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Discrete Random Variables: Outline

1. Random variables: definition, E(X), V(X)

2. Probability Distribution

3. Discrete random variables: 

a) Bernoulli

b) Binomial

c) Hypergeometric

d) Poisson  
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Random Variable

A random variable is a numerical quantity that is generated by a 

random experiment.

We will denote random variables by capital letters, such as 𝑿 or 𝒁, 

and the actual values that they can take by lowercase letters, such 

as 𝒙 and 𝒛.
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Random Variable
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Random Variable: example

A variable (denoted by capital letter, e.g. X) whose value is 

determined by the outcome of an experiment.

Example: consider the experiment of 

tossing a coin twice, and denote with 

X the variable counting the total 

number of Tails you get
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Random Variable: example

A variable (denoted by capital letter, e.g. X) whose value is 

determined by the outcome of an experiment.

Example: consider the experiment of 

tossing a coin twice, and denote with 

X the variable giving the difference 

between the number of Heads minus 

the number of Tails 
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Random Variable: Discrete and Continuous 

Discrete Random Variable

A random variable is called discrete if it has either a finite or a 

countable number of possible values. 

Continuous Random Variable

A random variable is called continuous if its possible values 

contain a whole interval of numbers.
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Random Variable: Discrete

A variable (denoted by capital letter, e.g. X) whose value is 

determined by the outcome of an experiment.

If only integer values are possible ➔ discrete random variable 

If any value in given intervals ➔ continuous random variable 

Examples DISCRETE: the number of…

- Heads obtained in 3 tosses of a coin 

- Dots rolling a die 

- Cars held by a household 

- Customers who visit a bank during any given hour
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Random Variable: Continuous

A variable (denoted by capital letter, e.g. X) whose value is 

determined by the outcome of an experiment.

If only integer values are possible ➔ discrete random variable 

If any value in given intervals ➔ continuous random variable 

Examples CONTINUOUS:

- length of a room, weight of a letter, height of a person 

- time taken to commute from home to work, life of a battery 

- Monetary amounts (technically discrete, but large number of unique values).
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10Discrete Random Variables
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Probability distributions

Lists all the possible values that the random variable can assume 

and their corresponding probabilities.

Ex. Number of Head from the toss of two coins



Probability distributions
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Lists all the possible values that the random variable can assume 

and their corresponding probabilities.

Ex. Number of Head from the toss of two coins
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Probability distributions
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Lists all the possible values that the random variable can assume 

and their corresponding probabilities.

2 conditions:

1. 0 ≤ 𝑃(𝑋𝑖) ≤ 1

2. Σ 𝑃(𝑋𝑖) = 1
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Xi P(Xi)

0 ¼ = 0.25

1 ¼ + ¼ = 2/4 = 0.5

2 ¼ = 0.25

Tot. 1.0



Probability distributions

Lists all the possible values that the random variable can assume 

and their corresponding probabilities.

2 characteristics:

1) For each value of X, 0 ≤ 𝑃 𝑋𝑖 ≤ 1

2) σ𝑖=1
𝑛 𝑃 𝑋𝑖 = 1
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Probability distributions  

Only one of the following is a probability distribution. Which one?
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෍
𝒊=𝟏

𝒏

𝑷 𝑿𝒊 ≠ 𝟏 𝑷 𝑿𝒊 ≤ 𝟎
𝟎 ≤ 𝑷 𝑿𝒊 ≤ 𝟏

෍
𝒊=𝟏

𝒏

𝑷 𝑿𝒊 = 𝟏



Probability distributions: example   
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Ex.: We toss 3 coins. Let X be random variable that counts the number of heads. Obtain the 

probability distribution of X. 

Also calculate the probability of having :

1. two heads;

2. no head;

3. more than one head;

4. at least one head;

5. less than three heads;

6. at most one head.

Solution

The Sample Space of 8 possible outcomes of the experiment is:

Ω={HHH, HHT, HTH , HTT, THH, THT, TTH, TTT}

We call each outcome wi



Probability distributions: example   
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Ex.: We toss 3 coins. Let X be random variable that counts the number of heads. 

Obtain the probability distribution of X. 

Solution

X is the random variable that counts 

the number of heads.
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Probability distributions: example   
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Ex.: We toss 3 coins. Let X be random variable that counts the number of heads. 

Obtain the probability distribution of X. 

Solution

X is the random variable that counts 

the number of heads.
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Probability distributions: example   
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Ex.: We toss 3 coins. Let X be random variable that counts the number of heads. 

Obtain the probability distribution of X. 

Solution

So, the 
probability 

distribution of 

X is:
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Probability distributions: example   
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Ex: We toss 3 coins. Let X be random variable that counts the number of heads. Obtain the 

probability distribution of X. 

Also calculate the probability of having :

1. two heads;

2. no head;

3. more than one head;

Solution

From this probability distribution we can calculate the probability from 1. to 3.:

1. P(X = 2) = 3/8

2. P(X = 0) = 1/8

3. P(X > 1) = P(X = 2) + P(X = 3) = 3/8 + 1/8 = 4/8 = 1/2



Probability distributions: example   
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Ex: We toss 3 coins. Let X be random variable that counts the number of heads. Obtain the 

probability distribution of X. 

Also calculate the probability of having :

4. at least one head;

5. less than three heads;

6. at most one head.

Solution

From this probability distribution we can calculate the probability from 4. to 6.:

4. P(X ≥ 1) = P(X = 1) + P(X = 2) + P(X = 3) = 1/8 + 3/8 + 3/8 = 7/8

5. P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 7/8 

     or P(X < 3) = 1 - P(X = 3) [2nd condition of prob. distr.] = 1 - 1/8 = 7/8

6. P(X ≤ 1) = P(X = 0) + P(X = 1) = 1/8 + 3/8 = 4/8 = 1/2



Probability distributions: example   

21Discrete Random Variables

A pair of fair dice is rolled. Let 𝑋 denote the sum of the number of dots on the

top faces.

a. Construct the probability distribution of 𝑋.

b. Find 𝑃(𝑋 ≥ 9).

c. Find the probability that 𝑋 takes an even value.



Probability distributions: example   
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Solution:

The sample space Ω of equally likely outcomes is

a. The possible values for X are the numbers 2 through 12. 

𝑋 =  2 is the event {11}, so 𝑃 (2)  =  1 ∕  36. 

𝑋 =  3 is the event {12,21}, so 𝑃 (3)  =  2 ∕  36. 

Continuing this way we obtain the table 

This table is the probability distribution of X.



Probability distributions: example   
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Solution:

b. The event X ≥ 9 is the union of the mutually exclusive events X = 9, X = 10, 

X = 11, and X = 12. Thus

𝑃 𝑋 ≥ 9 = 𝑃 9 + 𝑃 10 + 𝑃 11 + 𝑃 12 =
4

36
+

3

36
+

2

36
+

1

36
=

10

36



Probability distributions: example   
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Solution:

c. Before we immediately jump to the conclusion that the probability that X 
takes an even value must be 0.5, note that X takes six different even values 

but only five different odd values.

𝑃 𝑋 𝑖𝑠 𝑒𝑣𝑒𝑛 = 𝑃 2 + 𝑃 4 + 𝑃 6 + 𝑃 8 + 𝑃 10 + 𝑃 12 =
= 1/36 + 3/36 + 5/36 + 5/36 + 3/36 + 1/36 = 18/36 = 0.5



Probability distributions: example   

The probability that a randomly selected family holds 2 vehicles is…

𝑃 𝑋 = 2 = 0.425
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Probability distributions: example   

The probability that a randomly selected family holds at most 1 

vehicle is…

𝑃 𝑋 ≤ 1 =

𝑃 𝑋 = 0 + 𝑃 𝑋 = 1 =

 0.015 + 0.235 = 0.25 
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Probability distributions: example   

The probability that a randomly selected family holds at least 2  

vehicles is…

𝑃 𝑋 ≥ 2 =
1 − 𝑃 𝑋 ≤ 1 = 0.75
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Probability distributions: example   

The probability that a randomly selected family holds 3 or more 

vehicles is…

𝑃 𝑋 ≥ 3 =
𝑃 𝑋 = 3 + 𝑃 𝑋 = 4 =
0.245 + 0.08 = 0.325
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Random Variable and Probability Distribution

Random Variable 

It is a numerical quantity that is generated by a random 

experiment.

Probability Distribution

Lists all the possible values that the random variable can assume 

and their corresponding probabilities.

2 characteristics:

• 0 ≤ 𝑃 𝑋𝑖 ≤ 1

• σ𝑖=1
𝑛 𝑃 𝑋𝑖 = 1
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Cumulative Distribution Function  (CDF)

Given a value 𝑥0 the CDF gives the probability that X assumes 

values equal or lower than 𝑥0

𝐹 𝑥0) = 𝑃(𝑋 ≤ 𝑥0

30Discrete Random Variables

𝒙𝒊 𝑷(𝒙𝒊) 𝐅(𝒙𝒊)

0 0.015 0.015

1 0.235 0.015 + 0.235 = 0.250

2 0.425 0.250 + 0.425 = 0.675

3 0.245 0.675 + 0.245 = 0.920

4 0.080 0.920 + 0.080 = 𝟏. 𝟎𝟎𝟎

Total 𝟏. 𝟎𝟎𝟎



CDF: graphical representation   
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A stepped line graph or step chart is a chart 

similar to a line graph, but with the line 

forming a series of steps between data points.

It is useful when you want to show the 

changes that occur at irregular intervals.



From CDF to probability distribution
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Expected Value, Variance and Standard Dev.
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Expected Value

E(X) is the mean of the probability distribution

𝐸(𝑋) = 𝜇 = Σ𝑥𝑖·𝑃(𝑥𝑖)

Variance

They measure the spread of the probability distribution:

𝑉(𝑋) = 𝜎2 = 𝐸(𝑋 − 𝐸(𝑋))2 = 𝐸(𝑋2) − 𝐸(𝑋)2

For discrete, 𝑉(𝑋) = 𝜎2 = Σ𝑥𝑖
2·𝑃(𝑥𝑖) − 𝜇2

Standard Deviation

𝑆𝐷(𝑋) = 𝜎 = 𝜎2



Expected Value

E(X) is the mean of the probability distribution 

𝐸 𝑋 = 𝜇 = ෍

𝑖=1

𝑘

𝑥𝑖𝑃 𝑥𝑖

➔𝜇 = 𝐸 𝑋 = 2.14
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𝒙𝒊 𝑷(𝒙𝒊) 𝒙𝒊𝑷(𝑿𝒊)

0 0.015 0.000

1 0.235 0.235

2 0.425 0.850

3 0.245 0.735

4 0.080 0.320

Total 𝟏. 𝟎𝟎𝟎 𝟐. 𝟏𝟒𝟎



Variance and Standard Deviation  

They measure the spread of the probability distribution:

•  Variance, V(X)
𝑉 𝑋 = 𝜎2 = 𝐸(𝑋 − 𝐸 𝑋 )2 = 𝐸 𝑋2 − 𝐸(𝑋)2

For discrete➔𝜎2 = σ𝑖=1
𝑘 𝑥𝑖 − 𝐸(𝑋) 2𝑃 𝑥𝑖

= σ𝑖=1
𝑘 𝑥𝑖

2𝑃 𝑥𝑖 −𝐸(𝑋)2

• Standard Deviation, SD(X)

𝑆𝐷 𝑋 = 𝜎 = 𝜎2

𝜎 roughly describes how far the variable falls on average from E(X)
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Variance for discrete random variables: proof

𝜎2 = ෍

𝑖=1

𝑘

𝑥𝑖 − 𝐸(𝑋) 2𝑃 𝑥𝑖 =

= ෍

𝑖=1

𝑘

𝑥𝑖
2 + 𝐸(𝑋)2 − 2𝑥𝑖𝐸(𝑋) 𝑃 𝑥𝑖 =

= ෍

𝑖=1

𝑘

𝑥𝑖
2𝑃 𝑥𝑖 + 𝐸(𝑋)2 ෍

𝑖=1

𝑘

𝑃 𝑥𝑖 − 2𝐸(𝑋) ෍

𝑖=1

𝑘

𝑥𝑖𝑃 𝑥𝑖 =

= σ𝑖=1
𝑘 𝑥𝑖

2𝑃 𝑥𝑖 −𝐸(𝑋)2
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Variance and Standard Deviation: Example  
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𝑉 𝑋 = σ𝑖=1
𝑘 𝑥𝑖 − 𝐸(𝑋) 2𝑃 𝑥𝑖 = 0.84 

𝑉 𝑋 = σ𝑖=1
𝑘 𝑥𝑖

2𝑃 𝑥𝑖 −𝐸 𝑋 2 = 5.42 − 2.142 = 0.84 

𝑆𝐷 𝑋 = 0.84 = 0.917

𝒙 𝑷(𝒙) (𝒙𝒊 − 𝑬 𝒙 )𝟐𝑷(𝒙) 𝒙𝟐𝑷(𝒙)

0 0.015 0.069 0.000

1 0.235 0.305 0.235

2 0.425 0.008 1.700

3 0.245 0.181 2.205

4 0.080 0.277 1.280

Total 1.000 0.840 5.420



Discrete Probability Distribution: Bernoulli
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Bernoulli Probability Distribution 

Only 2 values (1=“success”, 0 = “failure”). 1 with probability 𝑝, 0 

with probability (1 − 𝑝) (sometimes instead of (1-p) you might find q) 

Probability function:

𝑃 𝑋 = 𝑥 = 𝑝𝑥
 
× (1 − 𝑝)(1−𝑥) 

𝐸(𝑋) = 𝑝    and    𝑉(𝑋) = 𝑝 × (1 − 𝑝) 

ex. Accept or decline an investment, vote yes or no on a ballot, etc.



Discrete Probability Distribution: Binomial
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Binomial Random Variable 

Represents the number of successes in 𝑛 Bernoulli experiments: 

a) independent 

b) with equal 𝒑 

Probability function:   

𝑃 𝑋 = 𝑥 =
𝑛
𝑥

𝑝𝑥
 
× (1 − 𝑝)(𝑛−𝑥) 

𝐸(𝑋) = 𝑛 × 𝑝      and     𝑉(𝑋) = 𝑛 × 𝑝 × (1 − 𝑝) 

ex. Number of heads obtained tossing a coin 10 times.



Discrete Probability Distribution: Poisson
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Poisson Probability Distribution 

Represents the number of occurrences in a given interval. 

Occurrences have to be random and independent 

Probability function:           

𝑃(𝑋 = 𝑥) = 
𝜆𝑥𝑒−𝜆

𝑥!
  

with 𝜆 (or µ) as average number of occurrences in a given interval 

and 𝑥 number of occurrences (in the same interval) 

𝐸(𝑋) = 𝑉(𝑋) = λ

ex. Number of telemarketing phone calls received in a day



Discrete Probability Distribution: Hypergeometric
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Hypergeometric Distribution

Represents the number of successes in 𝑛 not independent Bernoulli

experiments

Probability function:

𝑃 𝑋 = 𝑥 =

𝑟
𝑥

𝑁 − 𝑟
𝑛 − 𝑥
𝑁
𝑛

with:
𝑁 = population size,

𝑛 = sample size (integer numbers),

𝑟 = nr. successes in population,

𝑥 = nr. successes in sample



Bernoulli Random Variable   
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Bernoulli trial: random experiment generating a sample space 
consisting of only two elementary outcomes, success (A) or failure 
(Ᾱ).

Ω = (A; Ᾱ)

A Bernoulli random variable X takes value 1 if the event success 
occurs and zero otherwise. 

Let p = P(A) denote the success probability and (1 – p) or q = P(Ᾱ).



Bernoulli Probability Distribution   
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Only 2 values (1=“success”, 0 = “failure”).

1 with probability 𝑝    

0 with probability 1 − 𝑝 𝑜𝑟 𝑞               ➔

Probability function: 
𝑃 𝑥 = 𝑝𝑥(1 − 𝑝)1−𝑥

➔ 𝐸(𝑋) = 𝑝

➔ 𝑉(𝑋) = 𝑝 × (1 − 𝑝)  

Ex.: a team will win a championship or not, a student will pass or fail 
an exam, a rolled dice will either show a 6 or any other number, etc.

x P(x)

0 1-p

1 p

Total 1



Bernoulli Probability Distribution: example   
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A gym membership is renewed with probability 0.7. Let X be the 
random variable that represents the decision of each member to 
renew the subscription. What is the distribution of X? Obtain E(X) 
and V(X). 

1 (success)= renew

0 (failure) = not renewed 

➔ 𝐸(𝑋) = 0.7

➔ 𝑉 𝑋 = 0.7 × 0.3 = 0.21

x P(x)

0 0.3

1 0.7

Total 1



Binomial Trial
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Binomial experiments are random experiments that consist of a fixed 
number of repeated trials, like tossing a coin 10 times, randomly choosing 
10 people, rolling a die 5 times, etc.

These trials need to be independent in the sense that the outcome in one 
trial has no effect on the outcome in other trials.

In each of these repeated trials there is one outcome that is of interest to us 
(we call this outcome “success”), and each of the trials is identical in the 
sense that the probability that the trial will end in a “success” is the same 
in each of the trials.

So for example, if our experiment is tossing a coin 10 times, and we are 
interested in the outcome “heads” (our “success”), then this will be a 
binomial experiment, since the 10 trials are independent, and the 
probability of success is ½ in each of the 10 trials.



Binomial Trial

46Summarizing Data

The requirements to be a binomial experiment are:

• a fixed number (n) of trials

• each trial must be independent of the others

• each trial has just two possible outcomes, called “success” (the 
outcome of interest) and “failure”

• there is a constant probability (p) of success for each trial, the 
complement of which is the probability (1 – p) of failure, 
sometimes denoted as q = (1 – p)

In binomial random experiments, the number of successes in n 
trials is random.



Binomial Random Variable  
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The random variable X that represents the number of successes in 
n Binomial Trials is called a Binomial Random Variable, and is 
determined by the values of n and p. 

We say, “X is binomial with n = … and p = …”

“The Binomial Random Variable X ~  B(n; p) represents the 
number of successes in a sequence of n independent Bernoulli 
trials, all occurring with the same probability p of success.”

X takes the values 0, 1, …, n.

Represents the number of successes in 𝑛 Bernoulli experiments:

a) independent 

b) with equal 𝒑 



Random Experiments (Binomial or Not?)

48Summarizing Data

Let’s consider a few random experiments.

In each of them, we’ll decide whether the random variable is 
binomial. If it is, we’ll determine the values for n and p. If it isn’t, 
we’ll explain why not.

Ex. 1: A fair coin is flipped 20 times. X represents the number of 
heads.

X is binomial with n = 20 and p = 0.5

Ex. 2: You roll a fair die 50 times. X is the number of times you get 
a six.

X is binomial with n = 50 and p = 1/6



Random Experiments (Binomial or Not?)
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Ex. 3: Roll a fair die repeatedly. X is the number of rolls it takes to 
get a six.

X is not binomial, because the number of trials is not fixed.

Ex. 4: Draw 3 cards at random, one after the other, without 
replacement, from a set of 4 cards consisting of one club, one 
diamond, one heart, and one spade. X is the number of diamonds 
selected.

X is not binomial, because the selections are not independent.

The probability (p) of success is not constant, because it is affected 
by previous selections.
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Ex. 5: Draw 3 cards at random, one after the other, with replacement, 
from a set of 4 cards consisting of one club, one diamond, one heart, and 
one spade. X is the number of diamonds selected. 

Sampling with replacement ensures independence.

X is binomial with n = 3 and p = ¼ 

Ex. 6: Approximately 1 in every 20 children has a certain disease. Let X 
be the number of children with the disease out of a random sample of 
100 children. Although the children are sampled without replacement, 
it is assumed that we are sampling from such a vast population that 
the selections are virtually independent.

X is binomial with n = 100 and p = 1/20 = 0.05
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Ex. 7: The probability of having blood type B is 0.1. Choose 4 
people at random. X is the number with blood type B.

X is binomial with n = 4 and p = 0.1

Ex. 8: A student answers 10 quiz questions completely at random; 
the first five are true/false, the second five are multiple choice, 
with four options each. X represents the number of correct 
answers.

X is not binomial, because p changes from ½ to ¼ 
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Represents the number of successes in 𝑛 independent Bernoulli 
experiments with equal 𝑝 (and q = 1 − 𝑝)

Values (integers): 0, 1, 2,…,𝑛 

Probability function: 

𝑃 𝑋 = 𝑥 =
𝑛
𝑥

𝑝𝑥(1 − 𝑝)𝑛−𝑥=
𝑛!

𝑥! 𝑛 − 𝑥 !
𝑝𝑥(1 − 𝑝)𝑛−𝑥

With: 

𝑛 = nr of trials, 𝑝 = probability of success, 𝑥= number of successes 

𝐸(𝑋) = 𝑛 × 𝑝 and 𝑉(𝑋) = 𝑛 × 𝑝 × (1 − 𝑝)
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The random variable X that represents the number of successes in n 

Binomial Trials is called a Binomial Random Variable, and is 

determined by the values of n and p. 

Represents the number of successes in 𝑛 Bernoulli experiments: 

a) independent 

b) with equal 𝒑 

Probability function:   

𝑃 𝑋 = 𝑥 =
𝑛
𝑥

𝑝𝑥
 
∙ (1 − 𝑝)(𝑛−𝑥) 

𝐸(𝑋) = 𝑛 × 𝑝      and     𝑉(𝑋) = 𝑛 × 𝑝 × (1 − 𝑝)
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5% percent of all DVD players manufactured by a large electronics 
company are defective. Let X be the number of defective DVD found in 
a random sample of 3 DVD players. 

1) What is the distribution of X? 

X is a binomial variable, with 𝑛 = 3, 𝑝 = 0.05

2) What are all the possible values of X?

All the integers between 0 and 𝑛 ➔ from 0 to 3
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5% percent of all DVD players manufactured by a large electronics 
company are defective. Let X be the number of defective DVD found in 
a random sample of 3 DVD players. 

3) What is the probability that none of the DVD is defective?

𝑃 𝑋 = 0 =
3
0

0.050(0.95)3−0=
3 × 2 × 1

1 × 3 × 2 × 1
1(0.95)3= 0.8574

4) What is the probability that only one of the DVD is defective?

𝑃 𝑋 = 1 =
3
1

0.051(0.95)3−1= 0.1354
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5% percent of all DVD players manufactured by a large electronics 
company are defective. Let X be the number of defective DVD found in 
a random sample of 3 DVD players. What is the distribution of X?

𝑋 = (0, 1, 2, 3)

𝑃 𝑋 = 0 =
3
0

0.050(0.95)3−0=
3 × 2 × 1

1 × 3 × 2 × 1
1(0.95)3= 0.8574

𝑃 𝑋 = 1 =
3
1

0.051(0.95)3−1= 0.1354

𝑃 𝑋 = 2 =
3
2

0.052(0.95)3−2= 0.0071

𝑃 𝑋 = 3 =
3
3

0.053(0.95)0= 0.0001
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5% percent of all DVD players manufactured by a large electronics 
company are defective. Let X be the number of defective DVD found in 
a random sample of 3 DVD players. What is the distribution of X?

x P(x)

0 0.8574

1 0.1354

2 0.0071

3 0.0001

Total 1
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5% percent of all DVD players manufactured by a large electronics 
company are defective. Let X be the number of defective DVD found in 
a random sample of 3 DVD players. Compute E(X) and V(X)
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5% percent of all DVD players manufactured by a large electronics 
company are defective. Let X be the number of defective DVD found in 
a random sample of 3 DVD players. Compute E(X) and V(X)

➔𝐸 𝑋 = 0.15

𝐸 𝑋 =  𝑛 ∙ 𝑝 = 3 ∙ 0.05
= 0.15

➔V X = 𝐸(𝑋2) − 𝐸 𝑋 2

= 0.165 − 0.152 = 0.1425

𝑉 𝑋 = 𝑛 ∙ 𝑝 ∙ 1 − 𝑝
= 3 ∙ 0.05 ∙ 0.95 = 0.1425

x P(x) xP(x) x
2
P(x)

0 0.8574 0.0000 0.0000

1 0.1354 0.1354 0.1354

2 0.0071 0.0143 0.0285

3 0.0001 0.0004 0.0011

Total 1 0.15 0.165
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10% percent of all DVD players manufactured by a large electronics 
company are defective. Let X be the number of defective DVD found in 
a random sample of 3 DVD players. What is the distribution of X?
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10% percent of all DVD players manufactured by a large electronics 
company are defective. Let X be the number of defective DVD found in 
a random sample of 3 DVD players. What is the distribution of X?

𝑋 = (0, 1, 2, 3)

𝑃 𝑋 = 0 =
3
0

0.100(0.90)3−0=
3 × 2 × 1

1 × 3 × 2 × 1
1(0.90)3= 0.729

𝑃 𝑋 = 1 =
3
1

0.101(0.90)3−1= 0.243

𝑃 𝑋 = 2 =
3
2

0.102(0.90)3−2= 0.027

𝑃 𝑋 = 3 =
3
3

0.103(0.90)0= 0.001
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10% percent of all DVD players manufactured by a large electronics 
company are defective. Let X be the number of defective DVD found in 
a random sample of 3 DVD players. What is the distribution of X?

x P(x)

0 0.7290

1 0.2430

2 0.0270

3 0.0010

Total 1
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30% percent of all DVD players manufactured by a large electronics 
company are defective. Let X be the number of defective DVD found in 
a random sample of 3 DVD players. What is the distribution of X?
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30% percent of all DVD players manufactured by a large electronics 
company are defective. Let X be the number of defective DVD found in 
a random sample of 3 DVD players. What is the distribution of X?

𝑋 = (0, 1, 2, 3)

𝑃 𝑋 = 0 =
3
0

0.300(0.70)3−0=
3 × 2 × 1

1 × 3 × 2 × 1
1(0.70)3= 0.343

𝑃 𝑋 = 1 =
3
1

0.301(0.70)3−1= 0.441

𝑃 𝑋 = 2 =
3
2

0.302(0.70)3−2= 0.189

𝑃 𝑋 = 3 =
3
3

0.303(0.70)0= 0.027
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30% percent of all DVD players manufactured by a large electronics 
company are defective. Let X be the number of defective DVD found in 
a random sample of 3 DVD players. What is the distribution of X?

x P(x)

0 0.3430

1 0.4410

2 0.1890

3 0.0270

Total 1



50% percent of all DVD players manufactured by a large electronics 
company are defective. Let X be the number of defective DVD found in 
a random sample of 3 DVD players. What is the distribution of X?
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50% percent of all DVD players manufactured by a large electronics 
company are defective. Let X be the number of defective DVD found in 
a random sample of 3 DVD players. What is the distribution of X?

𝑋 = (0, 1, 2, 3)

𝑃 𝑋 = 0 =
3
0

0.500(0.50)3−0=
3 × 2 × 1

1 × 3 × 2 × 1
1(0.70)3= 0.125

𝑃 𝑋 = 1 =
3
1

0.501(0.50)3−1= 0.375

𝑃 𝑋 = 2 =
3
2

0.502(0.50)3−2= 0.375

𝑃 𝑋 = 3 =
3
3

0.503(0.50)0= 0.125

Binomial Variable: example  
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50% percent of all DVD players manufactured by a large electronics 
company are defective. Let X be the number of defective DVD found in 
a random sample of 3 DVD players. What is the distribution of X?

x P(x)

0 0.1250

1 0.3750

2 0.3750

3 0.1250

Total 1

Binomial Variable: example  
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2% of the packages mailed through Amazon do not arrive within the 
specified time. Suppose that 10 packages are mailed. Find the 
probability that:

(a) 1 will not arrive within the specified time

(b) at most 1 will not arrive within the specified time
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2% of the packages mailed through Amazon do not arrive within the 
specified time. Suppose that 10 packages are mailed. Find the 
probability that:

(a) 1 will not arrive within the specified time

𝑃 𝑋 = 1 =
10
1

0.021(0.98)10−1= 0.1667

(b) at most 1 will not arrive within the specified time
𝑃 𝑋 ≤ 1 = 𝑃 𝑋 = 0 + 𝑃 𝑋 = 1 =

=
10
0

0.020(0.98)10−0+
10
1

0.021(0.98)10−1=

= 0.8171 + 0.1667 = 0.9838
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Historical data show that 12% percent of all credit card holders of a US 
bank eventually become delinquent. A random sample of 3 credit card 
holders is extracted. Derive the probability distribution and the CDF: 
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Historical data show that 12% percent of all credit card holders of a US 
bank eventually become delinquent. A random sample of 3 credit card 
holders is extracted. Derive the probability distribution and the CDF : 

x P(x) F(x)

0 0.681 0.681

1 0.279 0.960

2 0.038 0.998

3 0.002 1.000

Total 1
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Historical data show that 12% percent of all credit card holders of a US 
bank eventually become delinquent. A random sample of 3 credit card 
holders is extracted. Derive the E(X) and the V(X):

𝐸(𝑋) = 𝑛 × 𝑝 = 3 × 0.12 = 0.36 

𝑉(𝑋) = 𝑛 × 𝑝 × (1 − 𝑝) = 3 × 0.12 × 0.88 = 0.317 

➔E(X)=0.36

➔V(X)=𝐸(𝑋2) − 𝐸 𝑋 2 =
0.446 − 0.362 = 0.317

x P(x) xP(X) x^2P(X)

0 0.681 0 0

1 0.279 0.279 0.279

2 0.038 0.076 0.152

3 0.002 0.005 0.016

Total 1 0.360 0.446

x P(x) xP(x) x
2
P(x)

0 0.8574 0.0000 0.0000

1 0.1354 0.1354 0.1354

2 0.0071 0.0143 0.0285

3 0.0001 0.0004 0.0011

Total 1 0.15 0.165

x P(x) xP(x) x
2
P(x)

0 0.8574 0.0000 0.0000

1 0.1354 0.1354 0.1354

2 0.0071 0.0143 0.0285

3 0.0001 0.0004 0.0011

Total 1 0.15 0.165
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Represents the number of successes in 𝑛 not independent Bernoulli 
experiments 

Values (integers): 0, 1,2,…,𝑛 

Probability function: 

𝑃 𝑋 = 𝑥 =

𝑟
𝑥

𝑁 − 𝑟
𝑛 − 𝑥
𝑁
𝑛

With: 𝑁 = population size, 𝑛 = sample size, 𝑟=number of successes in 
population, 𝑥=nr of successes in sample 
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Ex. A firm has 12 employees, 7 females and 5 males. The company is 
planning to send 3 of them to a conference. Find the probability that 
all 3 of them are female.

• Single employee is a Bernoulli experiment (1 if female, 0=otherwise)

• They are not independent (extracted without replacement)

• In this example: 𝑁 = 12, 𝑛 = 3, 𝑟=7, 𝑥=3

𝑃 𝑋 = 3 =

7
3

12 − 7
3 − 3

12
3

=
7

44
= 0.1591
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Ex. A firm has 12 employees, 7 females and 5 males. The company is 
planning to send 3 of them to a conference. Find the probability that 
at most 1 of them is a female:

𝑃 𝑋 ≤ 1 = 𝑃 𝑋 = 0 + 𝑃 𝑋 = 1 =

=

7
0

12 − 7
3 − 0

12
3

+

7
1

12 − 7
3 − 1

12
3

=
1

22
+

7

22
= 0.0455 + 0.3182 = 0.3637
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Represents the number of occurrences in a given interval. 
Occurrences have to be random and independent  

Example: number of telemarketing phone calls received in a day

Values (integers): 0, 1,2,…,.. NO UPPER LIMIT!

Probability function: 

𝑃 𝑋 = 𝑥 =
𝜇𝑥𝑒−𝜇

𝑥!
With: 𝜇 = average number of occurrences in a given interval, 

𝑥 = number of occurrences (in the same interval) 

➔𝐸(𝑋) = 𝑉(𝑋) = 𝜇
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Poisson probability function: 

𝑃 𝑋 = 𝑥 =
𝜇𝑥𝑒−𝜇

𝑥!

It is possible to denote the average number of occurrences in a 

given interval (𝜇) also with 𝜆, so

𝑃 𝑋 = 𝑥 =
𝜆𝑥𝑒−𝜆

𝑥!
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A washing machine breaks down an average of three times per year. 
Find the probability that during one year this machine will have:

1) exactly 2 breakdowns 

𝑃 𝑋 = 2 =
32𝑒−3

2!
= 0.2240

2) At most 1 breakdown 
𝑃 𝑋 ≤ 1 = 𝑃 𝑋 = 0 + 𝑃 𝑋 = 1 =

=
30𝑒−3

0!
+

31𝑒−3

1!
= 0.0498 + 0.1494 = 0.1992
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A washing machine breaks down an average of three times per year. 
Find the probability that during one year this machine will have:

1) exactly 2 breakdowns 

𝑃 𝑋 = 𝑥 =
𝜇𝑥𝑒−𝜇

𝑥!

𝑃 𝑋 = 2 =
32𝑒−3

2!
= 0.2240
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A washing machine breaks down an average of three times per year. 
Find the probability that during one year this machine will have:

2) At most 1 breakdown 
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A washing machine breaks down an average of three times per year. 
Find the probability that during one year this machine will have:

2) At most 1 breakdown

𝑃 𝑋 ≤ 𝑥 = ෍

𝑖=0

𝑥
𝜇𝑖𝑒−𝜇

𝑖!

𝑃 𝑋 ≤ 1 = 𝑃 𝑋 = 0 + 𝑃 𝑋 = 1 =

=
30𝑒−3

0!
+

31𝑒−3

1!
= 0.0498 + 0.1494 = 0.1992
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On average a household receives 10 telemarketing phone calls per 
month. Find the probability that a randomly selected household 
receives:

1) exactly 6 of such phone calls during a given month.
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On average a household receives 10 telemarketing phone calls per 
month. Find the probability that a randomly selected household 
receives:

1) exactly 6 of such phone calls during a given month.

𝑃 𝑋 = 6 =
106𝑒−10

6!
= 0.063
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On average a household receives 10 telemarketing phone calls per 
month. Find the probability that a randomly selected household 
receives:

2) exactly 3 of such phone calls during a given week (assume 4 weeks 
each month)
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On average a household receives 10 telemarketing phone calls per 
month. Find the probability that a randomly selected household 
receives:

2) exactly 3 of such phone calls during a given week (assume 4 weeks 
each month)

𝜇 =
10

4
= 2.5

𝑃 𝑋 = 3 =
2.53𝑒−2.5

3!
= 0.214
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Let X and Y be 2 random variables, their linear combination is 
𝑎𝑋 +  𝑏𝑌 

• If 𝑎 = 𝑏 = 1 ➔ linear combination is the sum 

• If 𝑎 = 1, 𝑏 =  −1 ➔ linear combination is the difference 

Then 
𝐸(𝑎𝑋 + 𝑏𝑌) = 𝑎𝐸(𝑋) + 𝑏𝐸(𝑌)

𝑉 𝑎𝑋 + 𝑏𝑌 = 𝑎2 ∙ 𝐸 𝑋 + 𝑏2 ∙ 𝐸 𝑌 + 2𝑎 ∙ 𝑏 ∙ 𝐶𝑜𝑣(𝑋𝑌)
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𝐸 𝑎𝑋 + 𝑏𝑌 = ෍

𝑖=1

𝑘

෍

𝑗=1

ℎ

𝑎𝑥𝑖 + 𝑏𝑦𝑗 𝑝𝑖𝑗 =

= ෍

𝑖=1

𝑘

෍

𝑗=1

ℎ

𝑎𝑥𝑖𝑝𝑖𝑗 + ෍

𝑖=1

𝑘

෍

𝑗=1

ℎ

𝑏𝑦𝑗𝑝𝑖𝑗 = 𝑎 ෍

𝑖=1

𝑘

𝑥𝑖 ෍

𝑗=1

ℎ

𝑝𝑖𝑗 + 𝑏 ෍

𝑗=1

ℎ

𝑦𝑗 ෍

𝑖=1

𝑘

𝑝𝑖𝑗 =

= 𝑎 ෍

𝑖=1

𝑘

𝑥𝑖 𝑝𝑖∙ + 𝑏 ෍

𝑗=1

ℎ

𝑦𝑗 𝑝∙𝑗 = 𝑎𝜇𝑋 + 𝑏𝜇𝑌
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= ⋯



Linear Combinations: Variance (proof) 2/2
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𝑉𝑎𝑟 𝑎𝑋 + 𝑏𝑌 = ⋯
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