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Probability: outline 

1. Definitions and instruments: experiment, events, operations

with events, Venn diagrams

2. Probability measurement

3. Joint, marginal, and conditional probabilities

4. Independency

5. Bayes’ Theorem
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Basic Elements of Probability Theory

Probability theory deals with random experiments, or random

trials.

A random experiment is such that:

• the possible outcomes are known prior to its conduct

• the outcome is know at the end of the experiment and cannot be

predicted with certainty in advance

• (can be repeated any number of times under the same

conditions)

The last item is relevant only for one approach to assigning

probabilities (the frequentist approach), as we shall see.



4Probability

Basic Elements of Probability Theory

The main ingredients of a random experiment are:

►The sample space: a set Ω, whose elements ω correspond to the

possible outcomes of the experiment.

►The family of events: a collection F of subsets A ∈ Ω. We say

that A occurs if the outcome ω of the experiment is an element

of A.

►The probability measure: a function P with range [0,1], defined

on F, and satisfying certain properties.

The triple (Ω,F ,P) is called a probability space.



Definitions 

Experiment: process that, when performed, results in one of many

uncertain outcomes

Ex. Toss of a coin, roll of a die, select a worker,…

Outcomes: results of an experiment

Ex. Toss of a coin: Head, Tail

Roll of a die: 1, 2, 3, 4, 5, 6

Select a worker: Male, Female

5Probability



Definitions 

Sample space: all outcomes of an experiment, denoted by Ω

6Probability
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Sample Space

The set Ω can be

► finite (it contains a finite number of elements ω), or

►countable, i.e., it can contain a countably infinite set of 

elements (e.g., number of clients), or

►uncountable (e.g., a subset of real numbers, like the waiting time

at the bus station)

Ex. Toss a coin until Head occurs for the first time. The sample

space is Ω = {H, TH, TTH, TTTH, . . .} and contains a countably

infinite number of elementary events.
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Experiment and Sample Space: examples

Experiment Sample space

{ H,T }

{ (HH),(HT ),(TT ),(TH)}

{ 1,2,3,4,5,6}

Toss of a coin
Two successive tosses of a coin 

Rolling a die

Rolling two dice { (1,1),(1,2),...,(1,6),
(2,1),...,(2,6),...,
(6,1),...,(6,2),...,(6,6)}

{ Fail (<18),18,19,...,30,30 c.l.}University exam
Number of clients in a day 

Duration of a bulb

Daily return of a stock

{ 0,1,2,...,}
R+ = [0,∞)

R = (−∞,∞)
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Events

An event is a subset of Ω.

►Elementary event: one of the possible outcomes of the

experiment.

It will be denoted by w.

Ω = {w1, w2 , w3 ,…}

Elementary events w∈Ω are disjoint (mutually exclusive).

For instance, if you toss a coin, either Head or Tail can occur, but not

both.
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Compound (or composite) event

A compound or composite event is obtained by combining

elementary events. An event A is a subset of a sample space Ω, A ⊂
Ω, obtained by combining its elementary events.

We say that the event A occurs if the outcome of the experiment,

w ∈Ω, is an element of the set A.

Example: rolling of a die.

Ω = { wi = i ,i = 1,...,6} .

The event "an even number on the upper side of a die" is the

composite event: A = {2,4,6}



Simple and Compound event

Event (or simple event): 1 of final outcomes for an experiment,

denoted by 𝐸𝑖

Compound event: collection of 2 or more outcomes for an

experiment, denoted by capital letters A, B, C, …

Ex: in rolling a die once, we have 6 simple events:

𝑬𝟏 = 1 , 𝑬𝟐 = 2 , 𝑬𝟑 = 3 , 𝑬𝟒 = 4 , 𝑬𝟓 = {5}, 𝑬𝟔 = {6}

𝑨 = “An even number is obtained”,

𝑨 = 2, 4, 6 , is a compound event

11Probability
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Union on sets

The symbol ∪ (or OR) is employed to denote the union of two sets.

Thus, the set A ∪ B - read “A union B” or “the union of A and B” - is

defined as the set that consists of all elements belonging to either

set A OR set B (or both).

Ex. suppose that Committee A, consisting of the 5 members Jones,
Blanshard, Nelson, Smith, and Hixon, meets with Committee B,

consisting of the 5 members Blanshard, Morton, Hixon, Young,

and Peters. The union of Committees A and B must then consist of

8 members rather than 10 (Jones, Blanshard, Nelson, Smith,

Morton, Hixon, Young, and Peters).
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Intersection on sets

The intersection operation is denoted by the symbol ∩ (or AND).

The set A ∩ B - read “A intersection B” or “the intersection of A and

B” - is defined as the set composed of all elements that belong to

both A AND B.

Ex. suppose that Committee A, consisting of the 5 members Jones,
Blanshard, Nelson, Smith, and Hixon, meets with Committee B,

consisting of the 5 members Blanshard, Morton, Hixon, Young,

and Peters. The intersection of the two committees is the set

consisting of 2 members (Blanshard and Hixon).



Venn Diagrams 

Picture that depicts all the possible outcomes for an experiment.

14

This Venn Diagram shows Ω

and the event A=“An even

number is obtained” for

rolling a die once

Probability
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Algebra of Events

We introduce a set of operations and rules that are used to generate

other events.

The operations between events can be visualized using Venn diagrams.

A

Ᾱ

Ω

A B

A∪B
Ω

A B

A ∩B
Ω

Complementary event Ᾱ Union Intersection



16Probability

Algebra of Events: Complementary event

Let A and B be two arbitrary events defined in Ω

Complementary (contrary) event. We denote by Ᾱ the  event

occurring when A does not occur. It contains all the elementary

events ω ∈Ω that do not belong to A:

Ᾱ = {ω ∈Ω : ω ∈/ A}
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Algebra of Events: Intersection and Union

Let A and B be two arbitrary events defined in Ω

Intersection. The intersection of A and B, denoted A ∩B, is the

event occurring if both the events A and B occur. Hence,

A ∩B = {ω ∈Ω : ω ∈A and ω ∈B}  as a result, ω ∈A ∩B if ω ∈A and ω ∈B

Union. The union of A and B, denoted A∪B, is the event occurring

if either A or B occurs. It consists of all the elementary events that

belong to A or B or to both. Hence,

A∪B = {ω ∈Ω : ω ∈A or ω ∈B} as a result, ω ∈A∪B if ω ∈A or ω ∈B



Complementary events

Complementary event: collection of all outcomes not in A, denoted 

by ഥ𝑨

Ex: roll a die once and define:

A= an even number is observed= {2, 4, 6}

ҧ𝐴= an odd number is observed= {1, 3, 5}

18Summarizing Data

2 4

6

1

3

5

Ω
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Union of events

To calculate the union of two or more sets, we combine the

elements within each set. Duplicated values must only be counted

once.

The symbol ∪ represents the union of sets.

Ex. The union of the set of even numbers

E={2, 4, 6, 8, 10} and odd numbers O={1, 3, 5, 7, 9} is the set

E∪O = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
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Intersection of events

To calculate the intersection of two or more sets, we calculate the

number of values that are contained within both / all of the sets

only.

The symbol ∩ represents the intersection of sets.

For the two sets A and B, A∩B is pronounced A intersection B.

Ex. The intersection of the set of odd numbers O = {1, 3, 5, 7, 9}

and the set of prime numbers P = {2, 3, 5, 7, 11} is the set

O∩P = {3, 5, 7}.
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Given

A = {0, 1, 3}

B = {1, 2, 5}

Then,

• Union: A∪B = {0 ,1, 2, 3, 5}

• Intersection: A ∩B = {1}

Union and Intersection: example

0

3              

Ω

2

1            5



►A composite event can be written as the union of elementary

events.

►Unions and intersections are related by the de Morgan’s laws

►The complement of Ω is the impossible event, denoted Ø (empty

space).

►The certain event is the event which always occurs. It is

complementary to Ø and contains all the possible outcomes of the

experiment. Moreover, A∪ Ᾱ = Ω.

22Probability

Properties of the operations between events



Properties of the operations between events
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Union Intersection

Idempotency

Neutral event

Commutativity

Associativity

A ∪ A = A  

A ∪ Ø = A

A ∪ B = B ∪ A

(A ∪ B) ∪ C = A ∪ (B ∪ C )

A ∩ A = A

A ∩ Ω = A 

A  ∩ B = B ∩ A

(A ∩ B) ∩ C = A ∩ (B ∩ C )



Mutually exclusive (disjoint) events
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►Two events are said to be mutually exclusive, or disjoint, if they

cannot occur simultaneously, i.e. their intersection is the empty set:

A ∩B = Ø.

►An event A is said to be included in B, or a subset of B, if A ∩ B = A,

in which case we write A ⊂ B.

►A collection of events 𝐴𝑖, i = 1, 2, . . . , m, are called a partition of the

sample space Ω if they are all disjoint,

𝐴𝑖 ∩ 𝐴𝑗= Ø, ∀ 𝑖 ≠ 𝑗

and their union is the sample space,

𝐴1 ∪ 𝐴2 ∪ ⋯∪ 𝐴𝑚= Ω



Mutually exclusive (disjoint) events 
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Disjoint events: A ∩B = Ø

A

B



Mutually exclusive (disjoint) events 

Events that cannot occur together 

Ex: roll a die once and define:

A= an even number is observed= {2, 4, 6}

B= an odd number is observed= {1, 3, 5}

C= a number less than 5 is observed= {1, 2, 3, 4}

A and B mutually exclusive A and C not mutually exclusive
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Partition of events 

Collection of events that are mutually disjoint and such that their 

union is the entire sample space:

1) 𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩⋯∩ 𝐴𝑛 = ∅

2) 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪⋯∪ 𝐴𝑛= 𝛺

27Summarizing Data
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Algebra of events: examples

A ⊂ B A ⊂ B



29Probability

Algebra of events: examples

Disjoint events
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Algebra of events: examples



When the experiment has a large number of outcomes, it may not be 

easy to list them all  to count them use the counting rule

If an experiment consists of 𝑘 steps, each with 𝑛𝑖 outcomes, then the 

total number of final outcomes is

𝑛1 × 𝑛2 × 𝑛3 ×⋯× 𝑛𝑘

Ex: the experiment of tossing a coin (2 outcomes) 5 times has

2 × 2 × 2 × 2 × 2 = 25 = 32

Counting rule
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Ex: A car buyer can choose between a fixed and a variable interest rate 

and can also choose a payment period of 36 months, 48 months, or 60 

months. How many total outcomes are possible?

How many steps? 

2 (choosing the interest rate and choosing the period)

How many outcomes each? 

2 for step 1 (interest rate), 3 for step 2 (periods)

2 × 3 = 6

Counting rule: Example

32Summarizing Data



The factorial of a number is obtained by multiplying all the integers 

from that number to 1 

𝑛! = 𝑛 × (𝑛 − 1) × (𝑛 − 2) × ⋯× 1

Ex: the factorial of 5 is: 

5! = 5 × 4 × 3 × 2 × 1 = 120

NB: conventional rule 0! = 1

Factorial

33Summarizing Data



Permutation
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Permutation is basically called as a arrangement where order does

matters.

Here we need to arrange the digits, numbers, alphabets, colors and

letters taking some or all at a time.

It is represented as,

𝑃𝑛,𝑥 =
𝑛!

𝑛 − 𝑥 !



Combination

35Summarizing Data

Combination is basically called as a selection where order does not

matters.

Here we need to arrange the digits, numbers, alphabets, colors and

letters taking some or all at a time.

It is represented as,

𝐶𝑛,𝑥 =
𝑛!

𝑥! 𝑛 − 𝑥 !
𝑜𝑟 𝐶𝑛,𝑥 =

𝑛
𝑥

1. 𝑛 ≥ 𝑥

2. 𝐶𝑛,𝑛 = 1

3. 𝐶𝑛,0 = 1



Combination and Permutation
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Permutation is an arrangement

of objects in a definite order.

Number of all permutations of

n things, taken x at a time, is

given by

𝑃𝑛,𝑥 =
𝑛!

𝑛 − 𝑥 !

Combination is selection of

objects where order does not

matter.

Number of all combinations of

n things, taken x at a time, is

given by

𝐶𝑛,𝑥 =
𝑛!

𝑥! 𝑛 − 𝑥 !



Ex: 3 members of a faculty committee need to be randomly chosen 

from a set of 5. How many combinations are possible? 

𝐶𝑛,𝑥 =
𝑛!

𝑥! 𝑛 − 𝑥 !

𝐶5,3 =
5!

3! 5 − 3 !
= 10

Check: denote the 5 candidates as: A B C D E

The possible combinations are: 

ABC , ABD , ABE , ACD , ACE , ADE , BCD , BCE , CDE , BDE

NB: order not important  ABC is equal to ACB and BCA.

Combinations: examples 
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Ex: 3 members needs to be randomly chosen from a set of 5. How 

many permutations are possible?

𝑃𝑛,𝑥 =
𝑛!

𝑛 − 𝑥 !

𝑃5,3 =
5!

5 − 3 !
=
120

2
= 60

Permutations: example
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A permutation with repetition (it is possible to select many times

the same unit) is equal to 

𝑃𝑛,𝑥 = 𝑛𝑥

Ex: 3 members needs to be randomly chosen from a set of 5 with 

repetition. How many permutations are possible?

𝑃𝑛,𝑥 = 𝑛𝑥

𝑃5,3 = 53 = 5 × 5 × 5 = 125

Permutation with repetition

39Summarizing Data



Combination and Permutation
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Permutation 

Combination



Probability 

Measures the chances that an event will occur 

Basis for inferential statistics: inference is used to take decisions

under uncertainty  Probability evaluates the uncertainty

involved in those decisions.
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Probability definition and its measure 
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Given a collection of events defined on the sample space Ω,

probability P(.) is a function, which assigns a number to every event

in the collection according to the following rules (axioms of

probability):

1. P(A) ≥ 0  

2. P(Ω) = 1

3. A ∩B = Ø ⇒ P(A∪B) = P(A) + P(B) (additivity) 



Probability: properties  
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𝑃(𝐴) = probability of event A, i.e. the likelihood of occurrence of A

Main properties 

1. P Ω = 1 certain event 

2. 0 ≤ P A ≤ 1

3. P ഥA = 1 − P(A)

4. P ∅) = 𝑃(ഥΩ = 1 − 1 = 0 impossible event 



Probability: theorems and corollaries
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These are simple consequences of the axioms of probability:

►0 ≤ P(A) ≤ 1

►P(Ø) = 0

►P(Ᾱ) = 1 − P(A)

►If B ⊆A, then P(B) ≤ P(A)

►If P(B) = 1, then P(B ∩A) = P(A)

►If P(B) = 0, then P(B ∪A) = P(A)

►P(A∪B) = P(A) + P(B) − P(A ∩B)  



Probability: Classical approach 

45Summarizing Data

How to compute 𝑃(𝐴) depends on the approach:

1. Classical 𝑃 𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑡𝑜 𝐴

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒

Ex: roll a die once, and find the probability of A=“even number”,

B=“number less than 5”, C=“number different from 2”.

𝑃 𝐴 = 3/6 = 0.5 𝑃 𝐵 = 4/6 = 0.67 𝑃 𝐶 =
5

6
= 0.83



Probability: Frequentist approach 
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2. Frequentist: probability is the proportion of times that the event 

occurs in a long run of observations.

If in the short-run, the proportion of times that something happens 

is highly random…



Probability: Frequentist approach 
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2. Frequentist: probability is the proportion of times that the event 

occurs in a long run of observations

…in the long-run, this proportion becomes very predictable (Law of 

Large Numbers). 

E.g.: keeping tossing a die, 

the share of 6 obtained 

will progressively converge 

to… 1/6



Probability: Subjective approach
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3. Subjective  based on individual belief, experience, information

Ex: the probability that each one of you attaches to the event “I will
get 30 as final mark in Statistics”

Bayesian statistics is a branch of statistics that uses subjective 

probability as its foundation



Joint probabilities  
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Ex: roll a die once and consider

A= an even number is observed= {2, 4, 6}

B= an odd number is observed= {1, 3, 5}

C= a number less than 5 is observed= {1, 2, 3, 4}

The joint probability of A and C is

𝑃 𝐴 ∩ 𝐶 =
2

6
= 0.333



Joint probabilities: mutually exclusive events 
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Ex: roll a die once and consider

A= an even number is observed= {2, 4, 6}

B= an odd number is observed= {1, 3, 5}

C= a number less than 5 is observed= {1, 2, 3, 4}

The joint probability of A and B is

𝑃 𝐴 ∩ 𝐵 = P ∅ = 0



Conditional probabilities  
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We aim at defining the probability of an event, given prior

information on the occurrence of another event.

Suppose that we know that the event B, with 𝑃 𝐵 > 0, has  already

occurred. We define the conditional probability of the event A, given

that event B has already occurred, as

𝑃 𝐴 𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃(𝐵)
, 𝑃 𝐵 > 0



Conditional probabilities  
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𝑃 𝐴 𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃(𝐵)
, 𝑃 𝐵 > 0



Conditional probabilities: example  
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Conditional probabilities: example  
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Conditional probabilities: example  

55Probability



Conditional probabilities: example  
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Conditional probabilities: example 
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Conditional probabilities: example 
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Conditional probabilities: example 
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Conditional probabilities: example 
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Conditional probabilities: example 
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A box contains 3 blue pens and 5 red pens. What is the probability 

of getting 2 red pens if they are extracted at once? 

Let A =«2 red pens obtained», then 

𝑃 𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 𝑓𝑎𝑣𝑜𝑢𝑟𝑎𝑏𝑙𝑒 𝑡𝑜 𝐴

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑐𝑎𝑠𝑒𝑠
=
𝐶5,2
𝐶8,2

=
10

28
=

5

14

Example 
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A box contains 3 blue pens and 5 red pens. What is the probability 

of getting 2 red pens if they are extracted at once? 

A =«2 red pens obtained», but let’s define also two single events

𝑅1=«the 1° pen is red», 𝑅2=«the 2° pen is red», 

𝑃 𝐴 = 𝑃 𝑅1 𝑃 𝑅2 𝑅1 =
5

8

4

7
=

5

14

Same example with conditional probabilities  
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A and B are independent if:  

𝑃 𝐴 𝐵 = 𝑃 𝐴 or 𝑃 𝐵 𝐴 = 𝑃 𝐵

Ex: in our example, since 

𝑃 𝐴 𝐵 = 0.79 ≠ 𝑃 𝐴 = 0.6  A and B are dependent

Clearly 𝑃 𝐵 𝐴 = 0.25 ≠ 𝑃 𝐵 = 0.19

Notice: 

If A and B are dependent 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝐵 𝑃(𝐵)

If A and B are independent 𝑃 𝐴 ∩ 𝐵 = 𝑃(𝐴)𝑃(𝐵)

Independent events
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A box contains a total of 100 DVDs that were manufactured on two 

machines, A and B. Of the total DVDs, 15 are defective. Of the 60 

DVDs that were manufactured on Machine A, 9 are defective. 

Let D be the event that a randomly selected DVD is defective, and let 

𝐴 be the event that a randomly selected DVD was manufactured on 

Machine A. Are D and 𝐴 independent?

𝑃 D =
15

100
= 0.15 and        𝑃 𝐷 𝐴 =

9

60
= 0.15

Since 𝑃 𝐷 𝐴 = 0.15 = 𝑃 𝐷 = 0.15  D and A are independent

Independent events: example
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Shows the joint distribution of two variables:

Ex: 100 employees classified by gender (male or female) and opinion 

(in favour or against giving bonus to CEO)

Consider 2 events: A=“be male”, B=“be in favour of bonus”. 

The joint probability of A and B is 𝑃 𝐴 ∩ 𝐵 =
15

100
= 0.15

Contingency table and joint probabilities  
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Marginal probability: prob. of an event regardless of any other event

Ex: 

Let A=“be male”, B=“be in favour of bonus”, 

then 𝑃(𝐴) = 60/100 = 0.6 and 𝑃 𝐵 = 19/100 = 0.19

Contingency table and marginal probabilities  
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The probability of A given B (i.e. likelihood of occurrence of A given
that B has already occurred) is:  

𝑃 𝐴 𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃(𝐵)

Contingency table and conditional probabilities  
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Recalling the example above, 

𝑃 𝐴 𝐵 =
𝑃 𝐴∩𝐵

𝑃(B)
=

15/100

19/100
= 0.79

𝑃 𝐵 𝐴 =
𝑃 𝐴∩𝐵

𝑃(𝐴)
=

15/100

60/100
= 0.25

Contingency table and conditional probabilities  
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The following contingency table gives the distribution on 2000 

randomly selected adults, by gender and having or not they have 

ever shopped on the Internet. 

Example 

70Summarizing Data

Have Shopped Have Never Shopped

Male 500 700

Female 300 500



Find the probability that 1 adult randomly selected

a) Has never shopped on the Internet

Example 
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Have Shopped Have Never Shopped

Male 500 700

Female 300 500

800 1200



Find the probability that 1 adult randomly selected

a) Has never shopped on the Internet

𝑃 ҧ𝑆 =
1200

2000
= 0.60

Example 
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Have Shopped Have Never Shopped

Male 500 700

Female 300 500

800 1200



Find the probability that 1 adult randomly selected

b) Is a Male

Example 

73Summarizing Data

Have Shopped Have Never Shopped

Male 500 700

Female 300 500

800 1200



Find the probability that 1 adult randomly selected

b) Is a Male

𝑃 𝑀 =
1200

2000
= 0.60

Example 
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Have Shopped Have Never Shopped

Male 500 700 1200

Female 300 500 800

800 1200



Find the probability that 1 adult randomly selected

c) has shopped on the Internet given that she is a female

Example 
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Have Shopped Have Never Shopped

Male 500 700 1200

Female 300 500 800

800 1200



Find the probability that 1 adult randomly selected

c) has shopped on the Internet given that she is a female

𝑃 𝑆|𝐹 =
300

800
= 0.375

Example 
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Have Shopped Have Never Shopped

Male 500 700 1200

Female 300 500 800

800 1200



Find the probability that 1 adult randomly selected

d) Is a male given that he has never shopped on the Internet

Example 
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Have Shopped Have Never Shopped

Male 500 700 1200

Female 300 500 800

800 1200



Find the probability that 1 adult randomly selected

d) Is a male given that he has never shopped on the Internet

𝑃 𝑀| ҧ𝑆 =
700

1200
= 0.5833

Example 
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Have Shopped Have Never Shopped

Male 500 700 1200

Female 300 500 800

800 1200



e) Are the events “male” and “female” mutually exclusive? 

f) What about the events “have shopped” and “male”?

g) Are the events “female” and “have shopped” independent?

Example 
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Have Shopped Have Never Shopped

Male 500 700 1200

Female 300 500 800

800 1200



e) Are the events “male” and “female” mutually exclusive? Yes 

f) What about the events “have shopped” and “male”? NO!

g) Are the events “female” and “have shopped” independent? NO, 

indeed 

𝑃 𝑆 = 1 − 𝑃 ҧ𝑆 = 1 − 0.60 = 0.4 ≠ 𝑃 𝑆 𝐹 = 0.375

Example 
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Have Shopped Have Never Shopped

Male 500 700 1200

Female 300 500 800

800 1200



250 students were classified according to their major and satisfaction

Find probability that 1 randomly selected student is:

A) psychology major and happy with that major 

B) communication major or unhappy with the major

C) Communication major given that he/she is happy with the major

Probabilities: example 
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250 students were classified according to their major and satisfaction

Answers 

A) 
80

250
= 0.32 B) 

115+35+20

250
= 0.68 C)

115

115+80
= 0.59 

Probabilities: example 
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250 students were classified according to their major and satisfaction

Find probability that 1 randomly selected student is:

D) Unhappy with the major given that he/she is a psychology major

E) Happy with the major

F) Psychology major

Probabilities: example 
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250 students were classified according to their major and satisfaction

Answers:

D) 
20

100
= 0.20 E) 

115+80

250
= 0.78 F) 

100

250
= 0.40

Probabilities: example 
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250 students were classified according to their major and satisfaction

Are “psychology major” and “happy with major” independent events? 

Are they mutually exclusive? 

Probabilities: example 
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Addition rule 
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Consider 2 events, A and B, then the probability of their union 

(i.e. at least one of the two events occurs) is:  

𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵



Addition rule: example
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Amy is trying to purchase concert tickets online for two of her

favorite bands, the Kings of Leon (K) and the Lumineers (L). She

estimates that her probability of being able to get tickets for the

Kings of Leon is 0.14, the probability of being able to get tickets

for the Lumineers is 0.23, and the probability of being able to get

tickets for both concerts is 0.026. What is the probability that she

will be able to get tickets for at least one of the two concerts?

𝑃 𝐾 ∪ 𝐿 = 𝑃 𝐾 + 𝑃 𝐿 − 𝑃 𝐾 ∩ 𝐿 = 0.14 + 0.23 − 0.026 = 0.344



Law of total probability  
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𝑃 𝐴 = 𝑃 𝐴|𝐵 ∙ 𝑃(𝐵) + 𝑃 𝐴| ത𝐵 ∙ 𝑃 ത𝐵

In probability theory, the law (or formula) of total probability is a

fundamental rule relating marginal probabilities to conditional

probabilities.

It expresses the total probability of an outcome which can be

realized via several distinct events, hence the name.



Bayes Theorem
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Allows to update the probability of an event whenever new info 

about the occurrence of a related event become available. 

Consider and event A, with a certain probabilty P(A), and suppose 

you know that B has now occurred  the probabilty of A can 

adjusted to take into account this additional information 

𝑃 𝐴|𝐵 =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
=
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)



Bayes Theorem
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Bayes Theorem
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Bayes Theorem: example
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Bayes Theorem: example
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Bayes Theorem: example

94Summarizing Data



Bayes Theorem: example
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Bayes Theorem: example
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Consider the same example above and suppose you know that B has

now occurred 

What is the probability that A occurs

given that now you know that B has

already occurred?

𝑃 𝐴|𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)
𝐴 ҧ𝐴

𝐵



To solve it:

1) Locate the 2 events : A and B

2) Assign correct probabilities

𝑃 𝐴 =
8

15
, 𝑃 𝐵 =

7

15
, 𝑃 ҧ𝐴 = 7/15

𝑃 𝐵|𝐴 = 4/8 𝑃 ത𝐵|𝐴 = 4/8

𝑃 𝐵| ҧ𝐴 = 3/7 𝑃 ത𝐵| ҧ𝐴 = 4/7

3) Find the required probability  

𝑃 𝐴|𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)
=

4
8
∙
8
15
7
15

= 4/7

Bayes Theorem: how to solve 
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𝐴 ҧ𝐴

𝐵



Bayes Theorem: example 
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20% of the inbox messages is unwanted. 70% of the unwanted email

contain deceptive words (Lottery, Win, Confirm your bank account,

etc), while legitimate email messages do contain those words with a

proability of 5%. Compute the probability that a message containing

deceptive words is unsolicited and needs to be moved to Spam folder

1) Locate the two events: 

D=«email contains deceptice words»

S=«email is moved to Spam folder»



Bayes Theorem: example 
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20% of the inbox messages is unwanted. 70% of the unwanted email

contain deceptive words (Lottery, Win, Confirm your bank account,

etc), while legitimate email messages do contain those words with a

proability of 5%. Compute the probability that a message containing

deceptive words is unsolicited and needs to be moved to Spam folder

2) Assign correct probabilities

𝑃 𝑆 = 0.2 𝑃 ҧ𝑆 = 0.8

𝑃 𝐷|𝑆 = 0.7 𝑃 ഥ𝐷|𝑆 = 0.3

𝑃 𝐷| ҧ𝑆 = 0.05 𝑃 ഥ𝐷| ҧ𝑆 = 0.95



Bayes Theorem: example 
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20% of the inbox messages is unwanted. 70% of the unwanted email

contain deceptive words (Lottery, Win, Confirm your bank account,

etc), while legitimate email messages do contain those words with a

proability of 5%. Compute the probability that a message containing

deceptive words is unsolicited and needs to be moved to Spam folder

3) Find the solution:

𝑃 𝑆|𝐷 =
𝑃 𝐷 𝑆 𝑃 𝑆

𝑃 𝐷 𝑆 𝑃 𝑆 + 𝑃 𝐷| ҧ𝑆 𝑃 ҧ𝑆
= 0.78



Bayes Theorem: example 
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40% of the smokers of a little town prefer brand A, while the rest 

prefer other brands. Of those preferring brand A, 30% are females, 

while the 40% of those preferring other brands are females. 

What is the probability that a randomly selected smoker prefers 

brand A, given that she is a female?

1) Locate the two events: F =«female», A=«prefer brand A»

2) Assign correct probabilities

3) Find the solution

𝑃 𝐴|𝐹 =
𝑃(𝐹|𝐴)𝑃 𝐴

𝑃(𝐹)
= 1/3



Monty Hall
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Monty Hall
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Monty Hall
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https://www.youtube.com/watch?v=mhlc7peGlGg

Or

https://www.youtube.com/watch?v=C4vRTzsv4os

https://www.youtube.com/watch?v=mhlc7peGlGg
https://www.youtube.com/watch?v=C4vRTzsv4os

