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Regression models analyze how one variable depends on
others.

Suppose to have two or more variables, some of which will be
regarded as fixed, and others as random. The random
quantities are known as responses and the fixed ones as
explanatory variables or covariates.

We shall suppose that only one variable is regarded as a
response.

In this lecture we outline the basic results for the simplest
regression model, where a single response depends linearly on
a single covariate
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Winning Olympic 100-metres sprint times from 1900 to 2016

The most obvious feature is that the winning time decreased
by about 1 s. and 35 cs over that period

A simple model is that of linear trend in the winning time (the
response y) so in year j (the covariate) we have

yj = β0 + β1j + εj



The straight-line regression model (or simple regression model)
assumes that random variables Yj satisfy

Yj = β0 + β1xj + εj , j = 1, . . . , n

where

x1 . . . , xn are known constants

ε1, . . . , εn are i.i.d. N(0, σ2) (homoskedasticity)

β0, β1 and σ2 are unknown parameters

Thus, the random variables Yj are independent but not identically
distributed and Yj ∼ N(β0 + β1 xj , σ

2) for j = 1, . . . , n

The data arise as pairs (x1, y1) . . . , (xn, yn), from which β0, β1 and
σ2 are to be estimated



Least square estimates

To estimate β0 and β1 we can minimize the distance

SS(β0, β1) =
n∑

j=1

(yj − (β0 + β1xj))2

which is the sum of squared vertical deviations between the yj and
their means β0 + β1 xj under the linear model.

This is equivalent to find among all the possible straight lines
β0 + β1x the one which minimizes the sum of the vertical distances
between the points yj and β0 + β1xj
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SS(β0, β1) =
n∑

j=1

(yj − (β0 + β1xj))2

To find the least square estimates (ols) we need to find ∂SS(β0,β1)
∂β0∂β1

by solving the system{
∂SS(β0,β1)

∂β0
= −2

∑n
j=1(yj − (β0 + β1xj)) = 0

∂SS(β0,β1)
∂β1

= −2
∑n

j=1 xj(yj − (β0 + β1xj)) = 0

which is equivalent to{∑n
j=1 yj − nβ0 − β1

∑n
j=1 xj = 0∑n

j=1 xjyj − β0
∑n

i=1 xj − β1
∑n

j=1 x
2
j = 0

From the first eqn we have β0 = ȳ − β1x̄ and the second becomes

n∑
j=1

xjyj − ȳ1

n∑
i=1

xj + β1x̄
n∑

i=1

xj − β1

n∑
j=1

x2
j = 0



Hence, the system solution is the point (β̂0, β̂1) where

β̂1 =

∑n
j=1 xjyj − ȳ

∑n
i=1 xj∑n

j=1 x
2
j − x̄

∑n
i=1 xj

=
n
∑n

j=1 xjyj −
∑n

j=1 yj
∑n

i=1 xj

n
∑n

j=1 x
2
j − (

∑n
i=1 xj)

2

=

∑n
i=1(yj − ȳ)(xj − x̄)∑n

j=1(xj − x̄)2
=

sxy
s2
x

≡ σxy
σ2
x

Therefore, the OLS estimator for β0 and β1 are:{
β̂0 = ȳ − β̂1x̄

β̂1 =
σxy
σ2
x



Note that β̂1 cannot be calculated if all the xj are equal.

The matrix of the second derivative of SS(β0, β1) is positive
definite so that (β̂0, β̂1) minimizes SS(β0, β1)

The quantity SS(β̂0, β̂1) known as residual sum of squares, is the
smalles sum of square SS(β0, β1) attainable by fitting the linear
regression model to the data

The values ŷj = β̂0 + β̂1xj for j = 1, . . . , n are called fitted values

and the straight line y = β̂0 + β̂1x is the least squares regression
line



Properties of the least squares estimators

E (β̂1) = β1

V (β̂1) = σ2∑n
j=1(xj−x̄)2

E (β̂0) = β0

V (β̂0) = σ2
(

1
n + x̄2∑n

j=1(xj−x̄)2

)
Cov(β̂0, β̂1) = −x̄ σ2∑n

j=1(xj−x̄)2

All these properties (and also the least squares estimators) have
been obtained without assuming the normality of the response
variables but considering only their mean and variance and the
independence of these random variables.



σ2 estimator

Remember that the simple linear model assumes

yj = β0 + β1xj + εj j = 1, . . . , n

where ε1, . . . , εn are i.i.d with E (εj) = 0 and V (εj) = σ2 .
Then

εj = yj − (β0 + β1xj) j = 1, . . . , n

and we can estimate σ2 by calculating the variance of the residuals

ej = yj − (β̂0 + β̂1xj) j = 1, . . . , n

that is

σ̂2 =
1

n

n∑
j=1

e2
j



It is possible to prove that

E (σ̂2) =
n − 2

n
σ2

Hence an unbiased estimator for σ2 is

S2 =
n

n − 2
σ̂2 =

∑n
j=1 e

2
j

n − 2



Total sum of squares (TSS): The sum over all squared
differences between the observations and their overall mean.

n∑
j=1

(yj − ȳ)2

Explained sum of squares (ESS): The sum of the squares of
the deviations of the predicted values from the mean value of
a response variable.

ESS =
n∑

j=1

(ŷj − ȳ)2

Residual sum of squares (RSS): The sum of the squares of
residuals

RSS =
n∑

j=1

e2
j =

n∑
j=1

(yj − β̂0 − β̂1xj)
2



Coefficient of determination
Once we have obtained the fitted value ŷj it is important to
evaluate how they fit the observed values yj , that is we need to
measure the goodness of fit of the regression model

Note that

1

n

n∑
j=1

ŷj =
1

n

n∑
j=1

(β̂0 + β̂1xj) = β̂0 + β̂1x̄ = ȳ − β̂1x̄ + β̂1x̄ = ȳ .

Then, the explained sum of squares (ESS), i.e. the sum of the
squares of the deviations of the predicted values from their mean is

ESS =
n∑

j=1

(ŷj − ȳ)2 =
n∑

j=1

(β̂0 + β̂1xj − ȳ)2 =

=
n∑

j=1

(ȳ − β̂1x̄ + β̂1xj − ȳ)2 = β̂2
1

n∑
j=1

(xj − x̄)2



Note also that the residual sum of squares (RSS) is

RSS =
n∑

j=1

e2
j =

n∑
j=1

(yj − β̂0 − β̂1xj)
2

=
n∑

j=1

(
(yj − ȳ)− β̂1(xj − x̄)

)2

=
n∑

j=1

(yj − ȳ)2 + β̂2
1

n∑
j=1

(xj − x̄)2 − 2β̂1

n∑
j=1

(xj − x̄)(yj − ȳ)

=
n∑

j=1

(yj − ȳ)2 + β̂2
1

n∑
j=1

(xj − x̄)2 − 2β̂2
1

n∑
j=1

(xj − x̄)2

=
n∑

j=1

(yj − ȳ)2 − β̂2
1

n∑
j=1

(xj − x̄)2 = TSS − ESS

where the total sum of squares TSS is
∑n

j=1(yj − ȳ)2



Thus we have the following identity

TSS = ESS + RSS

In general, the greater the ESS, the better the estimated model
performs. In fact ESS represents the data variability explained by
the regression model

The coefficient of determination

R2 =
ESS

TSS
= 1− RSS

TSS

represents an index of goodness of fit for the simple regression
model. It measures the fraction of data variability explained by the
regression model. Note that 0 ≤ R2 ≤ 1 and values of R2

approaching 1 represent a perfect fit. It is straighforward to prove
that R2 = ρ2 where ρ is the correlation coefficient σxy/(σxσy )
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Normal assumption and likelihood function

Assuming that the variables Yj are independent N(β0 + β1xj , σ
2),

the likelihood function based on (x1, y1), . . . (xn, yn) is

L(β0, β1, σ
2) =

n∏
j=1

1

(2πσ2)1/2
exp

[
− 1

2σ2
(yj − (β0 + β1xj))2

]
and the loglikelihood is

`(β0, β1, σ
2) = −n

2
log σ2 − 1

2σ2

n∑
j=1

(yj − (β0 + β1xj))2

For any ∀σ2 maximizing over β0, β1 is equivalent to minimizing
SS(β0, β1) =

∑n
j=1(yj − (β0 + β1xj))2. Then, the maximum

likelihood estimates (mle) for (β0, β1) are exactly the ols estimates



The mle for σ2 can be obtained by solving

∂`(β0, β1, σ
2)

∂σ2
= − n

2σ2
+

1

2(σ2)2

n∑
j=1

(yj − (β̂0 + β̂1xj))2 = 0

which leads to

σ̂2 =
1

n

n∑
j=1

(yj − (β̂0 + β̂1xj))2



Since β̂0 and β̂1 are linear combinations of normal random
variables we have that

β̂1 ∼ N

(
β2, 1

σ2∑n
j=1(xj − x̄)2

)

β̂0 ∼ N

(
β0, σ

2

(
1

n
+

x̄2∑n
j=1(xj − x̄)2

))
Moreover, it is possible to prove that

(n − 2)S2

σ2
∼ χ2

n−2 i.e.
S2

σ2
∼
χ2
n−2

n − 2

and that S2 and (β̂0, β̂1) are independent random variables



Confidence intervals and hypothesis test
Confidence intervals and hypothesis tests are based on the pivotal
quantities∗ qr

qr =
β̂r − βr√
V̂ (β̂r )

r = 1, 2

where
√

V̂ (β̂r ) is the standard error of β̂r

Since V̂ (β̂r ) = S2V (β̂r )/σ
2 we have that

qr =
β̂r − βr√
V̂ (β̂r )

=
β̂r − βr√
S2

σ2 V (β̂r )
=

β̂r−βr√
V (β̂r )√
S2

σ2

∼ N(0, 1)√
χ2
n−2

n−2

∼ tn−2

where in last statement we have considered also the independence
between β̂r and S2

∗A function of observations and unobservable parameters such that the
function’s probability distribution does not depend on the unknown parameters.



Consider the following hypothesis test{
H0 : βr = β

(0)
r

H1 : βr 6= β
(0)
r

The test statistic

tr =
β̂r − β(0)

r√
V̂ (β̂r )

under H0 is a tn−2 distribution while under H1 assumes large
(positive or negative) values and the p-value is

p-value = P(|tn−2| > |tossr |) = 2P(tn−2 > |tossr |)



(1− α)% confidence intervals can be obtained by observing that

1− α = P(tn−2;α/2 < qr < tn−2;1−α/2)

= P

−tn−2;1−α/2 <
β̂r − βr√
V̂ (β̂r )

< tn−2;1−α/2


= P

(
−tn−2;1−α/2

√
V̂ (β̂r ) < β̂r − βr < tn−2;1−α/2

√
V̂ (β̂r )

)
= P

(
β̂r − tn−2;1−α/2

√
V̂ (β̂r ) < βr < β̂r + tn−2;1−α/2

√
V̂ (β̂r )

)
.

Hence, the (1− α)% confidence interval is

β̂r ± tn−2;1−α/2

√
V̂ (β̂r )



Prediction

Let us consider a new observation of the covariate xf . The
expected value of the prediction is

µf = E (Y |xf ) = β0 + β1xf .

A point estimate for µf is

ŷf = β̂0 + β̂1xf

= ȳ + (xf − x̄)β̂1

Mean and variance of the estimator Ŷf are

E (Ŷf ) = E (β̂0 + β̂1xf ) = β0 + β1xf = µf

V (Ŷf ) = V (Ȳ + (xf − x̄)β̂1) =
σ2

n
+

σ2(xf − x̄)2∑n
j=1(xj − x̄)2



100 metres at the Olympics

> olympics=read.table('olympics.txt',header=TRUE)
> m=lm(time~Year,data=olympics)

> summary(m)

Call:

lm(formula = time ~ Year, data = olympics)

Residuals:

Min 1Q Median 3Q Max

-0.262434 -0.053855 -0.007824 0.079724 0.208744

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 31.5398334 1.4084088 22.39 < 2e-16

Year -0.0108579 0.0007182 -15.12 4.39e-14

Residual standard error: 0.1314 on 25 degrees of freedom

(3 observations deleted due to missingness)

Multiple R-squared: 0.9014, Adjusted R-squared: 0.8975

F-statistic: 228.6 on 1 and 25 DF, p-value: 4.391e-14
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Predictions for Tokyo 2020

> new <- data.frame(Year=2020)

> predict(m, new,interval="conf")

fit lwr upr

1 9.606941 9.504984 9.708899

> predict(m, new,interval="pred")

fit lwr upr

1 9.606941 9.317753 9.896129



Interpretation

Given the model

Yj = β0 + β1xj + εj j = 1, . . . , n

β0 is the intercept (often represented with α); it represents
the value of Yj when xj = 0;

β1 is the slope of the regression line; i.e. if x increases
(decreases) of one unit, Y increases (decreases) of β1.



Interpretation

Given the model

Yj = β0 + β1xj + εj j = 1, . . . , n

β0 is the intercept (often represented with α); it represents
the value of Yj when xj = 0;

β1 is the slope of the regression line; i.e. if x increases
(decreases) of one unit, Y increases (decreases) of β1.



Questions

We want to investigate the relationship between two variables Y
and X ;

Correlation?

By defining

Yj = β0 + β1xj + εj j = 1, . . . , n

we assume that there is a causal relationship. One cannot
”search” for causality with the regression, the regression can
only be used if a causal relationship is assumed.
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Summary and...

1 model specification and assumptions:

Yj = β0 + β1xj + εj j = 1, . . . , n

where ε1, . . . , εn are i .i .d . N(0, σ2).

2 point estimation:

β̂1 =
σxy

σ2
x

β̂0 = ȳ − β̂1x̄

3 calculate standard errors

4 diagnostics:

R2 = ESS
TSS

t-test

5 interpretation
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