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Simple Regression wtih R

Given the relation between testscore and student teaching ratio

let’s compute the OLS to estimate the regression coefficients: β0 and β1.

Command lines
mydata <- read.csv2(‘‘caschool.csv")

View(mydata)

str(mydata)
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Score variable and descriptive statistics

Create Score variable from read score and math score

Command line
mydata$score = (mydata$read_scr+mydata$math_scr)/2

Summary

Command lines
summary(mydata$str)

sd(mydata$str)

var(mydata$str)

summary(mydata$score)

sd(mydata$score)

var(mydata$score)
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Scatter plot

Command line
plot(mydata$str, mydata$score, xlab=‘‘STR", ylab=‘‘SCORE")
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Mean values and correlation coefficient

Let’s show in the plot the value of the two means

Command line
segments (mean(mydata$str), mean(mydata$score),

mean(mydata$str), min(mydata$score) - 5, lty = ‘‘dashed")

segments (min(mydata$str) - 5, mean(mydata$score),

mean(mydata$str), mean(mydata$score), lty = ‘‘dashed")

Let’s compute the correlation coefficient

Command line
cor(mydata$str,mydata$score)
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Linear regression

Let’s show in the plot the regression line

Command line
score.lm <- lm(mydata$score mydata$str, data=mydata)

score.lm
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Results Interpretation

Test Score = 698.9− 2.28 STR

� Districts with one more student per teacher on average have 2.28
points less than the other students (β̂ = −2.28)

� The intercept means that, according to this estimated line, districts
with zero students per teacher would have a (predicted) test score of
698.9.

Note: This interpretation of the intercept makes no sense – it
extrapolates the line outside the range of the data – here, the intercept is
not economically meaningful.
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Predicted values and residuals

One of the districts in the dataset is Antelope, CA, for which
STR = 19.33 and Test Score = 657.8.

Given the regression line results we get:

ŶAntelope = 698.9− 2.28 · 19.33 = 654.8 (Predicted value)

ûAntelope = 657.8− 654.8 = 3 (Residual )
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OLS regression: R output

Command lines
score.lm <- lm(mydata$score mydata$str, data=mydata)

score.lm

summary(score.lm)

confint(score.lm)
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OLS regression: R output

Standard deviation

SEβ0
= 9.4675 SEβ1

= 0.4798

t-statistic testing

β1,0 = 0 ⇒ β̂1 − β1,0

SE(β̂1)
=

−2.2798− 0

0.4798
= −4.751

� The 1% 2 – sided significance level is 2.58, so we reject the null at
the 1% significance level. (***)

� Alternatively, we can see the p-value as well that is lower than 0.01
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Test Results

The p-value based on the large-n standard normal approximation to the
t-statistic is 0.000001 (10–6)
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Confidence Interval

Given the standard deviation

SEβ0
= 9.4675 SEβ1

= 0.4798

The 95% confidence interval for β̂1 is equal to:

{β̂1 ± 1.96 · SE(β̂1)} = {−2.28± 1.96 · 0.4798} = (−3.22,−1.33)

� The 95% confidence interval does not include zero

� The hypothesis β1 = 0 is rejected at the 5% level
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The R2 and the SER

From the results we can notice that: R2 = .05, SER = 18.6
STR explains only a small fraction of the variation in test scores.
Does this make sense? Does this mean the STR is unimportant in a
policy sense?
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Graphic Analysis

To ass whether the linear model selected is appropriate. We define four
plots that are also important diagnostic tools:

1 Residuals vs Fitted: When a linear model is appropriate, we expect

� the residuals will have constant variance when plotted against fitted
values

� the residuals and fitted values will be uncorrelated. If there are clear
trends in the residual plot, or the plot looks like a funnel, these are
clear indicators that the given linear model is inappropriate

If there are clear trends in the residual plot, or the plot looks like a
funnel, these are clear indicators that the given linear model is
inappropriate.
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Graphic Analysis

To ass whether the linear model selected is appropriate. We define four
plots that are also important diagnostic tools:

2 Normal Q-Q plot: You can use a linear model for prediction even if
the underlying normality assumptions don’t hold. However, in order
to let the p-values be believable, the residuals from the regression
must look approximately normally distributed.

3 Scale-location plot: this is another version of the residuals vs fitted
plot. There should be no discernible trends in this plot.
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Graphic Analysis

4 Residuals vs Leverage: Leverage is a measure of how much an
observation influenced the model fit. It’s a one-number summary of
how different the model fit would be if the given observation was
excluded, compared to the model fit where the observation is
included. Points with high residual (poorly described by the model)
and high leverage (high influence on model fit) are outliers. They’re
skewing the model fit away from the rest of the data, and don’t
really seem to fit with the rest of the data.
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Results
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Comments

1 The residuals do not seem to have an obvious trend based on the X
used (STR). Indeed, as we see, there is no real correlation between
them.
The fitted values vs residuals appear quite random. Based on this
we would say that we have no great problems of heteroskedasticity
as the residuals appear to have almost the same variance
everywhere. However we will go deeper on this point with the Scale
– Location plot.

2 The Q-Q plot reveal a good level of normality. Indeed the points are
arranged with a certain regularity along the bisector line.
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Comments

3 The Scale Location plot shows that there is not a clear
homeskedasticity in the data. Indeed the red line is not flat and at
the beginning and at the end its slope changes.

4 This last plot is helpful for checking the existence of outliers by
looking at the existence of some points out from the Cook’s
distance. In our case the plot identifies three outliers (414, 412 and
80).
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Application with dummy variable

Instead of using the STR variable, in this new exercise we consider as
independent variable a dummy which define the district with a STR > 20
to all the others.
To construct this variable we use the following command line:

mydata$d_str<-as.numeric(mydata$str>=20)

Moreover to make some statistics we separate the DB in large a small in
the following way:

large <- mydata[mydata$str>20,]

small <- mydata[mydata$str<=20,]
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Descriptive statistics

We compute some descriptive statistics for the two variable of interest:

summary(large$score)

sd(large$score)

summary(small$score)

sd(small$score)

Testscore
D N Mean SD
0 177 650.00 17.97
1 243 657,19 19.29
All 420 654.16 19.05
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Regression

Let’s estimate the linear regression

Command lines
lm(score ∼ d_str)

Difference in mean: Ȳsmall − Ȳlarge = 657.19− 650.0 = 7.19

Standard Error (SE):

√
S2
s

ns
+

S2
l

nl
=

√
19.292

243
+

17.972

177
= 1.83
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Comments

� The regression coefficient associated to STR is negative and
significantly different from 0.

� The value of -7.185 indicates the following: compared to classes
with a lower student teacher ratio, classes with an higher STR
present -7.185 points.

� It means that a class with a lower STR provide a better result in
terms of student score.

� Clearly there will be only two predicted values:

1 For STR > 20 ⇒ 657.185− 7.185 = 650.00
2 For STR ≤ 20 ⇒ 657.185
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Example

Let us consider a sample of 400 credit card titles, on which, among
others, the following variables have been observed 1:

� Income: in thousand of dollars;

� Cards: number of credit cards;

� Student: (dummy variabl: No, Yes);

� Eathnicity: (categorical variable: African American, Asian,
Caucasian);

� Balance: total charge on credit cards held, in dollars.

1Data source: “An Introduction to Statistical Learning, with applications in R”
(Springer, 2013).
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Example: continuous explanatory variable

Let us analyse the relation between Balance (dependent variable) and
Income (explanatory variable):

Balance = β0 + β1 Income+ u

� β0 is the total charge on credit card observed when Income is equal
to zero.

� β1 is the variation in the average charge when Income increases of
1000$.
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Example: explanatory dummy variable

Let’s check if to be a student (explanatory variable) gets changing the
total charge on credit cards held (dependent variable):

Balance = β0 + β1 Student+ u

The variable Student is transformed in a variabile dummy assuming
value 0 when the guy observed (“is not a student (No)”) and 1 in
the opposite case (“is a student (Yes)”) 2.

� β0 represents the average charge for individuals that are not
students.

� β1 represents the expected change in average charge for students
with respect to no students.

2R by default it sets the basic mode to the first mode in alphanumeric order
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Model Estimation

To estimate the model coefficients (unknown) β0 e β1 we need a sample
of n observations both for explanatory and dependent variable.

(x1, y1), (x2, y2), . . . , (xn, yn))

Our aim is to estimate the coifficients, β̂0 and β̂1, so that:

yi︸︷︷︸
observed
value

≈ β̂0 + β̂0 xi︸ ︷︷ ︸
estimated value

(i = 1, . . . , n)

in such way we estimate a line as near as possible to observed data.
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Least Squares Estimation

Estimation method: Ordinary Least Squares, (OLS), or, least squares.

� Let ŷi = β̂0 + β̂1 xi be the estimated value of the variable Y
associated with the ith observation of the variable X.

� Let ûi = yi − ŷi = yi −
(
β̂0 − β̂1 xi

)
be the ith residual.

� Let RSS = û2
1 + û2

2 + · · ·+ û2
i + · · ·+ û2

n =
∑n

i=1 û
2
i be the

residual sum of squares (RSS).

The least squares approach aims to determine β̂0 and β̂1 in order to
minimize RSS.
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Example

Coefficients estimated for the relation between Balance and income are:

β̂0 = 246.51 β̂1 = 6.05

� For income= 0, the expected value of Balance is equal to 246.51$.

� For each 1000$ increasing of income, Balance increases on average
of 6.05$.

In the model with the dummy variable Student we get:

β̂0 = 480.37 β̂1 = 396.46

It means that:

� For no student Balance is on average equal to 480.37$.

� If the credit card owner is a student Balance increases on average
by 396.46$, with respect to no students.
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Omitted Variable Bias

Consider the linear regression:

Y = β0 + β1X + u

� The error u arises because of factors, or variables, that influence Y
but are not included in the regression function. There are always
omitted variables

� Sometimes, the omission of those variables can lead to bias in the
OLS estimator

� The bias in OLS estimator that occurs as a result of an omitted
factor, or variable, is called omitted variable bias.
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Definition

For omitted variable bias to occur, two conditions must be fulfilled:

� The omitted variable, let’s call it Z, is a determinant of the
dependent variable Y (β2 ̸= 0)

� X is correlated with the omitted variable. (i.e. σxz ̸= 0)
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Example

Let’s go back to the class size example:

testscore = β0 + β1STR+ u

� Consider a new variable: English language ability (Z)
measuring whether the student has English as a second language
which plausibly affects standardized test scores: Z is a determinant
of Y .

� Immigrant communities tend to be less affluent and thus have
smaller school budgets and higher STR: Z is correlated with X.

Thus β1 is bias, i.e. β̂1
p−→ β1 + bias
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Example

The California School Dataset has data on the fraction of English
learning in a district, named ‘English’

� Districts with fewer English Learners have higher test scores

� Districts with lower percent EL (PctEL) have smaller classes
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Focus on the theoretical problem

If this new variable is significant it means that the correct model is given
by two X’s variables

Y = β0 + β1X1 + β2X2 + u

And we should estimate

Y = β̂0 + β̂1X1 + β̂2X2 + û

We know that Eβ̂1 = β1 and Eβ̂2 = β2 i.e. the regression coefficients are
unbiased estimators of the population parameters.
Now suppose that we estimate,

Y = β̂∗
0 + β̂∗

1X1 + ϵ̂

And mistakenly we omitted X2
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Questions

1 How does β̂1 (the regression estimate from the correctly specified

model) compare to β̂∗
1 (the regression estimate from the

miss-specified model)?

2 What is Eβ̂∗
1?

3 Is it a biased or unbiased estimator of β̂1? ù

4 If it is biased, how is it biased?
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Solution

1 Formula for bivariate regression coefficient:

β1 =
ˆCov(X1, Y )

ˆV ar(X1)

2 Substituting in Y its value from the correctly specified model:

β1 =
Ĉov(X1, β̂0 + β̂1X1 + β̂2X2 + û)

ˆV ar(X1)

=
Ĉov(X1, β̂0) + β̂1Ĉov(X1, X1) + β̂2Ĉov(X1, X2) + Ĉov(X1, û)

V̂ ar(X1)

3 Recalling that each variable is uncorrelated with the constant and
the residuals:

β1 =
0 + β̂1Ĉov(X1, X1) + β̂2Ĉov(X1, X2) + 0

V̂ ar(X1)
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Results

If X2 has mistakenly been omitted from the model, then, taking
expectation we get:

E(β̂∗
1) = β̂1 + β̂2

σ12

σ2
1

It means that:

� β̂∗
1 is a biased estimator of β1

� This bias will not disappear as the sample size gets larger, so the
omission of a variable from a model also leads to inconsistent
estimator

� To letβ̂∗
1 be not biased two condition should be respected:

1 β2 = 0 Of course if β2 = 0, this means that the model is not
miss-specified (X2 does not belong to the model because it has no
effect on Y )

2 σ12 = 0. That is, if the 2 X ′s are uncorrelated, then omitting one
does not result in biased estimates of the effect of the other
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Example Results

Considering the class size example. It is very likely that:

� β̂2 < 0 it is reasonable to assume that districts with more English
learners have lower testscore (the sample analysis also seems to
suggest so)

� σxz > 0 the covariance between STR and English is probably
positive (the sample analysis also seems to suggest so)

Thus, the bias is probably negative in which case we say that β1 is
downward biased, that is, it is smaller than the true β1.

To solve this problem we move to multiple linear regression
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Multiple Linear Regression

Multiple Linear Regression Model allows to study the relationship
between a set of p explanatory variables, X1, X2, . . . , Xj , . . . , Xp

(quantitative or qualitative) and a dependent variable, taking care to the
effect of each explanatory variable:

Y = β0 + β1X1 + β2X2 + · · ·+ βjXj + · · ·++βpXp + u

All the assumptions considered for the simple linear regression model
are easily generalized for multiple linear regression.
In this case, the deterministic component of the model:

E (Y |X1 = x1, . . . , Xp = xp) = β0 + β1x1 + · · ·+ βpxp

is called regression hyperplane.
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Coefficients Interpretation

For the multiple linear regress regression model:

� β0 represents the expected value of Y when all the explanatory
variables are equal to 0;

� βj represents the expected increasing (decreasing) that occurs to Y ,
when the variable Xj increases (decreases) of one unit, while all
the others p1 explanatory variables do not change (marginal effect
of Xj on Y ).

In other words, βj represents the effect of Xj on Y , given all the other
conditions.
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Coefficients Interpretation in formula

Given the model

Y = β0 + β1X1 + β2X2 + · · ·+ βjXj + · · ·+ βpXp + u

Let us suppose that X1 increases by ∆X1, holding X2, . . . , Xp constant.
The deterministic component of the model becomes:

E (Y |X1 = x1 +∆x1, . . . , Xp = xp) = β0 + β1(x1 +∆x) + · · ·+ βpxp

Estimated Effect

E(Y |X1 = x1 +∆x1, . . . , Xp)

− E (Y |X1 = x1, . . . , Xp) = β1∆x1
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Perfect multicollinearity (the 4th assumption)

In multiple linear regression we have a 4th assumption to take care:
perfect multicollinearity

� Perfect multicollinearity is when one of the regressors is an exact
linear function of the other regressors.

� When there is multicollinearity we cannot identify the marginal
effect of each dependent viariable.

Barbara Guardabascio R Basics and Introduction to Linear Regression 90 / 123



Example

Let us consider the following regression model:

Y = β0 + β1X1 + β2X2 + u

Suppose that X1 = ϕX2 (the elements of the second X1 are proportional
to those of the X2).
So that we have:

Y = β0 + β1ϕX2 + β2X2 + u = β0 + (β1ϕ+ β2)X2 + u

In this case we cannot separate the effect of X1 by that of X2. The two
parameters are not β1 and β2 cannot be distinguished separately while we
can capture their linear combination (β1ϕ+ β2).
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Comments

� Perfect multicollinearity usually reflects a mistake in the definitions
of the regressors, or an oddity in the data

� If you have perfect multicollinearity, your statistical software will let
you know either by crashing or giving an error message or by
“dropping” one of the variables arbitrarily

� The solution to perfect multicollinearity is modifying the list of
regressors so that you no longer have perfect multicollinearity.
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Imperfect multicollinearity

Imperfect multicollinearity occurs when two or more regressors are very
highly correlated.

Why the term multicollinearity? If two regressors are very highly
correlated, then their scatterplot will pretty much look like a straight line
they are “co-linear” but unless the correlation is exactly ±1, that
collinearity is imperfect.

One of the consequences of imperfect multicollinearity is that the
standard errors of the coefficients tend to be large. In that case, the test
of the hypothesis that the coefficient is equal to zero may lead to a
failure to reject a false null hypothesis of no effect of the explanatory.
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Continuous explanatory variables

Let us consider as dependent variable Balance, while, as explanatory
variable Income and Cards:

Balance = β0 + β1 Income+ β2 Cards+ u

� β0 is the average value of Balance for an individual who has no
income and no credit cards.

� β1 is the expected change in Balance if the income increases by
1000$ given the number of credit cards.

� β2 is the expected change in Balance for a student with respect to
a no student, given the same amount of income.
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Continuous and dummy explanatory variables

Let us consider as explanatory variables Income and Student

Balance = β0 + β1 Income+ β2 Student+ u

� β0 is the average value of balance for a no student without income.

� β1 is the expected change on balance if income increases by 1000$
regardless of whether the credit card holder is a student or not.

� β2 is the average change on balance for a student, given the same
amount of income.
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Categorical independent variable

Suppose you have a categorical variable, i.e. multiple categories and
every observation falls in one and only one category (like region of
residence: Sicily, Lazio, Tuscany,...)

To deal with them you have to transform the categorical variable with m
attribute into a set of m binary variables, which are mutually exclusive
and exhaustive. The simplest example: dicothomic variable...
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Dummy Variable Trap

If you include all these m dummy variables and a constant, you will have
perfect multicollinearity this is sometimes called the dummy variable trap.

Solutions to the dummy variable trap:

1 Omit one of the groups (e.g. Lazio)

2 Omit the intercept
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