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Solution Assign the denominator 3x to each term of the numerator, simplify suitably and exploit
linearity of the indefinite integral∫
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2. Compute the following definite integral:

∫ √
ln 3

0

xex
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dx

□ A. 1 □ B. 2

□ C. 0 □ D. e

Solution By solving, through direct substitution the following indefinite integral∫
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and applying the fundamental theorem of calculus, we get∫ √
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3. Compute the domain and the range of the following function of two variables

z = f(x, y) =

√
x+ y + 1

x− 1

□ A. Df = {(x, y) ∈ R2 ; y < −x− 1} Rf = (0,+∞)

□ B. Df = {(x, y) ∈ R2 ; y ≥ −x− 1 and x ̸= 1} Rf = (−∞,+∞)

□ C. Df = {(x, y) ∈ R2 ; x ≥ y − 1 ; x ̸= 1} Rf = (−∞,+∞)

□ D. Df = {(x, y) ∈ R2 ; y ≥ −x− 1 and x ̸= 1} Rf = [0,+∞)

Solution The domain of the function is the collection of points (x, y) ∈ R such that{
x+ y + 1 ≥ 0

x ̸= 1
=⇒

{
y ≥ −x− 10

x ̸= 1

hence Df = {(x, y) ∈ R2 ; y ≥ −x− 1 and x ̸= 1}, as shown in the figure



Regarding the Range, surely the function attains both positive and negative values, as the denomi-
nator x− 1 covers all real values except for 0. Moreover if we analyze what happens in the direction
(x, 0) for x → 1− and for x → 1+, we get that

lim
(x,0)→(1−,0)

√
x+ 0 + 1

x− 1
= −∞ and lim

(x,0)→(1+,0)

√
x+ 0 + 1

x− 1
= +∞,

and the function is equal to zero for all the points (x, y) that lay on the line x + y + 1 = 0. Hence
Rf = (−∞,+∞).

4. Discuss if the following system is consistent as k changes and specify the number of solutions.
x+ y + kz = 2

x+ y + 3z = 2

2x+ ky − z = 1

□ A. The system is consistent with a unique solution if k ̸= 2 and k ̸= 3, if k = 3 the system
is consistent with ∞1 solutions, if k = 2 the system is inconsistent

□ B. The system is consistent with a unique solution if k ̸= 2 and k ̸= 3, if k = 2 the system
is consistent with ∞1 solutions, if k = 3 the system is inconsistent

□ C. The system is consistent with a unique solution if k ̸= −2 and k ̸= −3, if k = −3 and
k = −2 the system is consistent

□ D. The system is consistent with a unique solution if k ̸= 2 and k ̸= 3, if k = 3 and k = 2
the system is consistent with ∞1 solutions.

Solution Le t us consider the coefficient matrix

A =

 1 1 k
1 1 3
2 k −1

 ,

whose determinant is

det(A) = −1 + 6 + k2 − 2k − 3k + 1 = k2 − 5k + 6 = (k − 2)(k − 3)

Hence if k ̸= 2 and k ̸= 3 the system is consistent and admits one and only one solution.
If k = 2 the coefficient matrix becomes

A =

 1 1 2
1 1 3
2 2 −1

 ,

and rk(A) = 2 as the highlighted (in red) minor of order 2 is different from zero. Let us analyze the
rank of the augmented matrix



A|b =

 1 1 2 2
1 1 3 2
2 2 −1 1

 ,

and by bordering the highlighted (in red) submatrix of order 2, we just have to check the value of
the following determinant

det

 1 2 2
1 3 2
2 −1 1

 = 3 + 8− 2− 12 + 2− 2 = −3 ̸= 0

hence rk(A|b) = 3 ̸= 2 = rk(A), and the system is inconsistent.
If k = 3 the coefficient matrix becomes

A =

 1 1 3
1 1 3
2 3 −1

 ,

and rk(A) = 2 as the highlighted in red minor of order 2 is different from zero. Let us analyze the
rank of the augmented matrix

A|b =

 1 1 3 2
1 1 3 2
2 3 −1 1

 ,

and by bordering the highlighted (in red) submatrix of order 2, we just have to check the value of
the following determinant

det

 1 3 2
1 3 2
3 −1 1

 = 0

hence rk(A|b) = 2 = rk(A), and the system is consistent, with ∞1 solutions

5. Evaluate the following limit

lim
x→0

1

x3

∫ x

0

(1− cos2 t)dt

Then,

□ A. 1 □ B. 3

□ C. 0 □ D.
1

3

Solution The limit is of the form 0
0
and we can solve it by applying the de l’Hopital Theorem and by

exploiting the Fundamental Theorem of Calculus (when differentiating the integral function at the
numerator)
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6. Identify the cartesian equation of the plane passing through the point A(1, 2, 0) and orthogonal to
the vector u = (1, 1, 1)

□ A. x+ y + z = 3

□ B. x− y − z + 3 = 0

□ C. 2x+ 2y − z = 3

□ D. x− y + z = 2

Solution Let P (x, y, z) be a generic point of the plane. Hence the vector PA = (x− 1, y − 2, z) lies
on the plane. All vectors on the plane have to be orthogonal to the vector u = (1, 1, 1); hence

PA·u = 0 =⇒ (x−1, y−2, z)·(1, 1, 1) = 0 =⇒ x−1+y−2+z = 0 =⇒ x+y+z = 3

7. For which values of k are the following three vectors dependent?

v = (1, 1, 1) u = (3, 2, k) w = (0, k, k)

□ A. k = 1, k = 0

□ B. k = −1, k = 2

□ C. k = 0, k = 2

□ D. k = 1, k = 2

Solution Display the vectors as columns of a 3×3 square matrix A, and the vectors will be dependent
if the determinant of this matrix is null

A =

 1 3 0
1 2 k
1 k k

 ,

and
det(A) = 2k + 3k − k2 − 3k = 2k − k2 = k(2− k),

hence if k = 0 or if k = 2 the vectors are linearly dependent.



8. Compute all eigenvalues of the matrix

A =

−1 0 0
−2 −1 −2
2 0 1


and indicate their algebraic multiplicity (AM).

□ A. λ1 = 1 with AM(λ1) = 1, λ2 = 2 with AM(λ2) = 2

□ B. λ1 = −1 with AM(λ1) = 1, λ2 = 1 with AM(λ2) = 1, λ3 = 2 with AM(λ3) = 1,

□ C. λ1 = 1 with AM(λ1) = 1, λ2 = −1 with AM(λ2) = 2

□ D. λ1 = −2 with AM(λ1) = 1, λ2 = −1 with AM(λ2) = 1, λ3 = 2 with AM(λ3) = 1,

Solution The characteristic equation is given by

det(A− λI3) = det

−1− λ 0 0
−2 −1− λ −2
2 0 1− λ

 = (−1− λ)(−1− λ)(1− λ) = (−1− λ)2(1− λ) = 0

hence λ1 = 1 with AM(λ1) = 1 and λ2 = −1 with AM(λ2) = 2

9. (Open question: please answer in the space below. Indicate all necessary steps to solve the exercise)
Describe the integration by parts method

Solution The Product Rule says that if f and g are differentiable functions of x, then (fg)′ = f ′g+fg′.
For simplicity, we have written f for f(x) and g for g(x). Suppose we integrate both sides with respect
to x. This gives ∫

(fg)′dx =

∫
(f ′g + fg′)dx

By the fundamental Theorem of calculus, the left side integrates to fg. The right side can be broken
into two integrals

fg =

∫
f ′gdx+

∫
fg′dx,

and solving for the second integral ∫
fg′dx = fg −

∫
f ′gdx.



10. (Open question: please answer in the space below) Give definition of similar matrices and prove that
similar matrices have same eigenvalues

Solution A n× n matrix B is called similar to matrix A if there exists an invertible matrix P such
that B = P−1AP .

If n× n-matrices A and B are similar, then they have the same characteristic polynomial and hence
the same eigenvalues.
Proof. If B = P−1AP , then B − λIn = P−1AP − λP−1P = P−1(AP − λP ) = P−1(A − λIn)P .
Using the multiplicative property of determinant, we have det(B − λIn) = det(P−1(A − λIn)P ) =
detP−1det(A− λIn)detP = det(A− λIn). Hence, matrices A and B have the same eigenvalues.

11. (Open question: please answer in the space below. Indicate all necessary steps to solve the exercise)
Compute all stationary points of the function below and determine their nature:

f(x, y) = y2[x2 + y2 − 2(x+ y) + 2]

Solution Let us look for critical points by applying the first order conditions{
fx(x, y) = y2(2x− 2) = 2y2(x− 1) = 0

fy(x, y) = 2y(x2 + y2 − 2(x+ y) + 2) + y2(2y − 2) = 2y[(x− 1)2 + (y − 1)2 + y(y − 1)] = 0

The first equation gives two alternatives y = 0 or x = 1.
If y = 0, also the second equation is verified ∀x ∈ R. Hence (x, 0) ∀x ∈ R are all critical points.
If x = 1{

x = 1

(y − 1)2 + y(y − 1) = 0
=⇒

{
x = 1

(y − 1)(2y − 1) = 0
=⇒

{
x = 1

y = 1
∪

{
x = 1

y = 1
2

Let us pass to the second order conditions
fxx(x, y) = 2y2

fxy(x, y) = fyx(x, y) = 4y(x− 1)

fyy(x, y) = 2[(x− 1)2 + (y − 1)2 + y(y − 1)] + 2y[2(y − 1) + 2y − 1]

detH(1, 1) = det

(
2 0
0 2

)
= 4 > 0

and being fxx(1, 1) = 2 > 0, then (1, 1) is a local minimum, and f(1, 1) = 0

detH
(
1,

1

2

)
= det

(
1
2

0
0 −1

)
= −1

2
< 0

hence
(
1,

1

2

)
is a saddle point, and f

(
1,

1

2

)
=

1

16
.



detH(x, 0) = det

(
0 0
0 2((x− 1)2 + 1)

)
= 0 ∀x ∈ R

hence the method is inconclusive for the points (x, 0). But notice that the function can be written
as f(x, y) = y2[(x− 1)2 + (y − 1)2] ≥ 0 and f(x, 0) = 0 ∀x ∈ R, therefore the points (x, 0) and also
(1, 1) are points of global minimum.


