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GLM routine

More specifically, GLMs are generalization of linear models for
situations in which the outcome is not Gaussian, summarized
as follows:

specify distribution for the dependent variable f (Y |θ);

specify a link function g(·);

specify a linear predictor.
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Assumption on Y

The distribution of the dependent variable f (Y |θ) is assumed
to belong to the exponential family. Some examples:

Normal

binomial (with fixed n)

multinomial (with fixed n)

Poisson

negative binomial (with fixed number of failures).
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Model definition

We define the distribution f (Y |X ), with mean µ of the
depending on the independent variables, X , through:

E(Y |X ) = µ = g−1(Xβ)

where:

E (Y |X ) is the expected value of Y conditional on X ;

Xβ is the linear predictor;

g is the link function.

The variance is typically a function, V , of the mean:

var(Y |X ) = ν(g−1(Xβ)).

However, by choosing ν as a distribution of the exponential
family we get a more flexible model.
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Count outcome dependent variable

Let Y denote a count variable (Y ∈ N). The simplest counts
probability distribution is the Poisson distribution, with
probability mass function:

f (y ;µ) =
e−µµy

y !
= exp(−µ)

(
1

y !

)
exp (y logµ) .

This has natural exponential form

f (yi ; θi ) = a(θi )b(yi ) exp {yiQ(θi )}

with:

θ = µ

a(µ) = exp(−µ)

b(y) = 1/y !

Q(µ) = logµ
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Count outcome dependent variable

The natural parameter is logµ, so the canonical link function is
η = logµ (log link).

Let now Y denote a count response variable (Y ∈ N) and let
x = (x1, . . . , xk) be the vector of observed covariates.

We define a Poisson loglinear model, by using a log link to
define the relationship between the response variable and the
covariates, that is:

logµi =
∑
j

βjxij .
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Poisson loglinear model

The Poisson distribution has a positive mean µ;

although a GLM can model a positive mean using the
identity link, it is more common to model logµ:

logµ ∈ R;

logµ is the natural parameter for the Poisson distribution;

the log link is the canonical link for a Poisson GLM.

A Poisson loglinear GLM assumes a Poisson distribution for Y
and uses the log link.
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Poisson loglinear model

Let consider the simplest case, with a single with explanatory
variable X . The Poisson loglinear model is:

logµ = α + βx .

The mean satisfies the exponential relationship

µ = exp(α + βx) = eα
(
eβ
)x
.

A 1-unit increase in x has a multiplicative impact of eβ on µ:
The mean at x + 1 equals the mean at x multiplied by eβ.
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Overdispersion for Poisson GLMs

overdispersion is not an issue in ordinary regression with
normally distributed Y , because that distribution has a
separate parameter to describe variability.

Count data often show greater variability than the Poisson
allows: the variances are much larger than the means,
whereas Poisson distributions have identical mean and
variance.

A common cause of overdispersion is subject
heterogeneity.

When data does not have good fitting with the Poisson
distribution, ML estimates are still consistent but standard
errors are incorrect (underestimated).
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Overdispersion for Poisson GLMs

How to deal with overdispersion?

quasi-likelihood approach (as in the binomial case);

Negative binomial model.
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Negative Binomial GLMs

The negative Binomial GLMs are an extension of the Poisson
GLM that has an extra parameter and accounts better for
overdispersion.

Let consider a count variable, Y ∈ N; the negative binomial
distribution has density

f (y ; k, µ) =
Γ(y + k)

Γ(k)Γ(y + 1)

(
k

k + µ

)k (
1− k

k + µ

)y

;
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Negative Binomial GLMs

E (Y ) = µ;

var(Y ) = µ+ µ2/k .

k−1 is a dispersion parameter, and as k →∞, the
distribution converges to the Poisson(µ).

For k fixed, one can express the negative binomial density
in natural exponential family form and a model with
negative binomial random component is a GLM;

A variety of link functions are possible: most common is
the log link.
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Reminder: likelihood equations for GLM

For n independent observations, the likelihood function is:

L(β) =
n∑

i=1

log(f (yi ; θi , ψ))

L(β) =
n∑

i=1

yiθi − b(θi )

a(φ)
+

n∑
i=1

c(yi , φ)

After some analytics, we get the likelihood equations:

L(β)

∂β
=

n∑
i=1

(yi − µi )xij
var(Yi )

∂µi
∂ηi

= 0.
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Likelihood equations for a Poisson GLM

The general Poisson loglinear model has the matrix form

logµ = Xβ

By assuming the link to be ηi = logµi (log link), we have:

µi = exp(ηi ) and ∂µi/∂ηi = exp(ηi );

var(Yi ) = µi .

Therefore, the likelihood equations for the Poisson GLM are:

L(β)

∂β
=

n∑
i=1

(yi − µi )xij
µi

exp(ηi ) = 0,

since µi = exp(ηi ),

L(β)

∂β
=

n∑
i=1

(yi − µi )xij = 0.
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Overdispersion for Poisson GLMs and
Quasi-likelihood

An alternative way (with respect to the negative Binomial
model) for handling overdispersion for counts is the
quasi-likelihood approach.

Let Yi ∼ Pois(µi ), then:

E (Yi ) = µi ,

var(Yi ) = µi .
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Overdispersion for Poisson GLMs and
Quasi-likelihood

A simple quasi-likelihood approach uses the alternative variance
function

ν(µi ) = φµi ,

overdispersion occours when φ > 1.

Estimates are equal to the ML case for the Poisson response (φ
drops out from likelihood equations and it is estimated
separately) and the standard errors multiply by

√
φ.
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Poisson GLMs diagnostics

Deviance of the model

Likelihood ratio

Statistics on the residuals (RSS-like statistics):

deviance residuals

Pearson residuals
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Count data regression models in R

Poisson GLM: glm(formula, family = poisson,

data, ...)

Quasi-Likelihood approach for Poisson GLM:
glm(formula, family = quasipoisson, data, ...)

Negative Binomial GLM:

library: MASS

glm.nb(formula, data, ..., link = log)


