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1 Logarithm and exponential.

1. Find the domain of
f (x) = log10

(
x4 − 4x2 + 1

)
.

Hint:
√

2−
√

3 ≈ 0.51 <
√

2 +
√

3 ≈ 1.93.

Solution: We have to find the x such that

x4 − 4x2 + 1 > 0.

To solve the inequality, we lower the degree defining t = x2

t2 − 4 t + 1 > 0.

The solutions of t2 − 4 t + 1 = 0 are

t1,2 =
4±
√

16− 4

2
=

4±
√

12

2
=

4± 2
√

3

2
= 2±

√
3.

Whence
t2 − 4 t + 1 > 0⇔ t < 2−

√
3 or t > 2 +

√
3

Going back to the original x we have

t < 2−
√

3⇔ x2 < 2−
√

3⇔ x ∈
(
−
√

2−
√

3,+

√
2−
√

3

)
and

t > 2 +
√

3⇔ x2 > 2 +
√

3⇔ x ∈
(
−∞,−

√
2 +
√

3

)
∪
(

+

√
2 +
√

3,+∞
)
.

In summary the domain is

D =

(
−∞,−

√
2 +
√

3

)
∪
(
−
√

2−
√

3,+

√
2−
√

3

)
∪
(

+

√
2 +
√

3,+∞
)

2. Find the domain of the function

f (x) =
1

2x − 1
.

Solution: We have to impose

2x − 1 6= 0⇔ 2x 6= 1⇔ 2x 6= 20 ⇔ x 6= 0.

Whence
D = R \ {0}
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3. Find the domain and study the sign of the function

f (x) = log 1
3

(
1− x4

)
.

Solution: to find the domain we have to impose

1− x4 > 0⇔ x4 < 1

Again put t2 = x to have
t2 < 1⇔ t ∈ (−1, 1)

which means
x2 ∈ (−1, 1) ,

but x2 > −1 is always verified, so the previous condition is equivalent to

x2 < 1⇔ x ∈ (−1, 1) .

Whence the domain is
D = (−1, 1) .

Since the base of the logarithm is < 1 the function is positive if and only if

1− x4 ≤ 1⇔ −x4 ≤ 0,

so we can conclude that
f (x) ≥ 0∀x ∈ D

and f (x) = 0 if and only if x = 0.

4. Solve the inequality
log7 (x) > 2.

Solution. The condition
log7 (x) > 2.

is verified if and only if
7log7(x) > 72 = 49

which is equivalent to
x > 49.

2 Using the Principle of Induction, show that:

For all n ∈ N

P: 1 + 3 + 32 + ... + 3(n−1) =
(3n − 1)

2

For n = 1, is verified. Now, let P (k) be true for some positive integer k,

1 + 3 + 32 + ... + 3(k−1) =
(3k − 1)

2
,
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now prove that P (k + 1) is true. Consider

1 + 3 + 32 + . . . + 3k−1 + 3k =
(3k − 1)

2
+ 3k

=
(3k − 1) + (2)(3k)

2

=
(1 + 2)3k − 1

2

=
(3)3k − 1

2

=
3k+1 − 1

2

Thus, P (k + 1) is true whenever P (k) is true using all the natural numbers.

For all n ∈ N

P: 13 + 23 + 33 + ... + n3 =
(n(n + 1)

2

)2
For n = 1 is verified. Now, let P (k) be true for some positive integer k,

13 + 23 + 33 + ... + k3 =
(k(k + 1)

2

)2
,

now prove that P (k + 1) is true. Consider

13 + 23 + 33 + ... + k3 + (k + 1)3 =
(k(k + 1)

2

)2
+ (k + 1)3

=
(k2(k + 1)2

4

)
+ (k + 1)3

=
(k2(k + 1)2 + 4(k + 1)3

4

)
=
((k + 1)2[k2 + 4(k + 1)]

4

)
=
((k + 1)2[k2 + 4k + 4]

4

)
=
((k + 1)2(k + 2)2

4

)
=
((k + 1)2(k + 1 + 1)2

4

)
=
((k + 1)(k + 1 + 1)

2

)2

Thus, P (k + 1) is true whenever P (k) is true using all the natural numbers.
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For all n ∈ N

P: (1 ∗ 2) + (2 ∗ 3) + (3 ∗ 4) + ... + n ∗ (n + 1) =
[n(n + 1)(n + 2)

3

]
For n = 1 is verified. Now, let P (k) be true for some positive integer k,

(1 ∗ 2) + (2 ∗ 3) + (3 ∗ 4) + ... + k ∗ (k + 1) =
[k(k + 1)(k + 2)

3

]
,

now prove that P (k + 1) is true. Consider

(1 ∗ 2) + (2 ∗ 3) + (3 ∗ 4) + ... + k ∗ (k + 1) + (k + 1) ∗ (k + 2) =
k(k + 1)(k + 2)

3
+ (k + 1)(k + 2)

=
k(k + 1)(k + 2) + 3(k + 1)(k + 2)

3

=
(k + 1)(k + 2)(k + 3)

3

=
(k + 1)((k + 1) + 1)((k + 1) + 2)

3

Thus, P (k + 1) is true whenever P (k) is true using all the natural numbers.



5

For all n ∈ N

P: 1 +
1

(1 + 2)
+

1

(1 + 2 + 3)
+ ... +

1

(1 + 2 + 3 + ...n)
=

2n

(n + 1)

For n = 1 is verified. Now, let P (k) be true for some positive integer k,

1 +
1

(1 + 2)
+

1

(1 + 2 + 3)
+ ... +

1

(1 + 2 + 3 + ...k)
=

2k

(k + 1)
,

now prove that P (k + 1) is true. Consider

= 1 +
1

(1 + 2)
+

1

(1 + 2 + 3)
+ ... +

1

(1 + 2 + 3 + ...k)
+

1

(1 + 2 + 3 + ...k + (k + 1))

=
2k

(k + 1)
+

1

(1 + 2 + 3 + ... + k + (k + 1))

=
2k

(k + 1)
+

1
(k+1)(k+1+1)

2

=
2k

(k + 1)
+

2

(k + 1)(k + 2)

=
k

(k + 1)

(
k +

1

(k + 2)

)
=

2

(k + 1)

(k(k + 2) + 1

(k + 2)

)
=

2

(k + 1)

(k2 + 2k + 1

(k + 2)

)
=

2(k + 1)2

(k + 1)(k + 2)

=
2(k + 1)

(k + 2)

=
2(k + 1)

((k + 1) + 1)

Thus, P (k + 1) is true whenever P (k) is true using all the natural numbers.
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3 Compute each of the following limits:

lim
n→∞

n2(2n + 1)(3n− 2)

2n2(5n− 8)(n + 6)
=

n2[6n2 − n− 3]

2n2[5n2 + 22n− 48]
=

6n4 − n3 − 3

10n4 + 44n3 − 96
=

6n4

n4 − n3

n4 − 3
n4

10n4

n4 + 44n3

n4 − 96
n4

=
6− 1

n −
3
n4

10 + 44
n −

96
n4

=
6

10
=

3

5

lim
n→∞

( n3

2n2 − 1
− n2

2n + 1

)
=

n3(2n + 1)− n2(2n2 − 1)

(2n2 − 1)(2n + 1)
=

2n4 + n3 − 2n4 + n2

4n3 + 2n2 − 2n− 1
=

n3 + n2

4n3 + 2n2 − 2n− 1

=
n3

n3 + n2

n3

4n3

n3 + 2n2

n3 − 2n
n3 − 1

n3

=
1 + 1

n

4 + 2
n −

2
n2 − 1

n3

=
1

4

lim
n→∞

√
n2 + n− n =

(√
n2 + n− n

)(√
n2 + n + n

)
√
n2 + n + n

=
(
√
n2 + n)2 + n

√
n2 + n− n

√
n2 + n− n2

√
n2 + n + n

=
n2 + n− n2

√
n2 + n + n

=
n√

n2 + n + n
=

n√
n2(n

2

n2 + n
n2 ) + n

=
1√

1 + 1
n + 1

=
1

2

lim
n→∞

4n2 + n6

1− 5n3
=

4n2

n3 + n6

n3

1
n3 − 5n3

n3

=
4
n + n3

1
n3 − 5

= −∞

lim
n→∞

2n4 − n2 + 8n

−5n4 + 7
=

2n4

n4 − n2

n4 + 8n
n4

−5n4

n4 + 7
n4

=
2− 1

n2 + 8
n3

−5 + 7
n4

= −2
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