
Searching Algorithms

Global Governance, 3rd year
Science and Technology Major

Algorithms, Data and Security
A.Y. 2023/24

Valeria Cardellini

Why searching and sorting algorithms?

• How do you find someone’s phone number in
your phone book?

• How do you find your keys when you’ve
misplaced them?

• If a deck of cards has less than 52 cards, how
do you determine which card is missing?

• Searching and sorting are common tasks in
our daily life!

Valeria Cardellini - ADS 2023/24 1

Why searching and sorting algorithms?

• Searching and sorting are also common tasks
in computer programs

• We have well-known algorithms for doing
searching and sorting

• We’ll look at two searching algorithms and
four sorting algorithms

• Considering also their performance (i.e.,
running times)

Valeria Cardellini - ADS 2023/24 2

Searching algorithms

• Given a collection of values (e.g., a list), the
goal of search is to find a target value in this
collection or to recognize that the value does
not exist in the collection

• We will study two algorithms:
– Sequential search
– Binary search

• To visualize how they work, see
www.cs.usfca.edu/~galles/visualization/Search.html
binary-search-visualization.netlify.app

Valeria Cardellini - ADS 2023/24 3

https://www.cs.usfca.edu/~galles/visualization/Search.html
https://binary-search-visualization.netlify.app/

Sequential search

• The simplest search algorithm
– We look at each item in the list in turn, quitting

once we find an item that matches the target value
or once we reach the end of the list

– Also known as linear search
• Find whether a value x is contained in list L

Valeria Cardellini - ADS 2023/24 4

Sequential search: Running time

• Sequential search requires O(n) time
(comparisons) in the worst case
– Worst case means the most number of

comparisons necessary to find the target value
– In our case, it occurs when the target value is in

the last slot in the list, or is not in the list. The
number of comparisons is equal to the size of the
list (say n)

• Can we do better?
• Yes, if the list L is sorted

Valeria Cardellini - ADS 2023/24 5

Binary search

• Input: sorted list and target value
• Idea: each time we compare the target value

to the middle element of the list, we eliminate
half of the list and continue the search on the
remaining half, until we either find the target
value or determine that it is not in the list

Valeria Cardellini - ADS 2023/24 6

Binary search

• Given target value and sorted list (or array) L
as input, find index i such that L[i]=value, or
report that no such index exists

• Algorithm maintains L[lo] ≤ value ≤ L[hi]
– lo and hi are the lower and upper end

of the portion of the list that we are considering
– mid is the midpoint of the list

• Example: binary search for target value 20

Valeria Cardellini - ADS 2023/24 7

4 5 10 15 20 25 30 35 40 45 50 58 65 80 98
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lo hi

Binary search: example

• Given target value and sorted list L, find
index i such that L[i]=value, or report that no
such index exists

• Algorithm maintains L[lo]≤value≤L[hi]
• Example: binary search for target value 20

Valeria Cardellini - ADS 2023/24 8

4 5 10 15 20 25 30 35 40 45 50 58 65 80 98
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lo himid

35

Binary search

• Given target value and sorted list L, find
index i such that L[i]=value, or report that no
such index exists

• Algorithm maintains L[lo]≤value≤L[hi]
• Example: binary search for target value 20

Valeria Cardellini - ADS 2023/24 9

4 5 10 15 20 25 30 35 40 45 50 58 65 80 98
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lo hi

Binary search

• Given target value and sorted list L, find
index i such that L[i]=value, or report that no
such index exists

• Algorithm maintains L[lo]≤value≤L[hi]
• Example: binary search for target value 20

Valeria Cardellini - ADS 2023/24 10

4 5 10 15 20 25 30 35 40 45 50 58 65 80 98
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lo himid

15

Binary search

• Given target value and sorted list L, find
index i such that L[i]=value, or report that no
such index exists

• Algorithm maintains L[lo]≤value≤L[hi]
• Example: binary search for target value 20

Valeria Cardellini - ADS 2023/24 11

4 5 10 15 20 25 30 35 40 45 50 58 65 80 98
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lo hi

Binary search

• Given target value and sorted list L, find
index i such that L[i]=value, or report that no
such index exists

• Algorithm maintains L[lo]≤value≤L[hi]
• Example: binary search for target value 20

Valeria Cardellini - ADS 2023/24 12

4 5 10 15 20 25 30 35 40 45 50 58 65 80 98
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lo himid

25

Binary search

• Given target value and sorted list L, find
index i such that L[i]=value, or report that no
such index exists

• Algorithm maintains L[lo]≤value≤L[hi]
• Example: binary search for target value 20

Valeria Cardellini - ADS 2023/24 13

4 5 10 15 20 25 30 35 40 45 50 58 65 80 98
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lo
hi

Binary search

• Given target value and sorted list L, find
index i such that L[i]=value, or report that no
such index exists

• Algorithm maintains L[lo]≤value≤L[hi]
• Example: binary search for target value 20

Valeria Cardellini - ADS 2023/24 14

4 5 10 15 20 25 30 35 40 45 50 58 65 80 98
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lo
hi
mid

20

Binary search

• Given target value and sorted list L, find
index i such that L[i]=value, or report that no
such index exists

• Algorithm maintains L[lo]≤value≤L[hi]
• Example: binary search for target value 20

Valeria Cardellini - ADS 2023/24 15

4 5 10 15 20 25 30 35 40 45 50 58 65 80 98
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lo
hi
mid

20

Binary search: Algorithm

Valeria Cardellini - ADS 2023/24 16

Binary search: Algorithm

Valeria Cardellini - ADS 2023/24 17

Running time?

recursive calls

midpoint of list

length of list (number of elements in the list)

left part of list

right part of list

The list in input is sorted

Binary search: Running time

• Let T(n) be number of comparisons done by
BinarySearch to find an item x in a sorted list
of size n

T(n) = 1 + T(n/2)
T(1) = 1

• T(1) = 1 (if the list has just one element, only
1 comparison is needed)

• It is a recurrence. How do we solve it?

Valeria Cardellini - ADS 2023/24 18

Binary search: Running time

• We have to solve
T(n) = T(n/2) + 1

• If this is true, then we can also say
T(n/2) = T(n/4) + 1

• Putting this back into the recurrence, we
obtain:

T(n) = T(n/2) + 1 = T(n/4) + 1 + 1
• i.e.,

T(n) = T(n/4) + 2

Valeria Cardellini - ADS 2023/24 19

Binary search: Running time

• We have
T(n) = T(n/2) + 1 = T(n/4) + 2

• We can also say
T(n/4) = T(n/8) + 1

• Putting this back into the recurrence, we
obtain:

T(n) = T(n/4) + 2 = T(n/8) + 1 + 2
• i.e.,

T(n) = T(n/8) + 3

Valeria Cardellini - ADS 2023/24 20

Binary search: Running time

• We can go on like this:
T(n) = T(n/8) + 3 = T(n/16) + 4 = ...

• In general, for k = 1, 2, 3,...
T(n) = T(n/2k) + k

• When do we stop? Can’t go on forever…

Valeria Cardellini - ADS 2023/24 21

Binary search: Running time

• We can stop when k is such that n/2k = 1
– i.e., n = 2k, i.e., k = log2n

• For this value of k:
T(n) = T(n/2k) + k = T(1) + log2n = 1 + log2n

• Namely:
T(n) = 1 + log2n = O(log n)

Valeria Cardellini - ADS 2023/24 22

Binary search: Running time

In summary:
• The number of comparisons T(n) done by

binary search to find an item in a sorted list of
size n is described by the recurrence:

T(n) = T(n/2) + 1
• The solution of this recurrence is

T(n) = O(log n)
• Binary search requires running time O(log n)

– Better than sequential search, which is O(n)!

Valeria Cardellini - ADS 2023/24 23

Big O notation: common cases

• Some common Big O notations:

Valeria Cardellini - ADS 2023/24 24

quadratic
running time

constant
running time

Input size n

logarithmic
running time

linear
running time

Big O notation: common cases

• More Big O notations:

Valeria Cardellini - ADS 2023/24 25

Big O notation: common cases
• Constant algorithm – O(1)

– The fastest possible running time: the algorithm
always takes the same amount of time to execute,
regardless of the input size; ideal but rarely
achievable

• Logarithmic algorithm – O(log n)
– Running time grows logarithmically in proportion to n
– E.g., binary search

• Linear algorithm – O(n)
– Running time grows directly in proportion to n
– E.g., sequential search, fibonacci3

• Superlinear algorithm – O(n log n)
– Running time grows faster than n, still practical

Valeria Cardellini - ADS 2023/24 26

Big O notation: common cases
• Polynomial algorithm – O(nc)

– Running time grows quicker than previous all
• Exponential algorithm – O(cn)

– Running time grows even faster than polynomial
algorithm

– E.g., fibonacci2
• Factorial algorithm – O(n!)

– Running time grows the fastest and the algorithm
becomes quickly unusable for even small values
of n

Valeria Cardellini - ADS 2023/24 27

Take-away

• We described two searching algorithms:
– Sequential search: O(n)
– Binary search (sorted input): O(log n)

• If we have to search through trillion (n=1012)
of items, and each step takes 10 nanosec.
(10-8 sec.):
– n steps take: 1012×10-8 sec =104 sec ~ 3 hours!
– log2n steps take: log2(1012)×10-8 sec =

= log2((103)4) ×10-8 sec ~ log2((210)4)×10-8 sec =
= 40×10-8 sec = 400 nanosec!

Valeria Cardellini - ADS 2023/24 28

n 10 100 1000 106 109

log2 n ~ 3.3 ~ 6.65 ~ 10 ~ 20 ~ 30

References

• T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein.
Introduction to Algorithms, 4th ed., MIT Press, 2022

• C. Demetrescu, I. Finocchi, G. F. Italiano. Algoritmi e
Strutture Dati, Mc-Graw Hill, 2008 (in Italian)

Valeria Cardellini - ADS 2023/24 29

