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Operations with limits

Theorem

Let (sn)n∈N and (qn)n∈N be two sequences with sn → ℓ and qn → ℓ′, ℓ, ℓ′ ∈ R
(finite numbers). Then:

• sn + qn → ℓ+ ℓ′

• sn − qn → ℓ− ℓ′

• sn · qn → ℓ · ℓ′.
• if ℓ′ ̸= 0, then sn

qn
→ ℓ

ℓ′ .

Moreover,

• If sn → +∞ and qn → +∞, then sn + qn → +∞ and sn · qn → +∞.

• If sn → −∞ and qn → −∞, then sn + qn → −∞ and sn · qn → +∞.

• If sn → +∞ and qn → −∞, then sn · qn → −∞.
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“Practical” rules

Theorem

Let (sn)n∈N and (qn)n∈N be two sequences. The following relations hold:

• If sn → +∞ and qn → +∞ then sn · qn → +∞
• If sn → +∞ and qn → +∞ then sn + qn → +∞
• If sn → −∞ and qn → −∞ then sn · qn → +∞
• If sn → −∞ and qn → −∞ then sn + qn → −∞
• If sn → +∞ and qn → −∞ then sn · qn → −∞

• If sn → ℓ, ℓ ̸= 0 and qn → +∞ then sn · qn →
{

+∞ if ℓ > 0
−∞ if ℓ < 0

• If sn → ℓ, ℓ ̸= 0 and qn → −∞ then sn · qn →
{

−∞ if ℓ > 0
+∞ if ℓ < 0
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Undetermined forms

There are cases that are not covered by these rules.
These cases are called Undetermined forms

Definition

We call undetermined forms expressions of type

∞−∞,
∞
∞

, 0 · ∞,

∞0, 00, 1∞,
0

0

The result of an undetermined form cannot be guesses a-priori, but can be
computed by applying

• suitable operations

• notable limits
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Undetermined forms

Compute the following limit
lim

n→∞
(n2 − n)

Solution

We have an indeterminate form +∞−∞.

To find the limit, we put in evidence the highest power:

lim
n→∞

n2 − n = lim
n→∞

n2︸︷︷︸
→+∞

→1︷ ︸︸ ︷(
1− 1

n

)
= +∞
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Undetermined forms

Compute the following limit

lim
n→∞

(√
n2 + n − n

)
Solution

We have
√
n2 + n → +∞ so the limit is of the form +∞−∞ and is

undetermined.

To solve it, we use the following trick:

limn→∞

(√
n2 + n − n

)
= lim

n→∞

(√
n2 + n − n

)(√
n2 + n + n

)
√
n2 + n + n

= limn→∞
n2+n−n2√
n2+n+n

= lim
n→∞

n√
n2 + n + n

= limn→∞
n

n
(√

1+ 1
n+1

) = lim
n→∞

1(√
1 + 1

n + 1
) =

1

2
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Undetermined forms

Compute the following limit

lim
n→∞

3n7 − 8n6 + 15n3 − 10n

12n − 4n7

Solution

Putting in evidence the highest power at the numerator and at the denominator:

lim
n→∞

3n7 − 8n6 + 15n3 − 10n

12n − 4n7
= lim

n→∞

n7
(
3− 8n−1 + 15n−4 − 10n−6

)
n7 (12n−6 − 4)

= lim
n→∞

(
3− 8

(
1
n

)
+ 15

(
1
n

)4 − 10
(
1
n

)6)(
12
(
1
n

)6 − 4
)

The terms in 1/n tend to zero. Thus, we have:

lim
n→∞

3n7 − 8n6 + 15n3 − 10n

12n − 4n7
= −3

4
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Notable limits

Theorem

Let a ∈ R, a ̸= 1. Then:

lim
n→∞

an =


0 if |a| < 1

+∞ if a > 1

∄ if a ≤ −1

Notice that for the case a = −1 we obtain the well known limit

lim
n→+∞

(−1)n

which does not exist!
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Examples

Consider the sequence (sn)n∈N with sn = 2n.

Then,
lim

n→∞
2n = +∞

Exercise Prove the above limit using the definition.
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Examples

Consider the sequences (sn)n∈N with sn =
(
1
2

)n
and (pn)n∈N with pn =

(
− 1

2

)n
.

Figure: sn =
(
1
2

)n
Figure: pn =

(
− 1

2

)n
Then, we get that

lim
n→∞

(
1

2

)n

= 0 and lim
n→∞

(
−1

2

)n

= 0

Exercise Prove the first limit using the definition and the second limit using the
Absolute Value Theorem.

10 / 42



Examples

Consider the sequences (sn)n∈N with sn = (−2)n .

Then, we get that
∄ lim

n→∞
(−2)n

Exercise Prove that the above limit does not exist using
the Theorem of Subsequences.
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The factorial

Definition

Let n ∈ N. The factorial is defined as:

n! = 1 · 2 · 3 · . . . · (n − 1) · n

and 0! = 1

Examples

• 1! = 1

• 2! = 1 · 2 = 2

• 3! = 1 · 2 · 3 = 6

• 4! = 1 · 2 · 3 · 4 = 24

• 5! = 1 · 2 · 3 · 4 · 5 = 120
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Notable limits, cont’d

The following notable limits hold:

• ∀b > 0, a > 1 limn→∞
loga(n)

nb
= 0

• ∀b > 0 and a > 1, limn→∞
nb

an = 0

• ∀a > 1, limn→∞
an

n! = 0

• limn→∞
n!
nn = 0

Note that the above results imply:

• ∀b > 0, a > 1 limn→∞
nb

loga(n)
= limn→∞

1
loga(n)

nb

= +∞

• ∀b > 0 and a > 1, limn→∞
an

nb
= limn→∞

1
nb

an

= +∞

• ∀a > 1, limn→∞
n!
an = limn→∞

1
an

n!

= +∞

• limn→∞
nn

n! = limn→∞
1
n!
nn

= +∞
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Notable limits, cont’d

The above results can be interpreted in terms of “speed” of divergence:

• limn→∞
loga(n)

nb
= 0 ⇒ The power diverges faster than the logarithm

• limn→∞
nb

an = 0 ⇒ The exponential diverges faster than the power

• limn→∞
an

n! = 0 ⇒ The factorial diverges faster than the exponential

• limn→∞
n!
nn = 0 ⇒ nn diverges faster than the factorial

At +∞ we have the following ”hierarchy of infinity”

log(n) < 3
√
n <

√
n < n < n2 < n3 < · · · < 2n < en < 3n < · · · < n! < nn
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Examples

• an = log(n)

• bn =
√
n

• cn = n
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Examples

• an = n

• bn = n2
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log(𝑛) 𝑛 𝑛 𝑛2 2𝑛 𝑛!
0 1 1 1 2 1

0,69 1,41 2 4 4 2

1,09 1,73 3 9 8 6

1,38 2 4 16 16 24

1,60 2,23 5 25 32 120

1,79 2,44 6 36 64 720

1,94 2,64 7 49 128 5040

2,07 2,82 8 64 256 40320

2,19 3 9 81 512 362880

2,30 3,16 10 100 1024 3628800

2,39 3,31 11 121 2048 39916800

2,48 3,46 12 144 4096 4,79E+08

2,56 3,60 13 169 8192 6,23E+09

2,63 3,74 14 196 16384 8,72E+10

2,70 3,87 15 225 32768 1,31E+12

2,77 4 16 256 65536 2,09E+13

2,83 4,12 17 289 131072 3,56E+14

2,89 4,24 18 324 262144 6,4E+15

2,94 4,35 19 361 524288 1,22E+17

2,99 4,47 20 400 1048576 2,43E+18



Examples, cont’d

Examples

lim
n→∞

3n + log2(n)

n!
= lim

n→∞

3n

n!

1 +

→0︷ ︸︸ ︷
log2(n)

3n

 = 0

lim
n→∞

n
1
10

log2(n
100)

= lim
n→∞

1

100

→+∞︷ ︸︸ ︷
n

1
10

log2(n)
= +∞

lim
n→∞

n! + n200000

nn
=

n!

nn

1 +

→0︷ ︸︸ ︷
n200000

n!

 = 0

Put always in evidence the term diverging faster!
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The notable limit: limn→∞ n sin
(
1
n

)
Theorem

lim
n→∞

n sin

(
1

n

)
= 1

Proof The proof is divided in two parts:

• Part 1: we use the key inequality and the comparison theorem to prove

show that lim
n→∞

n sin

(
1

n

)
= 1

• Part 2: We prove the key inequality
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Part 1: the Comparison Theorem

Let sn = n sin
(
1
n

)
. By the key inequality we get that

cos

(
1

n

)
≤ n sin

(
1

n

)
≤ 1

(See also the plot in the next slide. )

Now, let an = cos
(
1
n

)
and bn = 1. Then,

lim
n→∞

an = lim
n→∞

cos

(
1

n

)
= cos(0) = 1

lim
n→∞

bn = 1

Then by the Comparison Theorem, limn→∞ sn = limn→∞ n sin
(
1
n

)
= 1
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Part 1: the Comparison Theorem

• Green sequence bn = 1

• Orange sequence sn = n sin
(
1
n

)
• Blue sequence an = cos

(
1
n

)
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Part 2: The key inequality cos
(
1
n

)
≤ n sin

(
1
n

)
≤ 1

For small angles θ, the length of the arc
⌢

PA is between the length of segments
PH and BA:

PH ≤
⌢

PA ≤ BA

sin(θ) ≤ θ ≤ tan(θ)
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Part 2: The key inequality cos
(
1
n

)
≤ n sin

(
1
n

)
≤ 1

Dividing all members by sin(θ) leads to

1 ≤ θ

sin(θ)
≤ 1

cos(θ)

Taking the reciprocals we obtain

cos(θ) ≤ sin(θ)

θ
≤ 1

Finally, we set θ = 1
n and get

cos

(
1

n

)
≤ n sin

(
1

n

)
≤ 1

This concludes the proof.
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Notable limits that follow from limn→∞ n sin
(
1
n

)

• lim
n→∞

n sin

(
1

n

)
= 1

• lim
n→∞

n2
(
1− cos

(
1

n

))
=

1

2

• If sn → +∞, then lim
n→∞

sn sin

(
1

sn

)
= 1

• If sn → +∞, then lim
n→∞

(sn)
2

(
1− cos

(
1

sn

))
=

1

2
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Examples

lim
n→∞

n sin

(
5

n

)
Let an = n

5 . Then an → +∞. Therefore we can multiply/divide by 5 the whole
sequence and get

lim
n→∞

n sin

(
5

n

)
= lim

n→∞
5
n

5
sin

(
1
n
5

)
= 5 · 1 = 5
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Examples

lim
n→∞

n2 sin

(
1

n2 + n

)
Let an = n2 + n. Then an → +∞. Therefore we can multiply/divide by n2 + n
the whole sequence and get

lim
n→∞

n sin

(
1

n2 + n

)
= lim

n→∞

n2

n2 + n︸ ︷︷ ︸
1

1︷ ︸︸ ︷
(n2 + n) sin

(
1

n2 + n

)
= 1

25 / 42



Examples

lim
n→∞

n3
(
1− cos

(
2

n2

))
Let an = n2

2 . Then an → +∞. Therefore we can multiply/divide by (an)
2 = n4

4
the whole sequence and get

lim
n→∞

n3

(
1− cos

(
1
n2

2

))
= lim

n→∞

4n3

n4︸︷︷︸
0

1
2︷ ︸︸ ︷

n4

4

(
1− cos

(
1
n2

2

))
= 0
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Increasing/Decreasing sequences

Definition

A sequence (sn)n∈N is said to be

• strictly increasing if sn < sn+1 for all n.

• increasing if sn ≤ sn+1 for all n.

• strictly decreasing if sn > sn+1 for all n.

• decreasing if sn ≥ sn+1 for all n.

Theorem

(i) Let (sn)n∈N be increasing. Then sn → ℓ if and only if ∃A ∈ R such that
sn ≤ A, for all n.

(ii) Let (sn)n∈N be decreasing. Then sn → ℓ if and only if ∃B ∈ R such that
sn ≥ B, for all n.
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Exercise

Exercise 1
The sequence (sn)n∈N with sn = n3 + 3n is strictly increasing.

Solution: We will show that sn+1 > sn for all n

sn+1 = (n + 1)3 + 3(n + 1) = n3 + 3n︸ ︷︷ ︸
sn

+3n2 + 1 + 3n + 3

= sn + 3n2 + 3n + 4 > sn

Exercise 2
The sequence (sn)n∈N with sn = e−n+1 is strictly decreasing.

Solution: We will show that sn+1 < sn for all n

sn+1 = e−(n+1)+1 = e−n+1︸ ︷︷ ︸
sn

·e−1

=
sn
e

< sn
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The Euler sequence

Definition

The sequence (sn)n∈N with

sn =

(
1 +

1

n

)n

is called the Euler sequence.

Theorem

lim
n→∞

(
1 +

1

n

)n

= e,

where e is the Euler’s (or Neper’s) number.
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The Euler sequence

Figure: Euler Sequence (blue), boundary values: lower bound (orange) and upper bound
(green)
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Sequences: the Euler sequence

Intuitive proof

1 s1 = 2

2 sn < sn+1 for all n, i.e. Euler sequence is (strictly) increasing

(see the plot in the previous slide. For curiosity: a rigorous proof is given
in the Lecture Notes).

3 sn < 3 for all n, i.e. Euler sequence is bounded from above

By properties 2 and 3, the sequence is

Increasing and bounded from above ⇒ There exists lim
n→∞

(
1 +

1

n

)n

.

We call lim
n→∞

(
1 +

1

n

)n

= e

Moreover, since the sequence is strictly increasing and its first value is 2 (see
property 1), then we get that 2 < e < 3.

The number e is called the Euler’s number or Neper’s number.
31 / 42



Notable limits that derive from the Euler sequence

• lim
n→∞

(
1 +

1

n

)n

= e

• lim
n→∞

n log

(
1 +

1

n

)
= 1

• lim
n→∞

n
(
e

1
n − 1

)
• If sn → +∞, then lim

n→∞

(
1 +

1

sn

)sn

= e

• If sn → +∞, then lim
n→∞

sn log

(
1 +

1

sn

)
= 1

• lim
n→∞

sn
(
e

1
sn − 1

)
= 1
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The Euler sequence

Exercise Compute

lim
n→∞

(
1 +

7

n2

)n2

.

Solution

lim
n→∞

(
1 +

7

n2

)n2

= lim
n→∞

(
1 +

1
n2

7

)n2

= lim
n→∞

(
1 +

1
n2

7

) n2

7 7

= lim
n→∞


(
1 +

1
n2

7

) n2

7

︸ ︷︷ ︸
e


7

= e7
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The Euler sequence

Exercise Compute

lim
n→∞

(
n + 1

n − 1

)n

.

Solution

lim
n→∞

(
n + 1

n − 1

)n

= lim
n→∞

(
1 +

2

n − 1

)n

= lim
n→∞

(
1 +

1
n−1
2

)n· n−1
2

2
n−1

= lim
n→∞


(
1 +

1
n−1
2

) n−1
2

︸ ︷︷ ︸
e



2︷ ︸︸ ︷
2n

n − 1

= e2
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The Euler sequence

Exercise Compute

lim
n→∞

(n − 1) log

(
2n + 7

2n + 1

)
.

Solution

lim
n→∞

(n − 1) log

(
2n + 7

2n + 1

)
= lim

n→∞
(n − 1) log

(
1 +

6

2n + 1

)
= lim

n→∞
(n − 1) log

(
1 +

1
2n+1
6

)

= lim
n→∞

(n − 1)
2n + 1

6

6

2n + 1
log

(
1 +

1
2n+1
6

)

= lim
n→∞

3︷ ︸︸ ︷
6(n − 1)

2n + 1

2n + 1

6
log

(
1 +

1
2n+1
6

)
︸ ︷︷ ︸

1

= 3
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The Geometric sum

Let x ∈ R and consider the following sum:

Sn(x) = 1 + x + x2 + x3 + · · ·+ xn

Sn(x) can be re-written using the “summation” symbol:

Sn(x) =
n∑

k=0

xk

The above sum is called Geometric sum.

Examples

• S10
(
1
2

)
= 1 + 1

2 +
(
1
2

)2
+
(
1
2

)3
+ · · ·+

(
1
2

)10
• S5(3) = 1 + 3 + 32 + 33 + · · ·+ 35

Question: What is the result of this sum?
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The Geometric sum

Theorem

For all x ̸= 1

Sn(x) =
n∑

k=0

xk =
1− xn+1

1− x

For x = 1 we get that Sn(1) = n + 1
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The Geometric sum

Proof If x = 1, then we get that Sn(1) = 1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
(n+1) times

= n + 1

Now, suppose that x ̸= 1. Recall that:

Sn(x) = 1 + x + x2 + x3 + · · ·+ xn

and consider also the quantity xSn(x):

xSn(x) = x + x2 + x3 + x4 + · · ·+ xn+1

Now, take the difference Sn(x)− xSn(x):

xSn(x)− xSn(x) = 1 + �x +��x
2 +��x

3 + · · ·+��xn − �x −��x
2 −��x

3 · · · −��xn − xn+1

= 1− xn+1

Therefore:

Sn(x)(1− x) = 1− xn+1 ⇒ Sn(x) =
1− xn+1

1− x
,

which concludes the proof.
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The Geometric sum: examples

Examples

• Compute:

S10

(
1

2

)
=

10∑
k=0

(
1

2

)k

Solution In this case, x = 1
2 and n = 10. Thus:

S10

(
1

2

)
=

1−
(
1
2

)10+1

1− 1
2

= 2

(
1−

(
1

2

)11
)

∼ 1.9990234375

• Compute:

S5(3) =
5∑

k=0

3k

Solution In this case, x = 3 and n = 5. Thus:

S5(3) =
1− 35+1

1− 3
=

1− 36

−2
=

36 − 1

2
= 364
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The Geometric series

Definition

If limn→∞ Sn(x) exists and it is finite we call

S(x) = lim
n→∞

Sn(x) =
∞∑
k=0

xk .

The quantity S(x) is called the Geometric series.

Theorem

S(x) =
∞∑
k=0

xk =


1

1−x if − 1 < x < 1

+∞ if x ≥ 1

∄ if x ≤ −1
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The Geometric series

Proof
Using the result on the geometric sum we have:

S(x) = lim
n→∞

Sn(x) = lim
n→∞

1− xn+1

1− x
= lim

n→∞

1− xnx

1− x

To compute this limit we recall that x ∈ R, x ̸= 1,

lim
n→∞

xn =


0 if |x | < 1

+∞ if x > 1

∄ if x ≤ −1

Then plugging this result into the limit on the top line we get

lim
n→∞

1− xnx

1− x
=


1

1−x if − 1 < x < 1

+∞ if x > 1

∄ if x ≤ −1

Finally, if x = 1, S(1) = limn→∞ Sn(1) = limn→∞ n + 1 = +∞
This completes the proof.
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The Geometric series: examples

Examples

∞∑
k=0

(
1

2

)k

=
1

1− 1
2

= 2

∞∑
k=0

(
−1

2

)k

=
1

1−
(
− 1

2

) =
2

3

∞∑
k=0

2k = +∞

∞∑
k=0

(−2)k = ∄
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