to the definition of the range of T(x) = Ax, we know that the
range of T consists of all vectors b satisfying Ax=Db, which is equivalent to
find all vectors b such that the system Ax=Db iIs consistent

(2) Ax=Db can be rewritten as

& & &,

d d a
AX=X| ZHX| Z x|

_aml_ _amz_ _amn_

Therefore, the system Ax=Db is consistent iff we can find (X, Xo,..., X,)
such that b is a linear combination of the column vectors of A, i.e.b e CS(A)

Thus, we can conclude that the range consists of all vectors b, which is a linear
combination of the column vectors of A or said b € CS(A). So, the column space

of the matrix A is the same as the range of T, i.e. range(T) = CS(A) 6.30



= Use our example to illustrate the corollary to Theorem 6.4:

> For the orthogonal projection of any vector (X, y, z) onto the xy-
plane, i.e. T(x, Yy, 2) = (X, Y, 0)

>¢ According to the above analysis, we already knew that the range
of T is the xy-plane, i.e. range(T)={(x, y, 0)| x and y are real

>& T can be defined by a matrix A as follows

numbers}
(1 0 0]
A=0 1 0
0 0 O]

. such that

(1 0 Ol x] [x
0 1 0l|jly|=|Y

00 0/ z] [0

»< The column space of A is as follows, which is just the xy-plane

CS(A) =X,

+ X,

+ X5

=| X, |, where x;,X, €R

. I 6.31



= EX 7: Finding a basis for the range of a linear transformation
Let T : R> — R* be defined by T (x) = Ax, where x is R> and

1 2 0 1 -1
2 1 3 1

A=
10 -2 0 1
0 0 0 2 8

Find a basis for the range of T
Sol:

Since range(T) = CS(A), finding a basis for the range of T Is
equivalent to fining a basis for the column space of A
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1 2 0 1 -1 @D o0 2 0 -1
A 2 1 3 1 0 4,0 |O @D -1 0 2 _a
10 2 0 1 o o 0o @ 4
0 0 0 2 8 0 0 0 0 O]
cC ¢, C C, C W, W, W, W, W

= W, W,, and w, are indepdnent, so
form a basis for CS(B)
*.© Row operations will not affect the dependency among columns

—~—

W, W,, W,} can

. ¢, C,, and c, are indepdnent, and thus {c,, c,, c,} is
a basis for CS(A)
Thatis, {(1, 2, -1, 0), (2,1 0, 0), (0, 1, 0, 2)}isa basis

for therangeof T
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= Rank of a linear transformation T:V—W :

rank (T ) = the dimension of the range of T =dim(range(T))
According to the corollary to Thm. 6.4, range(T) = CS(A), so dim(range(T)) = dim(CS(A))

= Nullity of a linear transformation T:V—W :

nullity(T ) = the dimension of the kernel of T =dim(ker(T))
According to the corollary to Thm. 6.3, ker(T) = NS(A), so dim(ker(T)) = dim(NS(A))

« Note:

If T:R" — R"™ isa linear transformation given by T (X) = Ax, then
rank(T ) =dim(range(T)) =dim(CS(A)) =rank(A)
nullity(T) = dim(ker(T)) =dim(NS(A)) = nullity(A)

»< The dimension of the row (or column) space of a matrix A is called the rank of A

> The dimension of the nullspace of A (NS(A) ={x| Ax=0}) is called the nullity
of A 6.34



= Theorem 6.5: Sum of rank and nullity

Let T: V —W be a linear transformation from an n-dimensional
vector space V (i.e. the dim(domain of T) iIs n) into a vector
space W. Then

rank (T ) + nullity(T) =n
(i.e. dim(range of T)+dim(kernel of T) =dim(domain of T))

»< You can image that the dim(domain of T)
should equals the dim(range of T)
originally

»< But some dimensions of the domain of T
IS absorbed by the zero vector in W

> So the dim(range of T) is smaller than
the dim(domain of T) by the number of
how many dimensions of the domain of
T are absorbed by the zero vector,
which is exactly the dim(kernel of T) ¢ 55

Domain Kernel




Pf:

LetT be represented by an mxnmatrix A, and assume rank(A) =r

(1) rank(T) =dim(range of T) =dim(column space of A) =rank(A) =r

(2) nullity(T) =dim(kernel of T) =dim(null space of A) ST

= rank(T) +nullity(T) =r+(n—r)=n

according to Thm. 4.17 where
rank(A) + nullity(A) =n

>& Here we only consider that T is represented by an mxn matrix A. In
the next section, we will prove that any linear transformation from an
n-dimensional space to an m-dimensional space can be represented

by mxn matrix
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= EX 8: Finding the rank and nullity of a linear transformation

Find the rank and nullity of the linear transformation T : R®> — R®
define by

—2

>

Il
o O
o r O

1
0

Sol:
rank(T) =rank(A) =2
nullity(T) =dim(domain of T) —rank(T)=3-2=1
»<& The rank is determined by the number of leading 1’s, and the
nullity by the number of free variables (columns without leading
1’s)
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« EX

9: Finding the rank and nullity of a linear transformation

Let T : R°> — R’ bea linear transformation

(a) Find the dimension of the kernel of T if the dimension
of therange of T is 2

(b) Find the rank of T if the nullity of T is 4

(c) Find the rank of T if ker(T) ={0}

Sol:

(a) dim(domainof T)=n=5
dim(kernel of T) =n—-dim(range of T) =5-2=3

(b) rank(T) =n—nullity(T) =5-4=1
(c) rank(T) =n—nullity(T)=5-0=5
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« One-to-one:

A functionT :V — W is called one-to-one if the preimage of
every w in the range consists of a single vector. This is equivalent
to saying that T is one-to-one iff foralluand vin V, T(u) =T (v)
Implies that u=v

one-to-one not one-to-one
6.39



= Theorem 6.6: One-to-one linear transformation

LetT :V —W bea linear transformation. Then
T 1s one-to-one Iff ker(T) ={0}

Pf:
(=) Suppose T Is one-to-one
Due to the fact
Then T (v) =0 can have only one solution: v =0 | that T(0) =0in
Thm. 6.1

l.e.ker(T) ={0}
(<=) Suppose ker(T)={0} and T (u)=T (V)
Tu-v)=Tu)-T(v)=0
T is a linear transformation, see Property 3 in Thm. 6.1
~u—veker(T)=u-v=0=u=v

=T IS one-to-one (because T (u) =T (v) iImpliesthat u=V) ¢4



« EX 10: One-to-one and not one-to-one linear transformation

(a) The linear transformation T: M ___ — M ___ given by T(A) = A’
IS one-to-one
because its kernel consists of only the mxn zero matrix

(b) The zero transformation T : R®* — R® is not one-to-one

because its kernel is all of R3
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« Onto:

A functionT :V — W issaid to be onto if every element
INW has a preimage inV

(T 1s onto W when W is equal to the range of T)

= Theorem 6.7: Onto linear transformations

Let T: V'— W be a linear transformation, where W is finite
dimensional. Then T is onto if and only if the rank of T is equal
to the dimension of W

rank(T) T dim(range of T) T dim(W)

The definition of The definition
the rank of a linear of onto linear

transformation transformations 6.4



= 1heorem 6.8: One-to-one and onto linear transformations

LetT :V — W be a linear transformation with vector spaceV and W
both of dimension n. Then T is one-to-one if and only if it is onto

Pf:
(=) If T is one-to-one, then ker(T) ={0}and dim(ker(T)) =0

Thm.6.5
dim(range(T)) = n—-dim(ker(T))=n=dim(W)
According to the definition of dimension

Consequently, T 1S onto (on p.227) that if a vector space V

consists of the zero vector alone, the
dimension of V is defined as zero

(<) If T i1sonto, then dim(range of T) =dim(W) =n
Thm.6.5

dim(ker(T)) = n-dim(range of T)=n—-n=0= ker(T) ={0}

Therefore, T IS one-to-one 6.43



« EX11:

The linear transformation T : R" — R™ is given by T (x) = Ax. Find the nullity
and rank of T and determine whether T IS one-to-one, onto, or neither

(1 2 0]
(@) A=

0 1 1
0 0 1
Sol:

T:R—RM

(a) T:R3—R?
(b) T:R2—R3
(c) T:R3—R?
(d) T:R3—R3

(1 2] Lo o (1 2 0]
(b)A=|0 1 (C)A=|: } (dA=|0 1 1
01 -1
_0 0_ _O 0 O_
= dim(range
of T) If nullity(T) If rank(T) =
= dim(R") =# of = (1) - (2) = || =dim(ker(T)) || dim(R™) =
=n leading 1’s || dim(ker(T)) || =0 m
di (él ' ‘ k(T) * :
Im(domain ran i
of T) (1) (2) nullity(T) 1-1 onto
3 3 0 Yes Yes
2 2 0 Yes No
3 2 1 No Yes
3 2 1 No No 6.44




= Isomorphism :
A linear transformation T :V — W that 1S one to one and onto

Is calledan isomorphism. Moreower,if V and W are vector spaces
such that there existsan isomorphism fromV toW, thenV and W
are said to be isomorphicto each other

= Theorem 6.9: Isomorphic spaces and dimension
Two finite-dimensional vector space V and W are isomorphic

f If and only if they are of the same dimension
(P:>.) Assume that V isisomorphictoW, where V has dimensionn
— There existsa L. T. T :V —W that isone to one and onto
-+ T IS one-to-one
= dim(ker(T)) =0 dim(\lfl) =
— dim(range of T) =dim(domain of T)—dim(ker(T))=n-0=n,



-+ T Isonto
= dim(range of T) =dim(W) =n

Thus dim(V)=dim(W) =n

(«<=) Assume that V and W both have dimensionn
Let B={v,, v,,--- ,v, | beabasisof V and
B'={w,, w,, ---,w,} bea basis of W
Then an arbitrary vector inV can be represented as
V=CV,+CV,+:-+C\V,
and you can definea L.T.T :V —W as follows
w=T(V)=cw,+C,wW,+---+cw_ (bydefining T(v,)=w,)
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Since B'is a basis for V, {w,, w,,...w_} Is linearly
Independent, and the only solution for w=0 Is ¢,=c,=...=c,=0
So with w=0, the corresponding v is O, I.e., ker(T) = {0}

= T Isone-to-one

By Theorem 6.5, we can derive that dim(range of T) =
dim(domain of T) — dim(ker(T)) =n -0 =n = dim(W)

— T isonto

Since this linear transformation is both one-to-one and onto,

then V and W are isomorphic
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= Note

Theorem 6.9 tells us that every vector space with dimension
n is iIsomorphic to R"

« EX 12: (Isomorphic vector spaces)
The following vector spaces are isomorphic to each other
(a) R* = 4-space
(b) M, , = space of all 4x1 matrices
(c) M., = space of all 2x2 matrices
(d) B,(x) = space of all polynomials of degree 3 or less

(e) V ={(x,, X,, X, X,, 0),x are real numbers}(a subspace of R®)
6.48



Keywords in Section 6.2:

- kernel of a linear transformation T
- range of a linear transformation T

= rank of a linear transformation T

- nullity of a linear transformation T
- ONe-to-one

-« ONtO

= Isomorphism (one-to-one and onto)

= ISomorphic space
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6.3 Matrices for Linear Transformations

« Two representations of the linear transformation T:R>—R3:

(D) T(X, X5, X5) = (2% + X, — X5, =X, +3X, —2X%,, 3X, +4X;)

2 1 -1 x
(2) T(X)=Ax=|-1 3 -2]|| X%,
0 3 4| X

= Three reasons for matrix representation of a linear transformation:

- It is simpler to write
- Itissimpler to read

- It 1s more easily adapted for computer use
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« Theorem 6.10: Standard matrix for a linear transformation
LetT : R" — R™ be a linear trtansformation such that

CH a &,
a a a
T(el): :21 J T(eZ): :22 ) Ty T(en): :Zn '
_aml_ am2 amn_

where{e,,e,,...,e }isastandard basis for R". Then the mxn
matrix whose n columns correspond to T (g, ),

a8, @&, - 8,
A=[T(e)T(,) - T(e,)]=| 2 2 7 |
_aml am2 amn_

is such that T(v) = Av for every vin R" A is called the
Standard matrix for T 651



Pf:

+V,

0

= Ve, +V,€, +--+V e

1

T isa linear transformation = T (v) =T (v,e, +V,e, +---+V.€.)

IfA=[T(e,) T(e,) --- T(e,)], then

Av

Cn
a2 n

a

mn _|

=T(ve)+T(v.e,)+---+T(v.e)
=v,T(e)+Vv,T(e,)+---+Vv. T(e,)

a; V) +a,Vv, +---+ Vv
a,,V, +a,Vv, +---+a, Vv

2n'n

_amlvl +an,V, +---+a,V, B 6.52



C CY &,

a21 a22 a2n
=Vi| V| et

aml am 2 amn

=v,T(e,)+Vv,T(e,)+---+Vv.T(e,)

Therefore, T(v) = AvforeachvinR"

= Note

Theorem 6.10 tells us that once we know the image of every
vector in the standard basis (that is T(e;)), you can use the
properties of linear transformations to determine T(v) for any
vinV

6.53



« EX 1: Finding the standard matrix of a linear transformation

Find the standard matrix for the L.T.T : R> — R? defined by
T(X,Y,2)=(X-2Yy, 2X+Y)

Sol:
Vector Notation Matrix Notation
1
1
Te)=T@ 0, 0)=(1, 2) T(e)=T(O0 )=M
0

T(e,)=T(0,1 0)=(=21 T(e)=T(

T(e;)=T(0, 0, D=(0, 0)  T(&)=T(
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A= :T (el) T(ez) T(e3)]

1 =20
12 10

Aol [1 -2 o] | [x-2y
Y'\Tl2 1 oY |2x+y

e, T(X,Y,2)=(X-2y,2x+Y)

= Note: a more direct way to construct the standard matrix

1 -2 0] « 1x—-2y+0z < The first (second) row actually
A-| }

represents the linear transformation
2 1 0] « 2x+1y+0z function to generate the first (second)

component of the target vector 6.55



= EX 2: Finding the standard matrix of a linear transformation
The linear transformation T : R> — R? is given by projecting

each point in R onto the x - axis. Find the standard matrix for T
Sol:

T(Xy)=(x0)
1 0
A:[T(el) T(ez)]z[T(l, 0) T(O, 1)]:{O O}
= Notes:

(1) The standard matrix for the zero transformation from R"into R™
IS the mxn zero matrix

(2) The standard matrix for the identity transformation from R" into
R" is the nxn identity matrix |,
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» Composition of T,:R"—R™with T,:R™—RP:

T(V)=T,(T,(v)), veR’
This composition is denoted by T =T, oT,

Composition of Transformations

« Theorem 6.11: Composition of linear transformations

LetT,:R" > R™andT, :R™ — R" be linear transformations

with standard matrices A and A, ,then

(1) The composition T : R" — R", defined by T (v) =T, (T,(Vv)),
Is still a linear transformation

(2) The standard matrix A for T is given by the matrix product

A=AA 6.57



Pf:

(1) (T 1sa linear transformation)
Let u and v be vectors in R" and let ¢ be any scalar. Then
TU+Vv)=T,(T,(Uu+V))=T,(T,(u) +T,(Vv))
=T, (T (W) + T, (T, (v)) =T (U) + T (v)
T(cv) =T,(T,(cv)) =T, (cT,(v)) =cT,(T,(Vv)) =cT (v)

(2) (A A 1sthe standard matrix for T)

T(V) =T,(T.(V)) =T,(AVv) = AAvV=(AA)V
« Note:
T, oT, #T,0T,
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= EX 3: The standard matrix of a composition
Let T, and T, be linear transformations from R® into R® s.t.

T,(X,Y,2)=(2x+VY,0,x+2)

T2(X1 y’ Z) — (X_ y, Z, y)
Find the standard matrices for the compositions T =T, o T,

andT'=T, 0T,
Sol:

2 1 0

A =/0 0 0| (standard matrix forT,)
1 0 1]
1 -1 0]

A,={0 0 1| (standard matrixforT,)
0 1 O

- - 6.59



The standard matrix forT =T, oT,

(1 -1 0][2 1 0O 2 1 0
A=AA=/0 0 10 0 O|={1 0 1
0 1 01 0 1 |0 0 O
The standard matrix forT'=T, o T,
(2 1 0][1 -1 0] [2 -2 1]
A=AA =0 0 00 0 1= 0 0
1 0 10 1 0O |1 0 O
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= Inverse linear transformation:
If T,:R" >R"andT,:R" > R"are L.T.s.t.forevery v in R"
T2 (Tl (V)) =V and T1 (Tz (V)) =V

Then T, is calledthe inverse of T, and T, issaid to be invertible

= Note:

If the transformation T is invertible, then the Iinverse Is
unique and denoted by T
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= Theorem 6.12: Existence of an inverse transformation

LetT : R" — R" be a linear transformation with standard matrix A,
Then the following condition are equivalent

> For (2) = (1), you can imagine that
since T Is one-to-one and onto, for every
w Iin the codomain of T, there is only one
preimage v, which implies that T-1(w) =v
(3) Ais invertible can be a L.T. and well-defined, so we can
Infer that T is invertible
> On the contrary, if there are many
preimages for each w, it is impossible to
find a L.T to represent T-! (because for a
L.T, there is always one input and one
« Note: output), so T cannot be invertible

If T 1s invertible with standard matrix A, then the standard

(1) T is invertible

(2) T Is an isomorphism

matrix for T-1is Al o



= EX 4: Finding the inverse of a linear transformation
The linear transformation T : R® — R® is defined by
T (X, Xy X5) = (2%, +3X, + X5, 3%, +3X, + Xg, 2X +4X, +X;)
Show that T is invertible, and find its inverse
Sol:
The standard matrix forT
2 3 1| <« 2X 43X, +X,

A=3 3 1 < 3X, +3X, + X,
12 4 1]  <2X +4X,+X
2 3 1|1 0 O]
[A|1L]=|3 3 1/0 1 0
2 4 1/{0 0 1 o




1 0 0|-1 1 O]
28500 1 0(-1 0 1 |=[I|A"]
00 1|6 -2 -3

ThereforeT is invertible and the standard matrix forT *is A™

-1 1 O
At=l-1 0 1
6 -2 -3
-1 1 0 x| [ —=x+x, |
THV)=Av=|-1 0 1 |X|=| =X+X
6 -2 3| X | [6X —2X,—3X%;

In other words,
T_l(X]_’ X21 X3) — (_X]_ + X21 o Xl + X3’ 6X1 B 2X2 _3X3)

>k Check TY(T(2, 3,4)) =T*(17, 19, 20) = (2, 3, 4) 6.64



= The matrix of T relative to the bases B and B *.
T:V-o>W (a linear transformation)
B={v,V,,--,v.}  (anonstandard basis for V)

The coordinate matrix of any v relative to B Is denoted by [v],
o

: C
if v can be represeted as c,v, +C,V, +---+C V., then [v], =| ~

C

n

A matrix A can represent T if the result of A multiplied by a
coordinate matrix of v relative to B is a coordinate matrix of v
relative to B’, where B’ Is a basis for W. That Is,

[T(V)],. = AlV],,
where A is called the matrix of T relative to the bases B and B’
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= Transformation matrix for nonstandard bases (the
generalization of Theorem 6.10, in which standard bases are
considered) :

LetV and W be finite - dimensional vector spaces with bases B and B',
respectively, where B ={v,,v,,---,V, }

If T:V —W isa linear transformation s.t.

N d, a,
a 3 a
T = 2 Wl = =] [Tl =®
_aml_ _amz_ _amn_

then the mx n matrix whose n columns correspondto [T (v,) ],
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Tt &,
A=[T Oy [Ty - [Tv )l ]=| 2 72 7 %
_aml am2 amn_

is such that [T (v)],. = Alv], forevery vinV

»<¢The above result state that the coordinate of T(Vv) relative to the basis B’
equals the multiplication of A defined above and the coordinate of v
relative to the basis B.

»<¢ Comparing to the result in Thm. 6.10 (T(v) = Av), it can infer that the
linear transformation and the basis change can be achieved in one step
through multiplying the matrix A defined above (see the figure on 6.74
for illustration)
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= EX 5: Finding a matrix relative to nonstandard bases

Let T : R* — R? be a linear transformation defined by
T (%, %) = (% + Xy, 2X — X;)
Find the matrix of T relative to the basis B ={(1, 2), (-1, 1)}
and B'={(1, 0), (0, 1)}
Sol:
T 2)=(3,0)=3(1,0)+0(0,1)
T(-1,1)=(0,-3)=0(1,0)-3(0,1)

raal -5} ik -| %

the matrix forT relative to B and B'

A=[T@ 2] [T@2l]= {(3) —03}
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« EXG:
For the L.T. T : R* = R? given in Example 5, use the matrix A

tofind T (v),wherev =(2, 1)

Sol:
’ V= (21 1) :1(1’ 2) _1(_11 1) B :{(11 2)’ (_1’ 1)}

= [T(V)]5 = Alvs = [g —03}{—11} ) B}

=T (v)=3@0)+3(0,1) =(3,3) B'={(1,0), (0,1}

= Check:
T(2,)=(2+1,2(2)-1) =(3,3)
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= Notes:

(1) In the special case where V =W (i.e., TV > V) and B = B’
The matrix A is called the matrix of T relative to the basis B

(2) If T :V —V Is the identity transformation
B={v,,Vv,,---,v }: abasis for V
= the matrix of T relative to the basis B

10 -0
O 1 --- 0
A=[[T, [T, - Tl J=|) 0 L=
0 0 1
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Keywords in Section 6.3:

- Standard matrix for T
= composition of linear transformations
- Inverse linear transformation

« matrix of T relative to the bases B and B

« matrix of T relative to the basis B:
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6.4 Transition Matrices and Similarity

T:V-oV (a linear transformation)

B={v,,v,,--,v.} (abasisofV)
B'={w,,w,,---,w_} (abasis of V)

A=[[T], [T, - [T,

A=[[TW),. [Twy)], - [Tw,)

( matrix of T relative to B)

B,] (matrix of T relative to B')

~[TV)], =A[v],, and [T(v)].. = A'[v],

P

=— ||

p-

— ||

[[leB [w, ], - [Wn]B] ( transition matrix from B' to B)
[[vl]B, [V, ], [vn]B,] ( transition matrix from B to B")

from the definition of the transition matrix on p.254 in the

text book or on Slide 4.108 and 4.109 in the lecture notes

[V]B - P[V]B" and [V]B' - P_l [V]B
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« Two ways to get from [V]g. to [T (V) |s.:
(®) (direct): Av], =[T (V)]

(2) (indirect): PAP[V],. =[T (V)] = A'= P AP

Indirect

(Basis B)

direct 6.73



= EX 1: (Finding a matrix for a linear transformation)

Find the matrix A' forT: R* — R?
T (X, X,) = (2% —2X,, — X +3X,)

reletiveto the basis B'={(1,0), (1L 1)}

Sol:
WA'=|[TL )], [T@ D], ] )
T(L0)=(2,-1)=310)-1(1,1) = [TL0)]; = [_31
T (1, 1) — (O, 2) — _2(11 O) + 2(1’ 1) — [T (1’ 1)]8 = I:_ZZ_

= A=[T@ 0], [T(l,l)]B-]{_gl _22}
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(2) standard matrix for T (matrix of T relative to B={(1, 0), (O, 1)})

A=[TL0) TOD)=|2 72
-1 3
transition matrix fromB'to B
1 1] *Solvea(l,0)+b(0,1)=(1,0 =
P=[10)], [@D].]= {O J (a, b) = (1, 0)

3% Solve c(1, 0) +d(0,1) = (1, 1) =
.. : , (c,d)=(1,1)
transition matrix from B to B

_1} % Solve a(1, 0) + b(1, 1) = (1, 0) =

p-(la 0], (0.9, ]-|g | Lehe

% Solve ¢(1, 0) +d(1, 1) = (0, 1) =
matrix of T relative B'

(c,d)=(-1,1)
N piap 1 -1 2 -21 1] [3 -2
- 10 1-1 3|0 1] |-1 2
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« EX 2: (Finding a matrix for a linear transformation)
Let B={(-3, 2), (4, —2)}and B'={(-1, 2), (2, —2)}be basis for

.
R? and let A :{ 7} be the matrix for T : R*> — R? relative to B.

Find the matrix of T relativeto B'

Sol:
Because the specific function is unknown, it is difficult to apply
the direct method to derive 4°, so we resort to the indirect
method where 4° = P-1AP

transition matrix fromB'to B: P =[[(-1,2)|. [(2.-2)].]= B :ﬂ

. _ o ~1 2
transition matrix fromBto B: P =[[(-3,2)].. [(4,-2)]..]= -
matrix of T relative to B':

N piAp -1 2-2 73 -2] [2 1
- |1=2 3]|=3 7|2 -1| |-1 3 6.76



= EX 3: (Finding a matrix for a linear transformation)
For the linear transformation T : R* — R* given in Ex.2, find [v]_,

[T(V)],,and[T(v)]...for the vector v whose coordinate matrix is

Sol: V) = {:ﬂ

vl =pivk =3 2] 2]
Tl =k =3 7]l
Tl =P rwk=| 5 3 ol

or [T(W)]s = Alvs :{ 2 1}{_ 3} ) i 7}

6.77



« Similar matrix :

= For square matrices A and A’ of order n, A’ is said to be similar
to A if there exist an invertible matrix P s.t. 4°’=P-*AP

= Theorem 6.13: (Properties of similar matrices)
Let A, B, and C be square matrices of order n.
Then the following properties are true.
(1) Ais similar to A
(2) If Ais similar to B, then B is similar to A
(3) If A'is similar to B and B is similar to C, then A is similar to C

Pf for (1) and (2) (the proof of (3) is left in Exercise 23):
(1) A=1_Al_ (the transition matrix from Ato Aisthel.)

(2) A=P'BP = PAP'=P(P'BP)P! = PAP'=B
= Q'AQ =B (bydefining Q=P™), thus B is similar to A
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= EX 4: (Similar matrices)

2 -2 3 -2 .
(a)A= and A'= are similar
-1 3 2

1 1
because A'= P AP, where P = {O J

-2 7 2 1
(b)A= and A'= are similar
3 7 3

3 -2
because A'= P*AP, where P = L J
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« Ex 5: (A comparison of two matrices for a linear transformation)

Suppose A=

to the standard basis. Find the matrix for T relative to the basis
B'={(1, 1 0), (1, -1, 0), (O, 0, 1)}

Sol:

13 0
3 1 0
00 -2

is the matrix for T : R® — R° relative

The transition matrix from B' to the standard matrix

P=[[LL0)], [L-10)], [(0,0D]]=

= P~ =

O Nk -

N~

N~

— O O

11 0
1 -1 0
0 0 1
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matrix of T relativeto B':

L 1 0ff1 3 off]1 1 0
A'=PT'AP=/1 -1 0[|3 1 0 -1 0
0 0 1][0 0 -2J|0 0 1]
4 0 O] L o
(4’1s a diagonal matrix, which is
=10 -2 0 simple and with some
0 0 =2 computational advantages)

°<¢ You have seen that the standard matrix for a linear
transformation 7:J —J depends on the basis used for V.
What choice of basis will make the standard matrix for T as

simple as possible? This case shows that it is not always

the standard basis.
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= Notes: Diagonal matrices have many computational advantages
over nondiagonal ones (it will be used in the next chapter)

'd, 0 -~ 0]
0 d, -~ 0
forD= . ° . .
_0 o ... dn_

dX 0 0

0 0 - d]

_d_ll 0 0

L 0 é . 0

@D = . . .| &=0

1
0 0 - & 6.2



Keywords in Section 6.4:

- matrix of T relative to B
- matrix of T relative to B'
= transition matrix from B' to B
= transition matrix from B to B'

« SImilar matrix
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6.5 Applications of Linear Transformation

= The geometry of linear transformation in the plane (p.407-p.110)
= Reflection in x-axis, y-axis, and y=x
= Horizontal and vertical expansion and contraction
= Horizontal and vertical shear

= Computer graphics (to produce any desired angle of view of a 3-
D figure)
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