Exercise on Fibonacci numbers

Trpna1+Trp—o2+Trp—3, ifn>3
Tryp =<1, ifn=1,2
0, ifn=0

algorithm tribonacci(integer n) — integer

if n =0 then return 0

else if n < 2 then return 1

else return tribonacci(n-1) + tribonacci(n-2) + tribonacci(n-3)
end if

Let’s examine the Tribonacci sequence, considering the sequence number up to n=7:
Tra=Tra+Tri+Tro=1+1+0=2

Tra=Trs+Tra+Tri=2+1+1=4

Trs=Tra+Trs+Tro=4+2+1=7

Tre=Trs+Tra+Trs=7+4+2=13

Trs=Tre+Trs+Try=13+7+4 =24

1) Let’s determine the running time for tribonacci algorithm, without proving it.

Let’s consider the Fibonacci sequence:

Fo 1+ F, 9, ifn>3

F =
", ifn=1,2

We know that fibonacci2 algorithm (see slide 16), which has a structure quite similar to tribonacci
algorithm, has a running time T(n) = F, = ®", where ® = 1.618 = 2 (see slide 20). That is, fibonacci2
has a running time T(n) = O(2"), i.e., an exponential running time, which is quite bad.

Therefore, for tribonacci algorithm it follows that T(n) = O(2") that is, tribonacci algorithm has an
exponential running time, a bad news because the algorithm is extremely slow!

2) Let’s define tribonacci2 algorithm.

As we did for fibonacci3 algorithm, we can exploit the memoization technique to achieve a faster
algorithm. Let’s store the numbers of the Tribonacci sequence into the array called Trib.

Trib: array of n+1 elements Trib[0], Trib[1], ..., Trib[n]
Note that the array index starts from O rather than from 1, because in this case it is more convenient
for writing the algorithm (we also consider n=0, see the definition of Trn provided above).

Let’s consider as example n=7; from the definition of Tr, provided above, we obtain:
Trib[0] =0

Trib[1] = 1
Trib[2] =1 Trib |0 |1 |12 |4 |7 13|24
Trib[3] = 2
Trib[4]=4 0 1 2 3 4 5 [+ 7
Trib[5] = 7
Trib[6] = 13
Trib[7] = 24

The pseudocode for tribonacci2 is:

algorithm tribonacci2(integer n) -> integer
Let Trib be an array of n+l integers
Trib[@] <- ©
Trib[1] <- Trib[2] <- 1
. for i=3 to n do
Trib[i] <- Trib[i-1] + Trib[i-2] + Trib[i-3]
end for
6. return Trib[n]

uih wWwN B

3) Let’s determine the running time of tribonacci2

Lines 1, 2, 3, and 6 are executed only once.

Lines 4 and 5 are executed <= n times. Let’s observe that they are executed exactly n-2 times, since
the for loop is executed n-3+1 = n-2 times. Therefore, the running time is equal to 4*1 + 2*(n-2).
Anyway, we do not care of the constant and multiplicative factors because we are interested in the
big O notation. Therefore, the running time of tribonacci2 is T(n)=0(n), meaning that tribonacci2
has a linear running time, much better than the running time of tribonacci!

