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Operations with limits

Let (sn)nen and (gn)nen be two sequences with s, — ¢ and q, — ¥/, ¢, € R
(finite numbers). Then:

e 5, +q, L+
® 5, —q,—~ LV
® s.-q,—> L1,
e f¢ #£0, then%%%.
Moreover,
® |/fs, — +oo and q, — +oo, then s, + g, — +o0 and s, - g, — +00.
® |fs,— —o0 and q, — —o0, then s, + q, — —o0 and s, - q, — +00.

® |fs, — +o0 and q, — —o0, then s, - q, — —o0.
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“Practical” rules

Let (sn)nen and (gn)nen be two sequences. The following relations hold:

® |/fs,— +oo and q, — +oo then s, - g, — 400
® |fs, — +oo and g, — +oo then s, + q, — +0
® |fs,— —o0 and q, — —oo then s, - g, — +00
® |fs,— —o0 and q, — —oo then s, + q, — —o©

® |/fs,— +oo and q, — —o0 then s, - g, — —00

+oo ifl>0
°Ifs,,%ﬁ,ﬂ;réOandq,,%Jroothens,,~q,,%{_OO 0 <0
-0 if¢>0
0Ifs,,—)E,K;AOandq,,—)—oothens,,-q,,—>{+oo 0 <0
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Undetermined forms

There are cases that are not covered by these rules.
These cases are called Undetermined forms

We call undetermined forms expressions of type

The result of an undetermined form cannot be guesses a-priori, but can be
computed by applying

® suitable operations

® notable limits
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Undetermined forms

Compute the following limit

Jin (7

Solution
We have an indeterminate form 400 — .

To find the limit, we put in evidence the highest power:

-1
1
lim n” —n = lim n? <l—> =400
n—oo n—o00 S~~~ n
—>400
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Undetermined forms

Compute the following limit

lim (\/n2+nf n)

n—oo

Solution

We have v'n?2 +n — 400 so the limit is of the form 400 — co and is
undetermined.

To solve it, we use the following trick:

(\/m—n> (\/m—kn)

limp—eo (\/ n?+n— n) = lim

n—00 vni+n+n
— i "2+n—”2 —
= lim —L - = |lim —1 *1
=1Imj_s— n( 1+%+1) B nLOO ( 1 +1 + 1) 2
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Undetermined forms

Compute the following limit

! 3n” —8n® + 1513 — 10n
e 12n — 4n7

Solution

Putting in evidence the highest power at the numerator and at the denominator:

i 307 —8n°+15n° —10n .o (3—8n7!+15n* —10n~°)
0o 12n — 4n” - A n’ (12n=6 — 4)

L (es@ ) -06))

T e

The terms in 1/n tend to zero. Thus, we have:

y 3n” —8n% + 15n% — 10n 3
im =_z
n—00 12n — 4n7 4
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Notable limits

Let ae R, a# 1. Then:

0 ifla] <1
lim a" = ¢ +00 ifa>1
n—oo X
7 ifa<—1
Notice that for the case a = —1 we obtain the well known limit
; _1\n
Aol

which does not exist!
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Examples

Consider the sequence (s,)nen With s, = 2.
1200000
1000000
800000
600000
400000
200000

0l oo 00000000000
0 5 10 15 20

Then,

lim 2" = 400
n—00

Exercise Prove the above limit using the definition.

9/42



Consider the sequences (s,)nen With s, = (%)n and (pn)nen with p, = (f%)" :

.
0 ® g0 000000000000
o ! 10 15 20

®e
0 o0 00000000000
o 5 10 15 20 -0,6

Figure: s, = (%)n Figure: pp, = (—%)"

Then, we get that

. 1\" . 1\"
Jim (2) =0 and  lim (—2> =0

Exercise Prove the first limit using the definition and the second limit using the

Absolute Value Theorem.
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Examples

1 . n
Consider the sequences (s,)nen With s, = (=2)" . n e
2 4
3 -8
4 16
1200000 : =
1000000 L] 6 64
800000 7 -128
600000 8 256
400000 9 -512
° 10 1024

200000
..  ©® 1|  -2048
0 o 0 0 0 00060 00 0 00 ®
5 10 15 ° 20 12 4096
200000 13 8192
400000 14| 16384
4600000 e 15| -32768
-800000 16 65536
17| -131072
18| 262144
Then, we get that 19| 524288
. n 20| 1048576
2 lim (=2) 21| -2097152
n—o0o

Exercise Prove that the above limit does not exist using

the Theorem of Subsequences.
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The factorial

Definition
Let n € N. The factorial is defined as:

n=1.2-3-...-(n=1)-n
and 0! =1

Examples

e 11=1

e 21=1.2=2

e 31=1.2.3=6

e 41=1.2.3-4=24
5/=1-2-3.4.5=120
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Notable limits, cont'd

The following notable limits hold:

e Vb>0,a>1lim,.. 0 _q

5
e Vb>0anda>1, lim, .. % =0
® Va>1, limy e 2 =0
® limy, oo % =0

Note that the above results imply:
® Wb>0,a> 1limy o 5y = My oo gy = +00
® Vb>0and a> 1, limy o 2 =limy o0 55 = +00
® Va>1 limp oo & = limyo or = +00
° |lim,_ o ’,’7—: =lim,5e %; = 400
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Notable limits, cont'd

The above results can be interpreted in terms of “speed” of divergence:

® |lim,_ oo ’ogrjb(”) =0 = The power diverges faster than the logarithm

® lim, .o % =0 = The exponential diverges faster than the power
® lim, o 23 =0 = The factorial diverges faster than the exponential

¢ limyyoo =0 = n" diverges faster than the factorial

At +00 we have the following "hierarchy of infinity”

log(n) < vn<+vn<n<nr<nm<...<2"<e"<3"<...<nl<n"
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ETTIES

®

0"'
5”...‘."...."..........’....‘.
N : o B » 5 »
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log(n)

0,69
1,09
1,38
1,60
1,79
1,94
2,07
2,19
2,30
2,39
2,48
2,56
2,63
2,70
2,77
2,83
2,89
2,94
2,99

\n

1,41
1,73

2,23
2,44
2,64
2,82

3,16
3,31
3,46
3,60
3,74
3,87

4,12
4,24
4,35
4,47

O 0N ULD WNE

NP R RERRE R R R
O LW NOUIDEWNERELO

O B -

16
25
36
49
64
81
100
121
144
169
196
225
256
289
324
361
400

27’1.

o BN

16

32

64

128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288
1048576

AN -

24

120

720
5040
40320
362880
3628800
39916800
4,79E+08
6,23E+09
8,72E+10
1,31E+12
2,09E+13
3,56E+14
6,4E+15
1,22E+17
2,43E+18



Examples, cont'd

Examples

—0
3"+ 1 3n I
lim °82(") _ i 14 oeln) |
n—o0 nl n—oco N 3n
—+o00
lim % lim 1 n10
135 Togy (M)~ rt 100 logy(n) ¢
—0
200000 | 200000
|
m AT 0 ~0
n—o00 n" n" n!

Put always in evidence the term diverging faster!
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The notable limit: lim,_,o, nsin (1)

n

1
lim nsin (—) =1
n—oo n

Proof The proof is divided in two parts:

® Part 1: we use the key inequality and the comparison theorem to prove

show that lim nsin (1) =1

n— oo n

® Part 2: We prove the key inequality
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Part 1: the Comparison Theorem

Let s, = nsin (1). By the key inequality we get that

1 . (1
cos|— ) <nsin|—] <1
n n

(See also the plot in the next slide. )

Now, let a, = cos (1) and b, = 1. Then,

n

1
lim a, = lim cos <n> =cos(0) =1

n—oo n—oo

lim b, =1

n—o0o

Then by the Comparison Theorem, lim, o, s, = lim,_, o, nsin (%) =1
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Part 1: the Comparison Theorem

1,1

1 A A A & i a @
]
]
0,9
]

0,8

0,7

0,6

[ ]

0,5

0 1 2 3 4 5 6 7

® Green sequence
® Qrange sequence

* Blue sequence a, = cos (1)
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Part 2: The key inequality cos (1) < nsin (1) <1

n n
For small angles 6, the length of the arc 15;4 is between the length of segments
PH and BA:

PH < PA< BA
sin(f) < 0 < tan(h)

21/42



Finally, we set 6 = % and get

1 (1
cos|— ) <nsin|{—) <1
n n

This concludes the proof.
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Notable limits that follow from lim,_,-, nsin (1)

1
® If s, — +oo, then I|m snsm< ):1
Sn

1 1
® |f s, — +oo, then I|m ( n)2 (1 — cos (5>> =5
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. : <5>
lim nsin | —
n—oo n

Let a, = ¢. Then a, — +00. Therefore we can multiply/divide by 5 the whole
sequence and get

1
lim nsin (5> = |lim 5ﬁsin <n) =5-1=5
n—o0 n n—oo 5 5
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.o ( 1 )
lim n<sin >
n— o0 n< 4+ n

Let a, = n?> 4+ n. Then a, — +oo. Therefore we can multiply/divide by n> + n
the whole sequence and get

: . 1 _ n? ) , 1
lim nsin( —— ) = lim (n"+n)sin| ——) =1
n—o0 n2+n n—oo N2 4+ n n?+n
——
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2
lim n3 (1 — cos (2>)
n—o0 n
— n? 2 n*

Let a, = %&. Then a, — +o0. Therefore we can multiply/divide by (a,)* = &
the whole sequence and get

1 4n® n* 1
lim nd <1—cos <2>> = lim i4 n <1cos (2>> =0
n— o0 n° n—oo n* 4 n°
2 ~—~ 2
0
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Increasing /Decreasing sequences

A sequence (Sp)nen is said to be
® strictly increasing if s, < s,1+1 for all n.
® increasing if s, < s,41 for all n.
® strictly decreasing if s, > s, for all n.

® decreasing if s, > s,1 for all n.

(i) Let (Sp)nen be increasing. Then s, — ¢ if and only if 3A € R such that
s, < A, for all n.

(i) Let (sp)nen be decreasing. Then s, — ¢ if and only if 3B € R such that
s, > B, for all n.
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Exercise

Exercise 1
The sequence (s,)nen With s, = n + 3n is strictly increasing.

Solution: We will show that s,,1 > s, for all n
spp1=(n+112+3(n+1)=n>+3n+3n>+1+3n+3
——

Sn

=5, +3m+3n+4>s,

Exercise 2
The sequence (s,)nen With s, = e~ ™1 is strictly decreasing.

Solution: We will show that s,;1 < s, for all n

—(n+1)+1 _ g=ntl -1

—

Sn

Sp+1 = €

=2 <s,
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The Euler sequence

The sequence (s,)nen With

is called the Euler sequence.

1 n
lim (1 + —> =e,
n— oo n

where e is the Euler’s (or Neper’s) number.
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The Euler sequence

2,8
,....ooooo-o00;..-.-00.0000.00.-.0
'
2,6 PPY LA
..
°
°
°
°
2,4
.
°
2,2
) le
1,8
0 5 10 15 20 25 30 35 10 a5 50

Figure: Euler Sequence (blue), boundary values: lower bound (orange) and upper bound
(green)
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Sequences: the Euler sequence

Intuitive proof
o 51 = 2
@ s, < s, for all n, i.e. Euler sequence is (strictly) increasing

(see the plot in the previous slide. For curiosity: a rigorous proof is given
in the Lecture Notes).

©® s, < 3 forall n, i.e. Euler sequence is bounded from above

By properties 2 and 3, the sequence is

n—oo

1 n
Increasing and bounded from above = There exists lim <1 + ) .
n

n— oo

1 n
We call lim (1 + ) =e

n
Moreover, since the sequence is strictly increasing and its first value is 2 (see
property 1), then we get that 2 < e < 3.

The number e is called the Euler’s number or Neper’'s number.
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Notable limits that derive from the Euler sequence
jm (1+7) =

1
® |im nlog <1+> =1
n—o0 n
. 1
® |im n (eF — 1)
n—o0o

1\™
® |fs, — 400, then |im <1—|—> =e

n—o0 Sn

® If s, — +o0, then lim s,log (1 + ) -1
n—o0

e lim sn(ei—l)zl

n—oo
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The Euler sequence

Exercise Compute

Solution

7\" 1
lim <1+2) = lim <1+2>
n—o0 n n—o00 n-
7
1\
= lim (1 + 2)
n— o0 n
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The Euler sequence

Exercise Compute

Solution

n— o0

(

n+1
n—1

)

i n+1\"
im .
n—soo \ n—1
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The Euler sequence

Exercise Compute
2
lim (n—l)log( n—|—7> .

n—o00 2n + 1
Solution
. 2n+7 ) 6
Jim (n—1)log (zn n 1) = Jim (n—1)log <1 + Z—H)

. 1
= nIl_}n;(n— 1) log <1+ 2n+1>

6
. 2n+1 6 1
*nll@o(n_l)76 72n—|—1|0g <1+2ngr1>
3

—
g S=1 201
Tt 2n+1 6 oo\ T2

1
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The Geometric sum

Let x € R and consider the following sum:
Sn(X)=1+X+x2+X3+...+X"

Sn(x) can be re-written using the “summation” symbol:

Sn(x) = Zxk
k=0

The above sum is called Geometric sum.
Examples
¢ Su(d) =1Hi @ e+ ()
® 55(3)=1+3+324+33+...+3°

Question: What is the result of this sum?
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The Geometric sum

For all x # 1
1— Xn+1

Snlx) = Zxk T 1-x
k=0

For x = 1 we get that S,(1) =n+1
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The Geometric sum

Proof If x =1, then we get that S,(1) =1+1+1+---+1=n+1
(n+1) times

Now, suppose that x # 1. Recall that:
Sa(¥) =14+ x4+x>+ x>+ +x"

and consider also the quantity xS,(x):

xSp(x) = x +x2 + X3+ x* o 4 X"

Now, take the difference S,(x) — xS,(x):

x.‘S,,(x)fo,,(x):lJrXJr)/TJr)(a/Jr-~+)(‘*f;(—)%—)(3/-~f)c”(—x"Jrl

=1 _Xn+1

Therefore:
1— Xn+1
SH)(1—x) = 1= X" = Syx) =
which concludes the proof.
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The Geometric sum: examples

Examples
e Compute:
10 k
1 1
s(3) =X (3)
k=0

Solution In this case, x = % and n = 10. Thus:

1 1— (1)104—1 1 11
Solz)=—"2—=2(1-(= ~ 1.9990234375
° (2> 1-1 <2>

e Compute:
5
Ss(3) =) 3*
k=0
Solution In this case, x =3 and n = 5. Thus:
_1—35“_1—36 36 -1

@) =73 -~ ~3%
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The Geometric series

If limp— 00 Sn(x) exists and it is finite we call

n— o0

S(x) = lim S,(x) = Zxk.
k=0

The quantity S(x) is called the Geometric series.

o = if-1<x<1
S(X):Zxk =< 400 ifx>1
k=0 4 ifx < —1
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The Geometric series

Proof
Using the result on the geometric sum we have:
] ) 1— n+1 ] 1 — x"
S(x) = lim S,5(x) = lim X im xx

n—o0 n— o0 — X n—oo 1 —x

To compute this limit we recall that x € R, x # 1,

0 if|x <1
lim x"=<{ 400 ifx>1
n—oo

# if x < —1

Then plugging this result into the limit on the top line we get

= if—l<x<1
.1 —x"x X
lim =q+0 ifx>1

n—oo 1 —x
# if x < —1

Finally, if x =1, S(1) = limp_00 Sp(1) = limp0o n+ 1 = 400
This completes the proof.
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The Geometric series: examples

Examples

> /1\* 1
Z<2> B
k=0 T2

>/ 1\* 2

>(-2) ~r=rp-3
ZE: 2k = +00

k=0
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