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1) (10 p.ts) Solve the following integral ∫ √
x cos

√
xdx

Applying the substitution t =
√
x, for which x = t2, and dx = 2tdt, we get∫ √

x cos
√
xdx = 2

∫
t2 cos tdt.

Hence we can apply integration by parts to the last integral∫ √
x cos

√
xdx = 2

∫
t2 cos tdt = 2

(
t2 sin t− 2

∫
t sin tdt

)
= 2
[
t2 sin t− 2

(
− t cos t+

∫
cos tdt

)]
= 2
[
t2 sin t− 2

(
− t cos t+ sin t

)]
+ c

= 2x sinx+ 4
√
x cos

√
x− 4 sin

√
x+ c



2) (10 p.ts) Given the following linear system{ 2x+ 3y = 1
−kx+ y = −1
x− y = k

discuss and find solutions as k changes.

To apply Rouché Capelli let us analyze the rank of incomplete and complete matrices

A =

 2 3
−k 1
1 −1

 , A|b =

 2 3 1
−k 1 −1
1 −1 k


As rkA|b = 3 if detA|b 6= 0 and

detA|b = 2k − 3 + k − 1− 2 + 3k2 = 3k2 + 3k − 6 = 3(k2 + k − 2) = 3(k − 1)(k + 2)

we get that detA|b 6= 0 if k 6= 1 and k 6= −2. Moreover rkA ≤ 2, hence surely if k 6= 1 and k 6= −2,
rkA|b = 3 and rkA ≤ 2, hence the two ranks are different and the system is incompatible.
Let us analyze the two different cases, k = 1 and k = −2.
If k = 1

A =

 2 3
−1 1
1 −1

 , A|b =

 2 3 1
−1 1 −1
1 −1 1


Notice that the number of variables is n = 2 and rkA = rkA|b = 2, hence the number of solutions is
∞(2−2) =∞0 = 1 solution,that is given by solving the following equivalent system{

2x+ 3y = 1
−x+ y = −1

whose solution is (
x = 4

5

y = −1
5

)
,

If k = −2

A =

 2 3
2 1
1 −1

 , A|b =

 2 3 1
2 1 −1
1 −1 2


the system is compatible as rkA = rkA|b = 2, and as n = 2 and rkA = rkA|b = 2, hence the number
of solutions is ∞(2−2) =∞0 = 1 solution. If I consider the following order 2 submatrix

M =

(
2 3
2 1

)
the equivalent system that gives me the solution is{

2x+ 3y = 1
2x+ y = −1

whose solution is (
x = −1
y = 1

)
,



3) (10 p.ts) Find max/min of the following function

f(x, y) = xy

subject to the following constraint
x2 + y2 = 2

The Lagrangian of the problem is

L(x, y, λ) = xy − λ(x2 + y2 − 2)

Let us calculate the points for which the gradient of the Lagrangian is null

{ Lx = y − 2λx = 0
Ly = y − 2λy = 0
Lλ = −(x2 + y2 − 2) = 0

hence all the possible combinations that solve the previous system are (−1, 1,−1
2
), (1,−1,−1

2
),

(−1,−1, 1
2
), (1, 1, 1

2
). To evaluate the nature of these points let us calculate the Bordered Hessian

matrix

H(x, y, λ) =

 0 2x 2y
2x −2λ 1
2y 1 −2λ


whose determinant is |H(x, y, λ)| = 8xy + 8λy2 + 8λx2.
Let us analyze each single point:

� (−1, 1,−1
2
) is such that |H(−1, 1,−1

2
)| = −16 < 0, hence it is a local minimum

� (1,−1,−1
2
) is such that |H(1,−1,−1

2
)| = −16 < 0, hence it is a local minimum

� (1, 1, 1
2
) is such that |H(1, 1, 1

2
)| = 16 > 0, hence it is a local maximum

� (−1,−1, 1
2
) is such that |H(−1,−1, 1

2
)| = 16 > 0, hence the point is a local maximum.


