
Hashing

Global Governance, 3rd year

Science and Technology Major

Algorithms, Data and Security
A.Y. 2023/24

Valeria Cardellini

What is hashing?

• Hashing is a powerful technique (algorithm
and data structure) that allows us to efficiently
map large datasets of variable length to
smaller datasets of fixed length

• Widely used in many kinds of computer
software: databases, caches, …

• Hash: from French hacher (“to chop”), from
Old French hache (“axe”)

Valeria Cardellini - ADS 2023/24 1

Examples of how hashing is used

• In universities, each student is assigned a
unique roll number that can be used to
retrieve information about them

• A phone book has name, address and phone
number as fields. To find somebody’s phone
number, you search the phone book based
on name

• An account on Instagram has username and
password. You log on using your username
and password and it takes you to your
personal profile with your data

Valeria Cardellini - ADS 2023/24 2

What is hashing?

• Catalogue of student’s ID

Valeria Cardellini - ADS 2023/24 3

6

10

8

11

Name Surname Tel. ID

Andrea Smith 34523785 985926

Adam Johin 12356245 970876

Clare Hubers 34234673 980962

Zoe Klark 56292345 986074

Name Surname Tel.

Andrea Smith 34523785

Clare Hubers 34234673

Adam Johin 12356245

Zoe Klark 56292345

?

What is hashing?

• Catalogue of student’s ID

Valeria Cardellini - ADS 2023/24 4

6

10

8

11

Name Surname Tel. ID ID mod 13

Andrea Smith 34523785 985926 6

Adam Johin 12356245 970876 10

Clare Hubers 34234673 980962 8

Zoe Klark 56292345 986074 11

Name Surname Tel.

Andrea Smith 34523785

Clare Hubers 34234673

Adam Johin 12356245

Zoe Klark 56292345

Why do we need hashing?

• Many apps deal with lots of data
• There are myriad of lookups
• But lookups are time critical
• Data structures like arrays may not be

sufficient to handle efficient lookups
– We have to search through all the elements of the

array: O(n)

• In general: we need hashing when lookups
need to occur in near constant time: O(1)

Valeria Cardellini - ADS 2023/24 5

Why do we need hashing?
Operation Unsorted array Sorted array Ideal

implementation
insert O(1) O(n) O(1)
lookup O(n) O(log n) O(1)
delete O(n) O(n) O(1)

Valeria Cardellini - ADS 2023/24 6

• Unsorted array of size n
– Lookup: sequential search, so O(n)

– Insert: insert at the end, so O(1)

– Delete: search element and then delete it, so O(n)

• Sorted array of size n
– Lookup: binary search, so O(log n)

– Insert: shift elements following element to be inserted, so O(n)

– Delete: search element and then shift all elements following element

to be removed, so O(n)

• Ideal implementation: hash table

Hash table
• A hash table (or hash

map) is a data structure
to efficiently map keys to
values, for efficient
search and retrieval

• It uses a hash function to
compute an index into an
array of buckets or slots,
from which the desired
value can be found

• Constant time access!

7

• A hash table is an array of some fixed
size (TableSize), usually a prime
number

Valeria Cardellini - ADS 2023/24

index

1

….

0

TableSize -1

Key
space
(e.g.,

integers)

Hash
function:
h(key)

Hash table

slot or
bucket

Hash table: example

• A phone book as a hash table

Valeria Cardellini - ADS 2023/24 8

Hash table: operations

• Search (or lookup)
– lookup(item): find the slot which contains “item”

• Insertion
– insert(item): add the new value “item”

• Deletion
– delete(item): remove the value “item”

• Operations are very fast irrespective of data size

Valeria Cardellini - ADS 2023/24 9

Hash function

• The hash function takes any item in the
dataset and returns a slot index in the range
0, …, TableSize-1

• We consider a simple hash function: mod
• Modulo operation (mod) finds the remainder

after division of one number by another
– Given two positive numbers a and b, a mod b is

the remainder of division of a by b
• E.g., 5 mod 2 = 1, because 5 divided by 2 has a quotient

of 2 and a remainder of 1

• E.g., 9 mod 3 = 0 because 9 divided by 3 has a quotient

of 3 and a remainder of 0

Valeria Cardellini - ADS 2023/24 10

Hash table: example 1

• Key space = integers
• TableSize = 10
• h(k) = k mod 10

– We consider a simple hash
function: mod

– Modulo operation (mod)
finds the remainder after
division of one number by
another

• Insert: 7, 18, 41, 94

Valeria Cardellini - ADS 2023/24 11

0

1

2

3

4

5

6

7

8

9

Integers
h(k)

7

18

41

94

7 mod 10 = 7

18 mod 10 = 8

41 mod 10 = 1

94 mod 10 = 4

Hash table: example 2

• Key space = integers
• TableSize = 7
• h(k) = k mod 7
• Insert: 5, 13, 21, 43

Valeria Cardellini - ADS 2023/24 12

0

1

2

3

4

5

6

Integers
h(k)

Hash table: example 2

• Key space = integers
• TableSize = 7
• h(k) = k mod 7
• Insert: 5, 13, 21, 43

Valeria Cardellini - ADS 2023/24 13

43
0

1

2

3

4

5

6

Integers
h(k)

5
135 mod 7 = 5

13 mod 7 = 6

21 mod 7 = 0

43 mod 7 = 1

21

Hash table: example 2

• Key space = integers
• TableSize = 7
• h(k) = k mod 7
• Insert: 5, 13, 21, 43

• Insert 4231988
• What happens?

Valeria Cardellini - ADS 2023/24 14

0

1

2

3

4

5

6

5
13

21
43

4231988 mod 7 = 5
but slot 5 is busy:
collision!

Hash function and collisions

• Desirable properties of hash functions:
– Simple/fast to compute

– Spread key values evenly over the hash table

– Avoid collisions

• Collision: when two keys map to the same
slot in the hash table

Valeria Cardellini - ADS 2023/24 15

An example of collision in real life

• The birthday paradox
https://en.wikipedia.org/wiki/Birthday_problem

• How many people must be there in a room to make the
probability 50% that at-least two people in the room
have same birthday?
– Answer is 23, surprisingly very low!

• We need only 71 people to make the probability 99.9%

• We assume each day of the year (excluding February
29) is equally probable for a birthday

Valeria Cardellini - ADS 2023/24 16

An example of collision in real life

Valeria Cardellini - ADS 2023/24 17

• How do we calculate the probability that two persons
among n have same birthday?
– p(same): probability that two persons in a room with n have

same birthday

– p(same) = 1 – p(different), where p(different) is the probability

that all of them have different birthday

– p(different) = 1 x (364/365) x (363/365) x (362/365) x …

… x (1 – (n-1)/365)

• Because the 1st person can have any birthday among 365, the 2nd
person should have a birthday which is not same as 1st person,
the 3rd person should have a birthday which is not same as first two
persons, and so on

• With some math (using Taylor’s series) we find that

p(same)

that is

How to handle collisions in hash table

• Collisions must be handled using some
collision handling technique

• Two ways to resolve collisions:
1. Separate chaining
2. Open addressing

a) linear probing

b) quadratic probing

c) double hashing

Valeria Cardellini - ADS 2023/24 18

Separate chaining

• Separate chaining: all keys that map to the
same hash value (i.e., slot) are kept in a list
(linked list to store elements with collided key)

Valeria Cardellini - ADS 2023/24 19

Insert F

Separate chaining: example

• Key space = integers
• TableSize = 7
• h(k) = k mod 7
• Insert: 50, 700, 76, 85, 92, 73, 101

Valeria Cardellini - ADS 2023/24 20

2

0

1

3

4

5

6

Initial empty table

2

0

1

3

4

5

6

Insert 50

50 mod 7 = 1

50
2

0

1

3

4

5

6

Insert 700

700 mod 10 = 0

50
700

2

0

1

3

4

5

6

Insert 76

76 mod 7 = 6

50
700

76

Separate chaining: example

• Key space = integers
• TableSize = 7
• h(k) = k mod 7
• Insert: 50, 700, 76, 85, 92, 73, 101

Va
le

ria
 C

ar
de

llin
i -

AD
S

20
23

/2
4

21

2

0

1

3

4

5

6

Insert 85, 85 mod 7 = 1
Collision occurs! Add to
chain

50
700

76

85
2

0

1

3

4

5

6

Insert 92, 92 mod 7 = 1
Collision occurs! Add to chain

50
700

76

85 92

Separate chaining: example

• Key space = integers
• TableSize = 7
• h(k) = k mod 7
• Insert: 50, 700, 76, 85, 92, 73, 101

22

2

0

1

3

4

5

6

Insert 73

73 mod 7 = 3

50
700

76

85 92

73
2

0

1

3

4

5

6

Insert 101, 101 mod 7 = 3
Collision occurs! Add to chain

50
700

76

85 92

73 101

Va
le

ria
 C

ar
de

llin
i -

AD
S

20
23

/2
4

Separate chaining: performance

• Insertion insert(number): add new entry
“number” into hash table A
– Insert data into A[h(number)]: takes O(1) time

• Retrieval find(key): find entry “key”
– Find key from A[h(key)]: takes O(1+c) time on

average, where c is the average length of the linked
list

• Deletion: delete(number): remove entry
“number”
– Delete A[h(number)]: takes O(1+c) time on average

• If c is bounded by some constant, then all three
operations are O(1)

Valeria Cardellini - ADS 2023/24 23

Separate chaining: pros and cons

• Simple to implement

• Hash table never fills up,
we can always add
more elements to chain

• Less sensitive to the
hash function

Valeria Cardellini - ADS 2023/24 24

• Wastage of space of
hash table (some parts
are never used)

• If chain becomes long,
then search time can
become O(n) in worst
case

• Make use of storage
outside of the hash table
itself, including extra
space to store links

• Not well performing
(because of poor cache
performance)

Pros Cons

Break: memory hierarchy
• The memory of modern computer architectures has a

number of levels
– From fast registers inside CPU

– Through one or more levels of cache memory

– To main memory (RAM)

– To flash and USB memories

– To SSDs and hard disks

• Each successive level stores more data than the
previous level and costs less, but access is slower

• Computation that works entirely using higher memory
levels takes less time

• But higher memory levels are expensive: the memory
hierarchy gives us the illusion of a fast, large and
cheap memory

Valeria Cardellini - ADS 2023/24 25

Break: memory hierarchy

Valeria Cardellini - ADS 2023/24 26

Open addressing
• Open addressing: try to find the next open

(i.e., free) slot in the hash table
– No linked list as in separate chaining, now all

elements are stored in the hash table itself

• Idea: let’s define a probe sequence
– When a new element is to be inserted into the

table, it is placed in its “first-choice” slot if possible

– If that slot is already occupied, it is placed in its
“second-choice” slot

– The process continues until an empty slot is found
in which to place the new element

Valeria Cardellini - ADS 2023/24 27

Open addressing

• How do we define the probe sequence?
hi(k) = (h(k) + F(i)) mod TableSize
– i is the probe number

• i=0: first choice

• i=1: second choice

• i=2: third choice, and so on

– mod TableSize because we wrap around when we
reach the last slot of the hash table

• When searching for key k, if collision occurs
on slot h0(k), then check the probe sequence
of slots h1(k), h2(k), h3(k), … until either k is
found or we find an empty slot, which
indicates that k is not in the table

Valeria Cardellini - ADS 2023/24 28

Open addressing

• hi(k) = (h(k) + F(i)) mod TableSize
• Various types of addressing differ in which

probe sequence they use
• F is the collision resolution function, it can be:

– Linear: F(i) = i

– Quadratic: F(i) = i2

– Double hashing: F(i) = i * g(k)
• where g(k) is a second hash function that we use to

compute the step size for the probe sequence

Valeria Cardellini - ADS 2023/24 29

Open addressing: linear probing

• Open addressing: try to find the next open
(i.e., free) slot in the hash table

• By systematically visiting each slot one at a
time, we perform an open addressing
technique called linear probing

• In linear probing, when there is a collision we
scan forward for the next slot
– Wrapping around when we reach the last slot

Valeria Cardellini - ADS 2023/24 30

Open addressing: linear probing

• When searching for key k, check slots h(k),
h(k)+1, h(k)+2, h(k)+3, … until either k is
found or we find an empty slot (i.e., k is not
present)

• Probe sequence
– 0th probe: h0(k) = h(k)

– 1st probe: h1(k) = (h(k)+1) mod TableSize

– 2nd probe: h2(k) = (h(k)+2) mod TableSize

– ith probe: hi(k) = (h(k)+i) mod TableSize

Valeria Cardellini - ADS 2023/24 31

Linear probing: example

• Key space = integers
• TableSize = 7
• h(k) = k mod 7
• Insert: 18, 14, 21, 1, 35

Valeria Cardellini - ADS 2023/24

2

0

1

3

4

5

6

Initial empty table

2

0

1

3

4

5

6

Insert 18

18 mod 7 = 4

18

2

0

1

3

4

5

6

Insert 14

14 mod 7 = 0

18

14

32

Linear probing: example

• Key space = integers
• TableSize = 7
• h(k) = k mod 7
• Insert: 18, 14, 21, 1, 35

Va
le

ria
 C

ar
de

llin
i -

AD
S

20
23

/2
4

21
2

0

1

3

4

5

6

Insert 21, 21 mod 7 = 0
Collision occurs! Look
for next empty slot

18

14

12

0

1

3

4

5

6

Insert 1, 1 mod 7 = 1
Collision occurs! Look
for next empty slot

18

14
21

33

Linear probing: example

• Key space = integers
• TableSize = 7
• h(k) = k mod 7
• Insert: 18, 14, 21, 1, 35

Va
le

ria
 C

ar
de

llin
i -

AD
S

20
23

/2
4

35 What happens when we look for 35?
12

0

1

3

4

5

6

Insert 35, 35 mod 7 = 0
Collision occurs! Look
for next empty slot

18

14
21

34

Linear probing: example
• Let’s consider the probe sequence when we look for 35

– 0th probe: h0(35) = h(35) = 0
– 1st probe: h1(35) = (h(35)+1) mod 7 = (0+1) mod 7 = 1
– 2nd probe: h2(35) = (h(35)+2) mod 7 = (0+2) mod 7 = 2
– 3rd probe: h3(35) = (h(35)+3) mod 7 = (0+3) mod 7 = 3

found!

Va
le

ria
 C

ar
de

llin
i -

AD
S

20
23

/2
4

35

35
12

0

1

3

4

5

6

Look for 35, 35 mod 7 = 0 It is
occupied: look for next slot.
35 found after 4 probes

18

14
21

Linear probing: example

• Key space = integers
• TableSize = 7
• h(k) = k mod 7
• Find: 35, 8

Va
le

ria
 C

ar
de

llin
i -

AD
S

20
23

/2
4

What happens when we look for 8? 35
12

0

1

3

4

5

6

Look for 8, 8 mod 7 = 1.
Collision occurs! After 5
probes empty slot: not found

18

14
21

36

Linear probing: example

• Key space = integers
• TableSize = 7
• h(k) = k mod 7
• Delete: 21

Va
le

ria
 C

ar
de

llin
i -

AD
S

20
23

/2
4

35
12

0

1

3

4

5

6

Delete 21, 21 mod 7 = 0.
Collision occurs! After 2
probes 21 found and deleted

18

14
21

37

Be careful: delete is tricky

Linear probing: example

• Key space = integers
• TableSize = 7
• h(k) = k mod 7
• Find: 35

What happens when we look for 35?

Not found! Incorrect!

We cannot simply delete a value,
because it can affect find!

35
12

0

1

3

4

5

6

Find 35, 35 mod 7 = 0

18

14

38Valeria Cardellini - ADS 2023/24

Linear probing: deletion

• For each slot use state slot, which can be:
– Occupied

– Deleted

– Empty

• When an element is removed from hash
table, we mark the slot state as “deleted”,
instead of emptying the slot
– Implementation detail: need to use an additional

array having the same size as the hash table,
where we keep track of the slot state

Valeria Cardellini - ADS 2023/24 39

Linear probing: example

• Key space = integers
• TableSize = 7
• h(k) = k mod 7
• Delete 21, find 35, insert 15

Va
le

ria
 C

ar
de

llin
i -

AD
S

20
23

/2
4

35
12

0

1

3

4

5

6

Delete 21, 21 mod 7 = 0. Collision
occurs! After 2 probes 21 found and
marked as deleted

18

14
21

35
12

0

1

3

4

5

6

Find 35, 35 mod 7 = 0.
Collision occurs! After 4
probes 35 found

18

14
21

40

Linear probing: example

• Key space = integers
• TableSize = 7
• h(k) = k mod 7
• Delete 21, find 35, insert 15

35
12

0

1

3

4

5

6

Insert 15, 15 mod 7 = 1

18

14
21

Slot 1 is marked as deleted

Search for 15, and found that 15
is not in the hash table

Insert 15 into the slot that has
been marked as deleted

35
12

0

1

3

4

5

6

Insert 15

18

14
15

41Valeria Cardellini - ADS 2023/24

Linear probing: clustering
• A problem with linear probing: clustering

– Table items tend to cluster together in the hast
table, i.e., table contains groups of consecutively
occupied locations

– Clustering causes long probe searches and
therefore decreases the efficiency

Valeria Cardellini - ADS 2023/24 42

• E.g., insert 5, 6,
15, 16, 7, 17 with
h(k) = k mod 10

Open addressing: quadratic probing

• hi(k) = (h(k) + F(i)) mod TableSize
• Quadratic probing: F(i) = i2

• Probe sequence
– 0th probe: h0(k) = h(k)

– 1st probe: h1(k) = (h(k)+1) mod TableSize

– 2nd probe: h2(k) = (h(k)+4) mod TableSize

– ith probe: hi(k) = (h(k)+i2) mod TableSize

• Less likely to encounter clustering

Valeria Cardellini - ADS 2023/24 43

12 22

Open addressing: double hashing

• hi(k) = (h(k) + F(i)) mod TableSize
• Double hashing: F(i) = i * g(k)

– The probe is decided using g(k), which is a
second hash function, independent of h(k)

• Probe sequence
– 0th probe: h0(k) = h(k)

– 1st probe: h1(k) = (h(k)+g(k)) mod TableSize

– 2nd probe: h2(k) = (h(k)+2*g(k)) mod TableSize

– ith probe: hi(k) = (h(k)+i*g(k)) mod TableSize

• Pros: no clustering

• Cons: requires more computation time as two hash
functions need to be computed

Va
le

ria
 C

ar
de

llin
i -

AD
S

20
23

/2
4

44

Open addressing: pros and cons

• Better performance with
respect to separate
chaining
– In terms of cache (at the

top of memory hierarchy

in your computing device)

• Better space usage
– A slot can be used even if

no element maps to it

• No need of linked lists
(and space to store
them)

Valeria Cardellini - ADS 2023/24 45

• Requires more
computation than
separate chaining

• Hash table may become
full

• Requires extra care to
avoid clustering

Pros Cons

Exercise

• Insert the keys 12, 18, 13, 2, 3, 23, 5 and 15
into an initially empty hash table of length 10
using separate chaining and hash function
h(k) = k mod 10
1. Which is the resulting hash table?

2. Which are the steps to find 23 in the resulting
hash table?

3. Now consider again an empty table and use open
addressing and linear probing: which is the
resulting hash table after the insertions?

4. How do you find 23 in that resulting hash table?

Valeria Cardellini - ADS 2023/24 46

Exercise

5. If you rather use open addressing and quadratic
probing, which is the resulting hash table after the
insertions?

6. How do you find 23 in that resulting hash table?

7. If you rather use open addressing and double
hashing probing, which is the resulting hash table
after the insertions? Use g(k) = 1 + k mod 7

Valeria Cardellini - ADS 2023/24 47

References

• T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, “Introduction

to Algorithms”, MIT Press, Chapter 11, 2022.

• C. Demetrescu, I. Finocchi, G. F. Italiano, “Algoritmi e Strutture

Dati”, Mc-Graw Hill, 2008 (in Italian)

• Wikipedia, “Hash table”, en.wikipedia.org/wiki/Hash_table

Valeria Cardellini - ADS 2023/24 48

