
See the slides on Neo4j.

Let’s use the movie database included in Neo4j. Our goal is to to 
show recommendations for other actors to work with or similar movies 
to watch. By following the meaningful relationships between actors 
and movies, we can determine occurrences of actors working together, 
the frequency of actors working with one another, and the movies 
they have in common in the graph. This structure forms the basis for 
many recommendation engines.

Let's start the Movies sandbox (https://sandbox.neo4j.com/) and 
let's type the following commands into the Neo4j Browser command 
line.

call db.schema.visualization()

MATCH (tom:Person {name: 'Tom Hanks'})
RETURN tom

MATCH (tom:Person {name: 'Tom Hanks'})-[r:ACTED_IN]->(movie:Movie)
RETURN tom, r, movie

MATCH (tom:Person {name: 'Tom Hanks'})-[:ACTED_IN]->(:Movie)<-
[:ACTED_IN]-(coActor:Person)
RETURN coActor.name

MATCH (tom:Person {name: 'Tom Hanks'})-[:ACTED_IN]->(:Movie)<-
[:ACTED_IN]-(coActor:Person)
RETURN distinct coActor.name

MATCH (tom:Person {name: 'Tom Hanks'})-[:ACTED_IN]->(movie1:Movie)<-
[:ACTED_IN]-(coActor:Person)-[:ACTED_IN]->(movie2:Movie)<-
[:ACTED_IN]-(coCoActor:Person)
RETURN coCoActor.name

What is wrong with the previous query? Let's improve it as follows:

MATCH (tom:Person {name: 'Tom Hanks'})-[:ACTED_IN]->(movie1:Movie)<-
[:ACTED_IN]-(coActor:Person)-[:ACTED_IN]->(movie2:Movie)<-
[:ACTED_IN]-(coCoActor:Person)
WHERE tom <> coCoActor AND NOT (tom)-[:ACTED_IN]->(:Movie)<-
[:ACTED_IN]-(coCoActor)
RETURN coCoActor.name



MATCH (tom:Person {name: 'Tom Hanks'})-[:ACTED_IN]->(movie1:Movie)<-
[:ACTED_IN]-(coActor:Person)-[:ACTED_IN]->(movie2:Movie)<-
[:ACTED_IN]-(coCoActor:Person)
WHERE tom <> coCoActor AND NOT (tom)-[:ACTED_IN]->(:Movie)<-
[:ACTED_IN]-(coCoActor)
RETURN coCoActor.name, count(coCoActor) as frequency
ORDER BY frequency DESC
LIMIT 5

MATCH (tom:Person {name: 'Tom Hanks'})-[:ACTED_IN]->(movie1:Movie)<-
[:ACTED_IN]-(coActor:Person)-[:ACTED_IN]->(movie2:Movie)<-
[:ACTED_IN]-(cruise:Person {name: 'Tom Cruise'})
WHERE NOT (tom)-[:ACTED_IN]->(:Movie)<-[:ACTED_IN]-(cruise)
RETURN tom, movie1, coActor, movie2, cruise


