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Slope of the line indicates the rate of change



Incremental Ratio

Definition
Let f : [a, b] — R be a continuous function. Let xo, x1 € (a, b). We call
incremental ratio the ratio

f(xa) — f(x)

X1 — Xo

This ratio represents the slope of the line through A = (xo; f(xo)) and
B = (x1;f(x1))
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Incremental Ratio

Definition
Let f : [a, b] — R be a continuous function. Let xo € (a, b) and let h € R such
that xo + h € (a, b). We call incremental ratio the ratio

f(Xo + h) — f(X())
h

This ratio represents the slope of the line through A = (xo; f(xp)) and
B = (xo + h; f(xo + h))
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Derivatives

Definition
Let f : D — R be a function and let [a, b] C D. We say that f is differentiable
at x if:

® Xp € (a, b)
o fim FOOER) = FO0) _ 4 its and it is finite.
h—0 h

If this is the case we call d = f’ (xp) and we say that d is the derivative of f at
the point xp.
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Derivatives of elementary functions

® Let f(x) = k, with k € R (i.e. the constant function). D = R.
Using the definition of derivative we get that, for any x € D:

lim M = lim k—k _ =0
h—0 h h—0 h
The last equality is not an undetermined form since the
numerator is equal to 0 no matter the value of h.
e let f(x)=x. D=R.
Using the definition of derivative we get that, for any x € D:

i f(x+h)—f(x) . x+h-x
hino h h—0 h h—0
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Derivatives of elementary functions

e Let f(x)=x>. D=R.
Using the definition of derivative we get that, for any x € D:

_ 22
im f(x+ h)—f(x) — Im (x+ h)* —x
h—0 h h—0
. x> +2hx+h—x%>  h(2x+ h)
= lim = lim ——= = 2x
h—0 h h—0 h

® let f(x) =e*. D=R.
Using the definition of derivative we get that, for any x € D:

. f(x+h)—f(x) . eth—ex  eh-1
lim = lim = lime =
h—0 h hto0 h h—0

1

eX

7/54



Derivatives of elementary functions

® Let f(x) = log(x). D = (0,400).
Using the definition of derivative we get that, for any x € D:
im f(x+ h) —f(x) log(x + h) — log(x)

= lim

h—0 h h—0 h
log (1+ 2 log (1+5)1 1
:Iimig( +X):Iim7g(+’<)f:f
h—0 h h—0 g X X
1

® Let f(x) =sin(x). D=R.
Using the definition of derivative we get that, for any x € D:

im f(x+ h) — f(x) im sin(x 4+ h) — sin(x)

h—0 h hto0 h
~lim sin(x) cos(h) + sin(h) cos(x) — sin(x)
h—0 h
. sin(x)(cos(h) —1) . sin(h)
= ’Igno p + I!ino cos(x) = cos(x)

h
~——
0 1
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Derivatives of elementary functions

® Let f(x) =cos(x). D=R.
Using the definition of derivative we get that, for any x € D:

)~ () _ | cos(x + h) — cos(x)

h—0 h hto0 h
0 cos(x) cos(h) — sin(x) sin(x) — cos(x)
= 50 h
. cos(x)(cos(h) —1) . . in(h) :
= ATO P — llgosm(x) ° P —sin(x)
0 1
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Derivatives of elementary functions

Function f(x) f'(x)
constant k 0
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Derivatives of elementary functions

Function f(x) f'(x)
constant k 0
linear X 1
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Derivatives of elementary functions

Function f(x) f'(x)

constant k 0
linear X 1
power X a#0 | ax*!
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Derivatives of elementary functions

Function f(x) f'(x)

constant k 0
linear X 1
power X a#0 | ax*!

sine sin(x) cos(x)
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Derivatives of elementary functions

Function f(x) f'(x)
constant k 0
linear x 1
power X a#0 | ax*!
sine sin(x) cos(x)
cosine cos(x) —sin(x)
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Derivatives of elementary functions

Function f(x) f'(x)
constant k 0
linear X 1
power X a#0 | ax*!
sine sin(x) cos(x)
cosine cos(x) —sin(x)
exponential e e
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Derivatives of elementary functions

Function f(x) f'(x)
constant k 0
linear X 1
power X a#0 | ax*!
sine sin(x) cos(x)
cosine cos(x) —sin(x)
exponential e e
logarithm log x 1
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Operations with derivatives

Let f: D — R and g : Dg — R be two functions such that f'(x) and g’(x)
exists. Then

D(f(x) + g(x)) = f'(x) + &'(x)
D(f(x) - g(x)) = f'(x) — &'(x)
D(kf(x)) = kf'(x)
D(f(x) - &(x)) = f'(x) - g(x) + f(x) - &'(x)
( —
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Exercises: Compute the derivatives

X

3_-3x24+x+3

X

sin x + cos x

><

><

><

x) = 2x + 3¢&¥
(2x + 3)* + e

cos(x?) + cos?(x)

X

X
M f(x) = x?sin(3x)
® f(x Xsl.?\%g)

® f(x) = 505

f(x)
f(x)
f(x)
f(x)
f(x)
(x):logx+log5x
f(x)
f(x) =
f(x) =
(x)
(x) =
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Checklist

Let f : D — F and let x, € D. Then f is differentiable at xg if the
following three conditions hold:

@ f is continuous in xg
@ left and right limits of the incremental ratio must coincide
© the limit must be finite
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Non-differentiability points

e if f is not defined at xg, that is xo ¢ D, then clearly it cannot be
differentiable (because in this case the function does not exists at the
point xp)

o if
f(Xo + h) — f(Xo)

li = +
A h %, 7 £o0
f h)—f
lim (xo + h) (*o) = dy, dy # Foo
h—0— h

but di # d>, then the function is NOT differentiable at xg, and (xg, f(xo))
is called an angle point
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Non-differentiability points

o if im f(xo—+h)—f(x) oo, (—0)
h—0+ h

lim fFloth) —fx) = +o00, (—o0)
h—0— h

(i.e. left and right limits are infinite of the same sign!) then the function is
NOT differentiable at xo, and (xo, f(xo)) is called an inflection point
with vertical tangent

o if
. f(xo+h)—f(x)
han8+ : h == oo (7o)
. f(Xo-l—h)—f(X())_
hILr(r)L h - (+20)

(i.e. left and right limits are infinite of the different sign!) then the
function is NOT differentiable at xo, and (xo, f(x0)) is called a cusp point
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First order Taylor approximation

Suppose that
)~ ()

Then if x is close to xg, we can say that

f(x) = f (%)

f/(xo) ~ (=)

Equivalently
f(x) ~ f(x0) + ' (x)(x — x0)

16 /54



fx) ~ f(xo0) + f'(x0) (x = Xo)

Blue line: f(x)

0 . 1
/’ Orange line: tangent at x, = "



First order Taylor approximation

® The function

P(x) = f(x0) + f'(x0)(x — x0)

is called the first order Taylor approximation of f or the linearization of f
or the first order Taylor polynomial of f.

® The quantity
R(x1) = f(x1) = P(x1)
is the reminder or the (absolute) error, for every x; # xo.

® The relative error is €(x1) = 5((;1))

The approximation P(x) is good if
e if x is close to xg, i.e. |x — xp| < &

® f is almost flat
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Differentiability and continuity

Theorem

Let f: D — R and let xo € D. If f is differentiable at xq then it is continuous in
X0-

Proof: Notice that we already know that xo € D. Therefore we need to show
that lim,_,, f(x) exists and it is equal to f(xp).
For all x £ xp we can write
f(x) = f(x) — f(x0) + f(x0)
f(x)—f
f(X) _ (X) (XO)
x —

X0

(x — x0) + f(x0)

Now, we take the limit as x — xg on both sides:

. . f(x) = f(x)
lim f(x) = lim ———2(x — f =f
xl—r;r;o (X) X—>In>1<0 X — X0 LX ,—/XO) + (XO) (XO)
f’(x0)

This concludes the proof.
18/54



Differentiability and continuity

Problem If a function is continuous, is it also differentiable ? NO'
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Differentiability and continuity

Problem If a function is continuous, is it also differentiable ? NO'
Example: The function absolute value

—X if x<0
f(x)—|x|_{ X if x>0~

This function is continuous in for all x € R.
However, if we compute the left and right limit of incremental ratio at xg = 0

we get
jim fC0E N =f00) Ay
h—0+ h h—0+ h
lim flxo+h) = fx) _ im —h _ 4
h—0— h h—0— h

Hence f is not differentiable at xp = 0 and xg = 0 is an angle point.
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-0,5
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Derivatives: Rolle’s Theorem

If a function f : [a, b] — R is continuous on [a, b] and differentiable on (a, b)
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Derivatives: Rolle’s Theorem

If a function f : [a, b] — R is continuous on [a, b] and differentiable on (a, b)
and f(a) = f(b) then Ixy € (a, b) such that f'(x) = 0.
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Derivatives: Rolle’s Theorem

Theorem

If a function f : [a, b] — R is continuous on [a, b] and differentiable on (a, b)
and f(a) = f(b) then Ixy € (a, b) such that f'(x) = 0.

Rolle Theorem says that there exists at least ONE point in [a, b] with horizontal
tangent line!

Checklist:
® [a, b] is closed and bounded
® The function is continuous in [a, b]
® The domain of the derivative MUST include the set (a, b)
* f(a) = £(b)
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Derivatives: Lagrange’'s Mean Value Theorem.

Let f : [a, b] — R be continuous on [a, b] and differentiable in (a, b).
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Derivatives: Lagrange’'s Mean Value Theorem.

Let f : [a, b] — R be continuous on [a, b] and differentiable in (a, b).
Then there exists at least one point xg € (a, b) such that

f/(XO) _ f(bg : Z(a)

That means there is at least one point x; where the tangent to the graph of f is
parallel to the line from (a, f(a)) to (b, f(b))
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Derivatives: Lagrange’'s Mean Value Theorem.

Let f : [a, b] — R be continuous on [a, b] and differentiable in (a, b).
Then there exists at least one point xg € (a, b) such that

f/(XO) _ f(bg : :-(a)

That means there is at least one point xg where the tangent to the graph of f is
parallel to the line from (a, f(a)) to (b, f(b))

Checklist:
® [a, b] is closed and bounded
® The function is continuous in [a, b]
® The domain of the derivative MUST include the set (a, b)
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f(x) =v4—x on [-54]

A(=53)

B(4,0)



f(x) =v4—x on [-54]

B(4,0y



f(x) =v4—x on [-54]
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Increasing and Decreasing functions

Theorem

Necessary and sufficient conditions for monotonicity of differentiable functions

Let f : D — R be a function and assume that f is differentiable in any open
interval | C D. Then:

® f jsincreasing in | if and only if f'(x) > 0 for all x € |
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Increasing and Decreasing functions

Theorem

Necessary and sufficient conditions for monotonicity of differentiable functions

Let f : D — R be a function and assume that f is differentiable in any open
interval | C D. Then:

® f jsincreasing in | if and only if f'(x) > 0 for all x € |

® f is strictly increasing in | if and only if f'(x) > 0 for all x € |
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Increasing and Decreasing functions

Theorem

Necessary and sufficient conditions for monotonicity of differentiable functions

Let f : D — R be a function and assume that f is differentiable in any open
interval | C D. Then:

® f jsincreasing in | if and only if f'(x) > 0 for all x € |
® f is strictly increasing in | if and only if f'(x) > 0 for all x € |

® f is decreasing in | if and only if f'(x) < 0 for all x € |
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Increasing and Decreasing functions

Theorem

Necessary and sufficient conditions for monotonicity of differentiable functions
Let f : D — R be a function and assume that f is differentiable in any open
interval | C D. Then:

® f jsincreasing in | if and only if f'(x) > 0 for all x € |
® f is strictly increasing in | if and only if f'(x) > 0 for all x € |
® f is decreasing in | if and only if f'(x) < 0 for all x € |

® f s strictly decreasing in | if and only if f'(x) < 0 for all x € |

Pay attention: The interval / can be unbounded.
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Increasing and decreasing functions: examples

f(x) =2%
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Increasing and decreasing functions: examples

f(x) =2%

The function f(x) = 2% is differentiable in R.
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Increasing and decreasing functions: examples

f(x) =2%

The function f(x) = 2% is differentiable in R. The derivative is
f'(x) = 2¥log 2
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Increasing and decreasing functions: examples

f(x) =2%

The function f(x) = 2% is differentiable in R. The derivative is
f'(x) =2%log2 >0, Vx € R.
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Increasing and decreasing functions: examples

f(x) =2%

The function f(x) = 2% is differentiable in R. The derivative is
f'(x) =2%log2 > 0, ¥x € R. Thus, the function is strictly increasing in R.
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Increasing and decreasing functions: examples,

cont’d

4
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Increasing and decreasing functions: examples,

cont’d

4

The function f(x) = (%)X is differentiable in R.
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Increasing and decreasing functions: examples,

cont’d

4

The function f(x) = (%)X is differentiable in R. The derivative is
fi(x) = (1) log 3
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Increasing and decreasing functions: examples,

cont’d

4

is differentiable in R. The derivative is

The function f( )
Vx € R.

(x) = (
F(x) = (1) log } <0,

1
2
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Increasing and decreasing functions: examples,

cont’d

4

is differentiable in R. The derivative is

Vx € R. Thus, the function is strictly decreasing in R.
25 /54

The function f(
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Increasing and decreasing functions: examples

The function f(x) = x? is differentiable in R.
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Increasing and decreasing functions: examples

The function f(x) = x? is differentiable in R. The derivative is f’(x) = 2x
which is positive for x > 0 and negative for x < 0.
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Increasing and decreasing functions: examples

The function f(x) = x? is differentiable in R. The derivative is f’(x) = 2x
which is positive for x > 0 and negative for x < 0. Thus, the function is strictly
increasing in (0, +00) and strictly decreasing in (—o0,0).
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Increasing and decreasing functions: exercises

Determine in which subsets of their domain the following functions are
increasing and decreasing:
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Increasing and decreasing functions: exercises

Determine in which subsets of their domain the following functions are
increasing and decreasing:

@ f(x)=logx

27 /54



Increasing and decreasing functions: exercises

Determine in which subsets of their domain the following functions are
increasing and decreasing:

@ f(x)=logx
O f(x) =logx —x
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Increasing and decreasing functions: exercises

Determine in which subsets of their domain the following functions are
increasing and decreasing:

@ f(x)=logx
O f(x) =logx —x
O f(x) =sin(x)
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Increasing and decreasing functions: exercises

Determine in which subsets of their domain the following functions are
increasing and decreasing:

f(x) = log x

f(x) =logx — x

f(x) = sin(x)

f(x) =x3—6x%+4x + 12
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Increasing and decreasing functions: exercises

Determine in which subsets of their domain the following functions are
increasing and decreasing:

f(x) = log x

f(x) =logx — x

f(x) = sin(x)

f(x) =x3—6x%+4x + 12
f(x) = logx — x?

27 /54



Local maxima and local minima

Let f : D — R be a function. Local maxima and minima are defined as follows:
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Local maxima and local minima

Let f : D — R be a function. Local maxima and minima are defined as follows:

® A point xp € D is a local maximum if we can find at least one
neighborhood N.(xp) such that f(x) < f(xp) Vx € N(xo)
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Local maxima and local minima

Let f : D — R be a function. Local maxima and minima are defined as follows:

® A point xp € D is a local maximum if we can find at least one
neighborhood N.(xp) such that f(x) < f(xp) Vx € N(xo)

® A point xp € D is a local minimum if we can find at least one
neighborhood N.(xp) such that f(x) > f(xp) Vx € N(xo)
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Local maxima and local minima

Let f : D — R be a function. Local maxima and minima are defined as follows:

® A point xp € D is a local maximum if we can find at least one
neighborhood N.(xp) such that f(x) < f(xp) Vx € N(xo)

® A point xp € D is a local minimum if we can find at least one
neighborhood N.(xp) such that f(x) > f(xp) Vx € N(xo)

Pay attention: Note the difference between local maxima/minima and
maxima/minima in an interval that we saw in the Weierstrass theorem (see
Class 12).
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Local maxima and local minima

Let f : D — R be a function. Local maxima and minima are defined as follows:

® A point xp € D is a local maximum if we can find at least one
neighborhood N.(xp) such that f(x) < f(xp) Vx € N(xo)

® A point xp € D is a local minimum if we can find at least one
neighborhood N.(xp) such that f(x) > f(xp) Vx € N(xo)

Pay attention: Note the difference between local maxima/minima and
maxima/minima in an interval that we saw in the Weierstrass theorem (see
Class 12).

In an interval [a, b] we can have multiple local maxima/minima but
ONLY one maximum/minimum.
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Local maxima and local minima: examples

“@_{ﬂxx¢o

1 x=0

20
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Local maxima and local minima: examples

T
f(X){l x=0

This function is continuous in R.
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Local maxima and local minima: examples

T
f(X){l x=0

\\///“\ V /’\\ﬂ//
20 0 \/ v 20

This function is continuous in R. By the Weierstrass theorem, it admits a
maximum and a minimum in every closed bounded interval [a, b].
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Local maxima and local minima: examples

T
f(X){l x=0

VARV
-20 0 l 20
—05;
This function is continuous in R. By the Weierstrass theorem, it admits a

maximum and a minimum in every closed bounded interval [a, b]. However, the
function can have multiple local maxima and minima in [a, b].
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Fermat's theorem: the intuition
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Fermat's theorem: the intuition
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Fermat's theorem: the intuition

Both functions are differentiable in R.
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Fermat's theorem: the intuition

Both functions are differentiable in R. f(x) has a local minimum for x = 0,

30/54



Fermat's theorem: the intuition

Both functions are differentiable in R. f(x) has a local minimum for x = 0,
whereas g(x) has a local maximum for x = Z and a local minimum for x = 3.
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Fermat's theorem: the intuition

Both functions are differentiable in R. f(x) has a local minimum for x = 0,
whereas g(x) has a local maximum for x = Z and a local minimum for x = 3.

® f'(x) =2xthen f'(0) =0
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Fermat's theorem: the intuition

Both functions are differentiable in R. f(x) has a local minimum for x = 0,
whereas g(x) has a local maximum for x = Z and a local minimum for x = 3.

® f'(x) =2xthen f'(0) =0
* g'(x) =cosx then f'(3) =0, f'(37) =0
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Fermat's theorem: the intuition

Both functions are differentiable in R. f(x) has a local minimum for x = 0,
whereas g(x) has a local maximum for x = Z and a local minimum for x = 3.

® f'(x) =2xthen f'(0) =0
* g'(x) =cosx then f'(3) =0, f'(37) =0
Thus, if a function is differentiable, the derivative computed in its local maxima

and minima is equal to zero
30/54



Fermat's theorem: the intuition

g(x) =sinx

Both functions are differentiable in R. f(x) has a local minimum for x = 0,
whereas g(x) has a local maximum for x = Z and a local minimum for x = 3.

® f'(x) =2xthen f'(0) =0
* g'(x) =cosx then f'(3) =0, f'(37) =0
Thus, if a function is differentiable, the derivative computed in its local maxima

and minima is equal to zero then the tangent line is horizontal
30/54



70

60

50

40

30

20

10

f(x) =x%—2x+35

10

15

20

25

30

35



f(x) =x%—2x+35

10 15 20 25

30

35









Fermat's theorem

Let f : D — R and let f be differentiable in xo € D.
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Fermat's theorem

Let f : D — R and let f be differentiable in xo € D. If xq is a local maximum or
a local minimum then f'(xp) = 0.
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Fermat's theorem

Theorem
Let f : D — R and let f be differentiable in xo € D. If xq is a local maximum or
a local minimum then f'(xp) = 0.

Does the converse hold?
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Fermat's theorem

Theorem

Let f : D — R and let f be differentiable in xo € D. If xq is a local maximum or
a local minimum then f'(xp) = 0.

Does the converse hold? Namely, if a function f : D — R is differentiable in
xo € D and if f'(xg) = 0, can we conclude that xg is a local maximum or a local
minimum?
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Fermat's theorem, cont'd

NO!
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NO! Indeed, consider the function f(x) = x3:

This function is differentiable in R and we have:
fl(x)=3x> — f(0)=0

However, x = 0 is NOT a local maximum/minimum.
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Fermat's theorem, cont'd

NO! Indeed, consider the function f(x) = x3:

This function is differentiable in R and we have:
fl(x)=3x> — f(0)=0

However, x = 0 is NOT a local maximum/minimum. It is an inflection point
with an horizontal tangent.
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Fermat's theorem, cont'd

What if the function is not differentiable?
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What if the function is not differentiable?

The function is not differentiable in x =0, i.e. f’(0) does not exist.
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Fermat's theorem, cont'd

What if the function is not differentiable?

The function is not differentiable in x =0, i.e. f’(0) does not exist. However
note that x = 0 is a local minumum.
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Fermat's theorem, cont'd

What if the function is not differentiable?

The function is not differentiable in x =0, i.e. f’(0) does not exist. However
note that x = 0 is a local minumum. We CANNOT use the methods
described in this course, which are based on derivatives, to find the local
maxima/minima of a non-differentiable function.
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Critical points

Let f : D — R be differentiable in xo € D.
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Critical points

Definition
Let £ : D — R be differentiable in xo € D. If f' (xp) = 0, the point xg is called a
critical point.

Based on what we have seen so far, critical points can be:
® | ocal maxima
® | ocal minima

® [nflection points with horizontal tangent

Thus, the condition f'(xp) = 0 is only necessary but not sufficient for x; to
be a local maximum or minimum for f.
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Critical points

Let £ : D — R be differentiable in xo € D. If f' (xp) = 0, the point xg is called a
critical point.

Based on what we have seen so far, critical points can be:

® | ocal maxima

® | ocal minima

® [nflection points with horizontal tangent
Thus, the condition f'(xg) = 0 is only necessary but not sufficient for xq to
be a local maximum or minimum for f.

In order to understand whether xg is a local minimum, a local maximum or an
inflection point, we need additional conditions that involve the second
derivative .
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Concavity and Convexity: the intuition
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any segment joining two points A and B of the
graph is below the function
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Concavity and Convexity: the intuition

The function f(x) = —x2 is concave because The function f(x) = x2 is convex because any
any segment joining two points A and B of the segment joining two points A and B of the
graph is below the function graph is above the function
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Concavity and Convexity: the intuition, cont'd
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Concavity and Convexity: the intuition, cont'd

The function f(x) = sin(x) is concave in (0, 7) and convex in (m,27)
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Concavity and Convexity: the definition

A function f : D — R is said to be concave in (a, b) C D if for all x1,x € (a, b)

the segment from the point (x, f(x1)) to the point (xz, f(x2)) lies below the
graph of f(x) in the interval (x1, x2).
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Concavity and Convexity: the definition

A function f : D — R is said to be concave in (a, b) C D if for all x1,x € (a, b)

the segment from the point (x, f(x1)) to the point (xz, f(x2)) lies below the
graph of f(x) in the interval (x1, x2).

A function f : D — R is said to be convex in (a, b) C D if for all x1, x> € (a, b)

the segment from the point (x, f(x1)) to the point (x2, f(x2)) lies above the
graph of f(x) in the interval (xi, x2).
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The derivative of concave and convex functions

Let f : D — R be a function. Assume that f is differentiable on (a, b) C D.
Then:

® f js concave on (a, b) if and only if f' is strictly decreasing on (a, b)
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The derivative of concave and convex functions

Theorem

Let f : D — R be a function. Assume that f is differentiable on (a, b) C D.
Then:

® f js concave on (a, b) if and only if f' is strictly decreasing on (a, b)

® f js convex on (a, b) if and only if f' is strictly increasing on (a, b)

The have an intuition on this theorem, observe that, if a function is concave,
the slope of the line tangent to a point decreases.
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The derivative of concave and convex functions

Theorem

Let f : D — R be a function. Assume that f is differentiable on (a, b) C D.
Then:

® f js concave on (a, b) if and only if f' is strictly decreasing on (a, b)

® f js convex on (a, b) if and only if f' is strictly increasing on (a, b)

The have an intuition on this theorem, observe that, if a function is concave,
the slope of the line tangent to a point decreases. Instead, if a function is
convex, the slope of the line tangent to a point increases.
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Higher order derivatives

Let £ : D — R be a differentiable function and let f’(x) denote the derivative of
f(x).
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Let £ : D — R be a differentiable function and let f’(x) denote the derivative of
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In a similar manner, we can define third derivatives, forth derivatives, etc.
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Higher order derivatives

Definition
Let £ : D — R be a differentiable function and let f’(x) denote the derivative of
f(x). The second derivative of f(x), denoted by f”(x), is defined as the
derivative of f/(x), that is:

1) = [ ()

In a similar manner, we can define third derivatives, forth derivatives, etc.

Examples

° f(x)= x2,
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Higher order derivatives

Definition
Let £ : D — R be a differentiable function and let f’(x) denote the derivative of
f(x). The second derivative of f(x), denoted by f”(x), is defined as the
derivative of f/(x), that is:

1) = [ ()

In a similar manner, we can define third derivatives, forth derivatives, etc.

Examples

° f(x)= x2, f(x) = 2x,
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Higher order derivatives

Definition
Let £ : D — R be a differentiable function and let f’(x) denote the derivative of
f(x). The second derivative of f(x), denoted by f”(x), is defined as the
derivative of f/(x), that is:

1) = [ ()

In a similar manner, we can define third derivatives, forth derivatives, etc.

Examples

* f(x)=x2 f(x) =2x, f"(x) =2,
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Higher order derivatives

Definition
Let £ : D — R be a differentiable function and let f’(x) denote the derivative of
f(x). The second derivative of f(x), denoted by f”(x), is defined as the
derivative of f/(x), that is:

1) = [ ()

In a similar manner, we can define third derivatives, forth derivatives, etc.

Examples

® f(x)=x2 f'(x)=2x, f'(x) =2, f"(x) =0
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Higher order derivatives

Definition
Let £ : D — R be a differentiable function and let f’(x) denote the derivative of
f(x). The second derivative of f(x), denoted by f”(x), is defined as the
derivative of f/(x), that is:

1) = [ ()

In a similar manner, we can define third derivatives, forth derivatives, etc.

Examples
® f(x)=x2 f'(x)=2x, f'(x) =2, f"(x) =0

® f(x)=sinx,
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Higher order derivatives

Definition
Let £ : D — R be a differentiable function and let f’(x) denote the derivative of
f(x). The second derivative of f(x), denoted by f”(x), is defined as the
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Examples
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Higher order derivatives

Definition
Let £ : D — R be a differentiable function and let f’(x) denote the derivative of
f(x). The second derivative of f(x), denoted by f”(x), is defined as the
derivative of f/(x), that is:

1) = [ ()

In a similar manner, we can define third derivatives, forth derivatives, etc.

Examples
® f(x)=x2 f'(x)=2x, f'(x) =2, f"(x) =0

® f(x)=sinx, f’(x) = cosx, f’(x) = —sinx,
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Higher order derivatives

Definition
Let £ : D — R be a differentiable function and let f’(x) denote the derivative of
f(x). The second derivative of f(x), denoted by f”(x), is defined as the
derivative of f/(x), that is:

1) = [ ()

In a similar manner, we can define third derivatives, forth derivatives, etc.

Examples
® f(x)=x2 f'(x)=2x, f'(x) =2, f"(x) =0

® f(x)=sinx, f'(x) =cosx, f’(x) = —sinx, f"(x) = — cosx
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Higher order derivatives, cont'd

If f/(x) exists, f/(x) is not guaranteed to exist as well.
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If f/(x) exists, f”(x) is not guaranteed to exist as well. For instance, consider

the function:
x2 x>0
f p—
(x) {—x2 x<0

This function is differentiable in R, but in x = 0 f”(x) does not exist because
the left and right limits of ”/(x) are -2 and 2, respectively.
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Higher order derivatives, cont'd

If f/(x) exists, f”(x) is not guaranteed to exist as well. For instance, consider

the function:
x2 x>0
f p—
(x) {—x2 x<0

This function is differentiable in R, but in x = 0 f”(x) does not exist because

the left and right limits of ”/(x) are -2 and 2, respectively. Thus, f/(x) has an
angle point in x = 0 and is not differentiable.
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Higher order derivatives, cont'd

If f/(x) exists, f”(x) is not guaranteed to exist as well. For instance, consider

the function:
x2 x>0
f p—
(x) {—x2 x<0

This function is differentiable in R, but in x = 0 f”(x) does not exist because

the left and right limits of ”/(x) are -2 and 2, respectively. Thus, f/(x) has an
angle point in x = 0 and is not differentiable.

If f(x) exists everywhere in the domain of the function, we say that the
function is twice differentiable.
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The derivative of concave and convex functions,

cont’d

We have seen that:
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The derivative of concave and convex functions,
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We have seen that:

e A differentiable function is concave if and only if f/(x) is strictly
decreasing.

o A differentiable function is convex if and only if f/(x) is strictly increasing.
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The derivative of concave and convex functions,

cont’d

We have seen that:

e A differentiable function is concave if and only if f/(x) is strictly
decreasing.

o A differentiable function is convex if and only if f/(x) is strictly increasing.
But this implies that:

® A twice differentiable function is concave if and only if
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The derivative of concave and convex functions,

cont’d

We have seen that:

e A differentiable function is concave if and only if f/(x) is strictly
decreasing.

o A differentiable function is convex if and only if f/(x) is strictly increasing.
But this implies that:

® A twice differentiable function is concave if and only if f”(x) < 0.
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The derivative of concave and convex functions,

cont’d

We have seen that:

e A differentiable function is concave if and only if f/(x) is strictly
decreasing.

o A differentiable function is convex if and only if f/(x) is strictly increasing.
But this implies that:
® A twice differentiable function is concave if and only if f”(x) < 0.

® A twice differentiable function is convex if and only if
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The derivative of concave and convex functions,

cont’d

We have seen that:

e A differentiable function is concave if and only if f/(x) is strictly
decreasing.

o A differentiable function is convex if and only if f/(x) is strictly increasing.
But this implies that:
® A twice differentiable function is concave if and only if f”(x) < 0.

® A twice differentiable function is convex if and only if f”(x) > 0.
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The second derivative test for local maxima and

minima

Let f : D — R be twice differentiable on (a, b) C D and let xy € (a, b) be such
that f' (xo) = 0, that is, xo is a critical point. Then:
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The second derivative test for local maxima and

minima

Let f : D — R be twice differentiable on (a, b) C D and let xy € (a, b) be such
that f' (xo) = 0, that is, xo is a critical point. Then:

o [ff"(xo) <O then xg is a local maximum.

e |ff"(xp) > 0 then xo is a local minimum.

To have an intuition on this theorem, observe that, if xp is a local maximum,
the function is concave in a neighborhood of xy and therefore f”(x) < 0.
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The second derivative test for local maxima and

minima

Theorem

Let f : D — R be twice differentiable on (a, b) C D and let xy € (a, b) be such
that f' (xo) = 0, that is, xo is a critical point. Then:

o [ff"(xo) <O then xg is a local maximum.

e |ff"(xp) > 0 then xo is a local minimum.

To have an intuition on this theorem, observe that, if xp is a local maximum,
the function is concave in a neighborhood of xy and therefore f”(x) < 0.

Similarly, if xg is a local minimum, the function is convex in a neighborhood of
xo and therefore " (xg) > 0.
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The second derivative test for local maxima and

minima, cont'd

What if f(x) = 0?

Let f : D — R be three times differentiable on (a, b) C D and let xy € (a, b). If
" (x0) = 0 and """ (xo) # 0, then xq is an inflection point.

Example: Consider the function f(x) = x3 and note it is three times
differentiable with /(x) = 3x2, f(x) = 6x, f"’(x) = 6.
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Let f : D — R be three times differentiable on (a, b) C D and let xy € (a, b). If
" (x0) = 0 and """ (xo) # 0, then xq is an inflection point.

Example: Consider the function f(x) = x3 and note it is three times

differentiable with /(x) = 3x?, f”(x) = 6x, f"”’(x) = 6. The point x =0is a
critical point because f/(0) = 0.
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The second derivative test for local maxima and

minima, cont'd

What if f(x) = 0?

Let f : D — R be three times differentiable on (a, b) C D and let xy € (a, b). If
" (x0) = 0 and """ (xo) # 0, then xq is an inflection point.

Example: Consider the function f(x) = x3 and note it is three times
differentiable with /(x) = 3x?, f”(x) = 6x, f"”’(x) = 6. The point x =0is a
critical point because f'(0) = 0. Moreover, f”(0) = 0.
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The second derivative test for local maxima and

minima, cont'd

What if f(x) = 0?

Let f : D — R be three times differentiable on (a, b) C D and let xy € (a, b). If
" (x0) = 0 and """ (xo) # 0, then xq is an inflection point.

Example: Consider the function f(x) = x3 and note it is three times
differentiable with /(x) = 3x?, f”(x) = 6x, f"”’(x) = 6. The point x =0is a
critical point because f'(0) = 0. Moreover, f”/(0) = 0. Since f/(0) =6 # 0,
x = 0 is an inflection point.
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The second derivative test for local maxima and

minima: exercises

Find the local maxima and minima of the following functions. Determine also in
which intervals the function is convex and/or concave.

O (x)=logx—x
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The second derivative test for local maxima and

minima: exercises

Find the local maxima and minima of the following functions. Determine also in
which intervals the function is convex and/or concave.

O (x)=logx—x

@A f(x) =sin(x)
® f(x)=x3—6x>+4x+12
O f(x)=logx — x?
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The second derivative test for local maxima and

minima: exercises

Find the local maxima and minima of the following functions. Determine also in
which intervals the function is convex and/or concave.

O (x)=logx—x

(x) = sin(x)

f(x) =x3—6x%+4x+12
f(x) = ogx—x2

() = x
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The second derivative test for local maxima and

minima: exercises

Find the local maxima and minima of the following functions. Determine also in
which intervals the function is convex and/or concave.

O (x)=logx—x

@A f(x) =sin(x)

® f(x)=x3—6x>+4x+12

O f(x)=logx — x?

O f(x)=x—-9x3

O f(x) = log(4x — x?)

@ f(x) = &=

® f(x) = Iog:x

O f(x)=x+e 3

i f(x) = log(1 + log(x)) — log(x) (difficult)
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Derivative of the inverse function

Let f : X — Y be differentiable in X.
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Derivative of the inverse function

Theorem

Let f : X — Y be differentiable in X. Assume f is invertible and call
f(=1) .Y s X the inverse function. Then f(=1) s differentiable in Y and

—1)y/ 1
[F1] (Y):W

for all y € Y such that f' (fV (y)) # 0.
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Derivative of the inverse function: an example

The function sin (x) : [, 5] — [~1,1] is injective and surjective and therefore

it can be inverted. The inverse is called “arcsin”:
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Derivative of the inverse function: an example

The function sin (x) : [, 5] — [~1,1] is injective and surjective and therefore
it can be inverted. The inverse is called “arcsin”:
T
in(x): [~1,1] — [—f,f}
arcsin(x) : [ ] '3

15

—sin(z)
_y—x
—arcsin(z)| |
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Derivative of the inverse function: an example

Remind that, by definition of inverse function:

f
Xo — f(Xo)Zyo <
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Derivative of the inverse function: an example

Remind that, by definition of inverse function:

-1
X0 - f(x)=x © ¥ T (vo) = x0

Then we have:
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Derivative of the inverse function: an example

Let's compute the derivative of arcsin (x) using the previous theorem.
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Derivative of the inverse function: an example

Let's compute the derivative of arcsin (x) using the previous theorem. Recall the
formula for the derivative of the inverse:

[f(fl)]/ (v)= ﬁ

In our case, we have:

SRS S
(arcsin (x)) = cos (arcsin (x))

Using the fact that, in [-7, 7], cosx = V1 — sin® x, we have:

cos (arcsin (x)) = \/1 — sin? (arcsin (x)) = V/1 — x2

and thus:

(arcsin (x)) =

Vv1—x2

48 /54



Derivative of the inverse function: other examples

Using the same method it is possible to compute the derivative of the inverse of
the cosine and tangent.
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Derivative of the inverse function: other examples

Using the same method it is possible to compute the derivative of the inverse of
the cosine and tangent.

The inverse of the function cosx : [0, 7] — [—1,1] is the function
arccosx : [-1,1] — [0, 7]

which is differentiable in [—1,1] and its derivative is given by:

(arccos x)' = I
V1-—x2
The inverse of the function tanx : [~%, 2] — R is the function
m™ T
xR [2.7]
arctan x 55

which is differentiable in R and its derivative is given by:
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De L'Hopital rule

Let f : D — R and g : D — R be continuous on D and let xy be a limit point of
D.
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De L'Hopital rule

Let f : D — R and g : D — R be continuous on D and let xy be a limit point of
D. Assume that f and g are both differentiable in D/{xy} and g (xo) # 0. If:

: : (%)
XI|_>nl0 f(x)= x||—>n>]<0g (x)=0 AND HXI|_>n3(0 ()

or if

: : . (%)

lim f(x) =400, lim g(x)==xc0c AND 3 lim =L,

X—X0 X—=Xo x=% g’ (x)
then .

3 im 00 .
x—x0 g x)

The point xo can be either finite or +cc.
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De L'Hopital rule: examples

Compute the following limit:
lim xlog x
x—0t 8
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De L'Hopital rule: examples

Compute the following limit:
lim xlog x
x—0t 8

We have an indeterminate form 0 x (—o0). However, applying the De L'Hopital
rule we have:

lim xlog(x) = lim
x—0t g( ) x—0t %

x—0F —X%
x2 .
= lim —— = |lim —x =
x—0t X x—0F
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De L'Hopital rule

Compute the following limit:

= lim
=
xrteo 24/x
2/ X . 2
= lim i: lim — =0
XxX—+o0o X X——+00 X
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De L'Hopital rule

Compute the following limit:
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Since the arc whose tangent is +00 is 5 we have:

l tan (x) = +~
XHITOOEFC an(x) = 2
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De L'Hopital rule

Compute the following limit:

. ™
lim (arctanx — =) e
X—>00 2

Since the arc whose tangent is +00 is 5 we have:

l tan (x) = +~
XHITOOEFC an(x) = 2

and thus:

- arctan x — g
lim <arctanx - E) e =0 x (+00) = lim

X—$00 X—00 e—X
1
0w . . X
=— = lim 1+x* _ _ lim
0 x—00 —e X x—o0 1 + x2
00 H X 00 H X
:f:fhm—:f:fhmf:foo
[ee] X—>00 2X X0 X—r00 2

53 /54



De L'Hopital rule

Pay attention: The hypothesis:

5 jim )

=L
x—xo g' (x)

is fundamental.
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Remind that the limit for x — +o00 of sin x and cos x do not exist because
these functions oscillate between —1 and 1.
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