
Exercise on Fibonacci numbers  
 

 

 
 
Let’s examine the Tribonacci sequence, considering the sequence number up to n=7: 
Tr3 = Tr2 + Tr1 + Tr0 = 1 + 1 + 0 = 2 
Tr4 = Tr3 + Tr2 + Tr1 = 2 + 1 + 1 = 4 
Tr5 = Tr4 + Tr3 + Tr2 = 4 + 2 + 1 = 7 
Tr6 = Tr5 + Tr4 + Tr3 = 7 + 4 + 2 = 13 
Tr7 = Tr6 + Tr5 + Tr4 = 13 + 7 + 4 = 24 
 
1) Let’s determine the running time for tribonacci algorithm, without proving it. 
 
Let’s consider the Fibonacci sequence: 

 
We know that fibonacci2 algorithm (see slide 16), which has a structure quite similar to tribonacci 
algorithm, has a running time T(n) ≈ Fn ≈ Fn, where F ≈ 1.618  ≈ 2 (see slide 20). That is, fibonacci2 
has a running time T(n) = O(2n), i.e., an exponential running time, which is quite bad. 
 
Therefore, for tribonacci algorithm it follows that  T(n) = O(2n) that is, tribonacci algorithm has an 
exponential running time, a bad news because the algorithm is extremely slow!  
 
2) Let’s define tribonacci2 algorithm. 
 
As we did for fibonacci3 algorithm, we can exploit the memoization technique to achieve a faster 
algorithm. Let’s store the numbers of the Tribonacci sequence into the array called Trib. 
 
Trib: array of n+1 elements Trib[0], Trib[1], …, Trib[n] 
Note that the array index starts from 0 rather than from 1, because in this case it is more convenient 
for writing the algorithm (we also consider n=0, see the definition of Trn provided above). 
 
  



Let’s consider as example n=7; from the definition of Trn provided above, we obtain: 
Trib[0] = 0 
Trib[1] = 1 
Trib[2] = 1 
Trib[3] = 2 
Trib[4] = 4 
Trib[5] = 7 
Trib[6] = 13 
Trib[7] = 24 
 
The pseudocode for tribonacci2 is: 
 

algorithm tribonacci2(integer n) -> integer 
1. Let Trib be an array of n+1 integers 
2. Trib[0] <- 0 
3. Trib[1] <- Trib[2] <- 1 
4. for i=3 to n do 
5. Trib[i] <- Trib[i-1] + Trib[i-2] + Trib[i-3] 
    end for  
6. return Trib[n] 

 
3) Let’s determine the running time of tribonacci2 
 
Lines 1, 2, 3, and 6 are executed only once. 
Lines 4 and 5 are executed <= n times. Let’s observe that they are executed exactly n-2 times, since 
the for loop is executed n-3+1 = n-2 times. Therefore, the running time is equal to 4*1 + 2*(n-2). 
Anyway, we do not care of the constant and multiplicative factors because we are interested in the 
big O notation. Therefore, the running time of tribonacci2 is T(n)=O(n), meaning that tribonacci2 
has a linear running time, much better than the running time of tribonacci! 


