
Generalized
Linear Models

Rosario
Barone

Generalized Linear Models
B.D. in Business Administration and Economics

Course in Quantitative Methods III

Rosario Barone
University of Rome “Tor Vergata”

rosario.barone@uniroma2.it



Generalized
Linear Models

Rosario
Barone

Introduction

A generalized linear model (GLM) is a flexible generalization of
ordinary linear regression. The GLM generalizes linear
regression by allowing the linear model to be related to the
response variable via a link function and by allowing the
magnitude of the variance of each measurement to be a
function of its predicted value.
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Behind the GLM

Let suppose to be in the ordinary linear regression framework,
such that:

Y = β0 + β1X1 + · · ·+ βkXk + ε, ε ∼ N(0, σ2).

The described model predict the expected value E (Y |X ) as a
linear combination of a set of observed values (X1, . . . ,Xk),
implying that a constant change in one of the predictors leads
to a constant change in the response variable.
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Behind the GLM

This results appropriate for response variables which can vary
indefinitely in either direction, or more generally for any
quantity that only varies by a relatively small amount compared
to the variation in the predictive variables.

However, in cases where the response variable Y is expected to
be always positive and varying over a wide range, constant
input changes lead to exponentially varying, rather than
constantly varying, output changes. Therefore, these
assumptions turn out to be inappropriate.
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Wedderburn’s solution

Wedderburn (with Nelder) in 1972 (he was only 25!!!)
proposed a Generalization of linear models for situations in
which the outcome is not Gaussian, summarized as follows:

specify distribution for the dependent variable f (Y |θ);

specify a link function g(·);

specify a linear predictor;

a model for the variance of the outcome (usually)
automatically follows, hence heteroscedasticity.
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Wedderburn’s solution

The idea was to model a parameter rather than the outcome Y
itself. With the linear model, this is equivalent since E [Y ] = µ
and Yi = µ+ εi . In general, Yi can not be simply expressed as
a function of E [Y ] and a random shock.

In other words, GLMs allows:

for response variables that have arbitrary distributions
(Binomial, Multinomial, Poisson).

arbitrary function of the response variable (the link
function) to vary linearly with the predictors.
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Assumption on the distribution of Y

Let Y represent the dependent variable and X represent the
regressors. In the GLM, the distribution of the dependent
variable f (Y|θ) is assumed to belong to the exponential family.
The exponential family is a parametric set of probability
distributions. Some examples:

Normal

Poisson

binomial (with fixed n)

multinomial (with fixed n)

negative binomial (with fixed number of failures).

*Note tath the parameters which must be fixed determine a
limit on the size of observations.
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Model definition

We define the distribution f (Y |X ), with mean µ of the
depending on the independent variables, X , through:

E(Y |X ) = µ = g−1(Xβ)

where:

E (Y |X ) is the expected value of Y conditional on X ;

Xβ is the linear predictor;

g is the link function.

The variance is typically a function, V , of the mean:

var(Y |X ) = ν(g−1(Xβ)).

However, by choosing ν as a distribution of the exponential
family we get a more flexible model.
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Summary as overview:

In order to define a GLM we need to specify three elements:

An exponential family of probability distributions.

A linear predictor η.

A link function g .
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Probability distributions

Suppose to have Y , composed of n independent observations
(y1, ..., yn). We distinguish the definition of the probability
mass or density function for yi in two cases:

If Yi is assumed to follow a two parameters distribution
(Normal, Gamma,. . . )

f (yi ; θi ;φ) = exp

{
[yiθi − b(θi )]

a(φ)
+ c(yi , φ)

}
where φ is called the dispersion parameter and θ is the natural
parameter.
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Probability distributions

If Yi is assumed to follow a one parameter distribution
(Binomial, Poisson,. . . ) we get:

f (yi ; θi ) = a(θi )b(yi ) exp {yiQ(θi )}

where φ is assumed to be known and:

Q(θ) = θ
a(φ)

a(θ) = exp
{

−b(θ)
a(φ)

}
b(y) = exp {c(y , φ)}
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Linear Predictor

Let X be the matrix of observed covariates, with (xi1, . . . , xip)
beeing the set of covariates for the i-th individual. The
systematic component of the GLM relates the {ηi} to the X
using the linear predictor :

ηi =
∑
j

βjxij for i = 1, . . . , n.

In matrix form, it can be expressed as

η = Xβ.

In other words, it is the quantity which incorporates the
information about the independent variables into the model.
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Link function

The GLM links ηi to µi = E (Yi |Xi ) by a link function g(·).
Therefore, the link function provides the relationship between
the linear predictor and the mean of the distribution function.

ηi = g(µi ) =
∑
j

βjxij for i = 1, . . . , n.

The link function that transforms the mean to the natural
parameter is called the canonical link, i.e g(·) is such that
g(µi ) = θi and

θi =
∑
j

βjxij .
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Link function

There are several desirable statistical properties of using the
canonical link:∑

i xijyi for j = 1, . . . , p is the sufficient statistics;

the Netwon Method and the Fisher scoring for finding the
MLE coincide;

the derivation of the MLE is semplified;

the sum of the residuals is ensured to be 0.
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Likelihood Inference

For n independent observations, the likelihood function is:

L(β) =
n∑

i=1

log(f (yi ; θi , ψ))

L(β) =
n∑

i=1

yiθi − b(θi )

a(φ)
+

n∑
i=1

c(yi , φ)

After some analytics, we get the likelihood equations:

L(β)

∂β
=

n∑
i=1

(yi − µi )xij
var(Yi )

∂µi
∂ηi

= 0.
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Likelihood Inference

β does not appear in these equations, however
µi = g−1(

∑
j βjxij);

the likelihood equations depend on the distribution of Yi

only trough µi and var(Yi );

the variance depends on the mean through a functional
form var(Yi ) = ν(µi ).

For most GLMs the likelihood equations are nonlinear
functions of β: we need an iterative method to solve
nonlinear equations and determine the maximum of a
likelihood function.
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Likelihood Inference: saturated GLM

A saturated GLM is a model with a separate parameter for
each observation: it has a perfect fitting. However, it is not
helpful:

not parsimonius

hard interpretation

We use it as baseline for other models, such as for checking
model fit!
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Likelihood Inference: Deviance of the model

Let µ̃ be the maximum likelihood estimate of the saturated
model and let µ̂ be the maximum likelihood estimate of the
unsaturated model we want to check.

−2 log

(
L(µ̂,Y )

L(µ̃,Y )

)
= −2 [`(µ̂,Y )− `(µ̃,Y )]

After some calculations we get:

= D(Y , µ̂)/ψ,

which is called scaled deviance: the smaller is this value, the
better is the fit.
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Likelihood inference: Likelihood ratio

Essentially, the deviance is the likelihood-ratio statistic for
testing the null hypothesis that the model holds against the
alternative that a more general model holds.

Suppose we want two models, M0 and M1 with MLE beeing
respecrively µ̂0 and µ̂1. Then, the likelihood-ratio statistic is

−2 [`(µ̂0,Y )− `(µ̂1,Y )] = D(Y , µ̂0)− D(Y , µ̂1)

This statistic is large when M1 fits better compared to M0.
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GLM residuals

For the GLM we consider two type of residuals:

deviance residuals: based on the idea of evaluating the
distance of the fitted model from the perfect fitting model;

Pearson residuals: based on the idea of subtracting off the
mean and dividing by the standard deviation.

Each of these types of residuals can be used to create an
RSS-like statistic.
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Quasi-Likelihood

The quasi-likelihood estimation an alternative approach
proposed by Wedderburn (1974), which assumes only a mean
variance relationship rather than a specific distribution for Yi .
It has a link function and linear predictor of the usual GLM
form, but instead of assuming a distributional type for Yi ; it
assumes only

var(Yi ) = ν(µi )

for some chosen variance function ν.

The equations that determine QML estimates are the
same as the likelihood equations for GLMs.

QMLE are MLE if and only if Yi is assumed to belong to
the natural exponential family (distributional assumption).
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Coming soon

Today we had the introduction to the GLM class. As
anticipated, we will mainly focus on GLM for two classes of
dependent variables:

Binary Data

Counts


