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Prerequisites

Descriptive Statistics
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Probability

Let Ω be a set F a collection of subsets of ω. A probability measure,
or simply a probability on (Ω,F) is a function

P : F → [0, 1]

To be a probability P must satisfy
1 ∀A ∈ F , 0 ≤ P (A) ≤ 1
2 P (Ω) = 1
3 if A1 e A2 are disjoint then P (A1 ∪A2) = P (A1) + P (A2)
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We can show that property 3 holds for any finite collection of disjoint
sets

P (

n⋃
i=1

Ai) =

n∑
i=1

P (Ai)

It is common practice to assume that 3 hold for countable collections
of disjoint sets

P (

∞⋃
i=1

Ai) =

∞∑
i=1

P (Ai)
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Properties of the probability

P (A) = 1− P (Ā)

If A ⊆ B P (A) ≤ P (B)

For general set A and B

P (A ∪B) = P (A) + P (B)− P (A ∩B)
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Random variables

A random variable (r.v.) is a numerical expression of the outcome of
a statistical experiment or more generally the numerical manifestation
of a phenomenon that can have different outcomes

Formally, given Ω and a probability P on Ω,
a r.v. X is a function X(ω) defined on Ω and taking values in R

X : Ω → R

and ∀B ⊆ R

P (X ∈ B) = P (ω ∈ Ω : X(ω) ∈ B)

Random variables will be generally indicated with the letters X,Y, Z...
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A r.v. that may assume only a finite number or an infinite sequence
of values is said to be discrete;

A r.v. that may assume any value in some interval on the real number
line is said to be continuous.

For instance, a random variable representing the number of new cases
of COVID-19 on one day would be discrete, while a random variable
representing the weight of a person in kilograms would be continuous.

Very often we work directly with random variables without knowing
(or caring toknow) the underlying probability P on the space Ω

In fact we will specify (model) directly the probabilities of the
outcomes of the r.v.
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The (cumulative) distribution function FX(x) of X is

FX(x) = P (X ≤ x) x ∈ R

Note that

1 FX(−∞) = 0

2 FX(∞) = 1

3 x < x′ ⇒ F (x) ≤ F (x′)

Marco Stefanucci Looking back



Cumulative distribution function of a discrete random variable
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Cumulative distribution function of a continuous random variable
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By the distribution function and the rules of probability we can obtain
other probabilities on the r.v. X, e.g.

P (X > a) = 1− P (X ≤ a) = 1− FX(a)

and since for a < b, (−∞, b] = (−∞, a] ∪ (a, b]

P (X ≤ b) = P (X ≤ a) + P (a < X ≤ b)

and
P (a < X ≤ b) = FX(b)− FX(a)
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Discrete random variables

A discrete random variable takes value only in some countable subset
D of R
Commonly this subset D is a subset of the integers

The probability that X takes some given value x in D is

p(x) = P (X = x) = P (ω ∈ Ω : X(ω) = x)

The function p(x) is be called probability distribution of X or
probability function

Example: Suppose we toss an unbiased coin 2 times in succession.
What is the probability of obtaining x heads (x = 0, 1, 2)? Let X be
the r.v. describing the result of such experiments. The probability
function is

x Pr(X = x)
(T,T) 0 1

4
(T,H), (H,T) 1 1

2
(H,H) 2 1

4
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Note that
p(x) ∈ [0, 1]

and ∑
x∈D

p(x) = 1

In fact,
Ω =

⋃
x{ω : X(ω) = x} and {ω : X(ω) = x}∩ {ω : X(ω) = x′} = ∅

otherwise we would have that ∃ω : X(ω) = x and X(ω) = x′ which
is impossible, then

1 = P (Ω) = P

(⋃
x

{ω : X(ω) = x}

)
=

∑
x∈D

P ({ω : X(ω) = x}) =
∑
x∈D

p(x)

Moreover
F (x) = Pr(X ≤ u) =

∑
u≤x

p(u)
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Density function and cumulative distribution function for the previous
example
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Famous probability distributions

X ∼ Bernoulli(p) for 0 ≤ p ≤ 1

p(1) = p and p(0) = 1− p

X ∼ Geometric(p) for 0 ≤ p ≤ 1

p(x) = p(1− p)x−1 for x = 1, 2, ..

This r.v. represents, for example, the number of coin flips until the
first head sshows up (assuming independent coin flips)
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Probability distribution function for a Geometric r.v. with p = 0.5
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X ∼ Binomial(n, p) for n > 0 and 0 ≤ p ≤ 1

p(x) =

(
n

x

)
px(1− p)n−x for x = 0, 1, 2, . . . n

The binomial r.v.
represents, for example, the number of heads in n independent coin flips
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Probability distribution function for a Binomial r.v. with n = 10 and
p = 0.5

Marco Stefanucci Looking back



X ∼ Poisson(λ) for λ > 0

p(x) =
λx

x!
e−λ for x = 0, 1, 2, . . .

The Poisson r.v. often represents the number of random events, e.g.
number of customers, email, COVID-19 cases etc., in some time interval

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Probability distribution function for a Binomial r.v. with n = 10 and
p = 0.5
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Continuous random variables

A continuous r.v. can take values on a interval, either of finite or
infinite length

1 Medical trials: the time until a patient experience a relapse or the
time until healing

2 Economics: the income of a family
3 Health economics: the cost of a treatment

Since the elements x of a real interval are uncountable, for a
continuous r.v. we must have P (X = x) = 0

Formally, a r.v. X is continuous if ∀B ⊂ R

P (X ∈ B) =

∫
B

fX(x)dx

for some function fX(x) that will be called probability density
function or simply density
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Every density function satisfy the following two properties

fX(x) ≥ 0∫∞
−∞ fX(x) = 1

In fact if fX(x) < 0 on the interval (a, b) then P (X ∈ (a, b)) =∫ b

a
fX(x)dx < 0 and we can’t have probabilities less than 0

Moreover 1 = P (X ∈ (−∞,∞)) =
∫∞
−∞ fX(x)dx

Note that we effectively have P (X = a) = 0 ∀a ∈ R
In fact P (X = a) = limϵ→0 P (X ∈ [a, a+ ϵ])
= limϵ→0

∫ a+ϵ

a
fX(x)dx = 0
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Popular continuous random variables

Uniform: X ∼ Unif(a, b) for b > a has density function

fX(x) =

{
1

b−a for a ≤ x ≤ b

0 otherwise

The cumulative distribution function is

FX(x) =


0 for x < a

x−a
b−a for a ≤ x ≤ b

1 for x > b
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Exponential: X ∼ Exp(λ) for λ > 0 has density function

fX(x) =

{
λe−λx for x > 0
0 otherwise

The cumulative distribution function is

FX(x) =

{
0 for x < 0
1− e−λx for x ≥ 0
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Normal: X ∼ N(µ, σ2) for −∞ < µ < ∞ and σ > 0 has density
function

fX(x) =
1√
2πσ2

e−
1
2 (

x−µ

σ2 )

The cumulative distribution function cannot be obtained analytically
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Mean of a random variable

Let X be a discrete r.v. with probability distribution function pX(x)
for x ∈ S. The expected value of X (or mean of X) is

E(X) =
∑
x∈S

x pX(x)

Let X be a Bernoulli r.v. . Then p(1) = p, p(0) = 1− p and

E(X) = 1× p+ 0× (1− p) = p

Let X be a discrete r.v. with probability p(x) = 1/3 for x = −1, 0, 1

E(X) =

3∑
i=1

xipi = −1
1

3
+ 0

1

3
+ 1

1

3
= 0
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Let X be a continuous r.v. with density fX(x). The expected value
of X (or mean of X) is

E(X) =

∫ ∞

−∞
x fX(x)dx

Let X be a Unif(0, 1) r.v.

E(X) =

∫ ∞

−∞
x fX(x)dx =

∫ 1

0

xdx = 1/2

X ∼ Exp(λ), E(X) = 1/λ. In fact

E(X) =

∫ ∞

0

xλe−λxdx

= −xe−λx
∣∣∞
0

+

∫ ∞

0

e−λxdx

= [0− 0] +
1

λ

∫ ∞

0

λe−
1
λxdx =

1

λ
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X ∼ Binomial(N, p), E(X) = Np

X ∼ Poisson(λ), E(X) = λ

X ∼ Exp(λ), E(X) = 1/λ

X ∼ N(0, 1), E(X) = 0
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Mean of a trasformation of a r.v.

To calculate the mean of a trasformation Y = g(X) we can obtain the
p.d.f. or the density of Y and apply the definition of expected value

Alternatively, we can use directly the following

Theorem Let the random variables X and Y satisfy Y = g(X) where
g(·) is a real-valued function on R.

1 If X is discrete with probability distribution pX(x)

E(Y ) =
∑
x

g(x)pX(x)

2 If X is continuous with density fX(x)

E(Y ) =

∫ ∞

−∞
g(x)fX(x)
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Linearity
E(a+ bX) = a+ bE(X)

In fact

E(a+ bX) =

∫ ∞

−∞
(a+ b x)fX(x)dx

= a

∫ ∞

−∞
fX(x)dx+ b

∫ ∞

−∞
xfX(x)dx

= a+ bE(X)
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Variance

Let X be a discrete r.v. with probability distribution function pX(x)
for x ∈ S. The variance of X is

V ar(X) =
∑
x∈S

(x− E(X))2 pX(x)

Let X be a continuous r.v. with density fX(x). The variance of X is

V ar(X) =

∫ ∞

−∞
(x− E(X))2 fX(x)
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V ar(a+ bX) = b2V ar(X). In fact

V ar(a+ bX) = E(((a+ bX)− E(a+ bX))2)

= E((a+ bX − a− bE(X))2)

= E((b(X − E(X)))2)

= E(b2(X − E(X))2) = b2E((X − E(X))2)

= b2V ar(X)

V ar(X) = E(X2)− E(X)2. In fact

V ar(X) =

∫
(x− E(X))2fX(x)dx =

=

∫
(x2 + E(X)2 − 2xE(X))fX(x)dx

=

∫
x2fX(x)dx+ E(X)2 − 2E(X)

∫
xfX(x)dx

= E(X2) + E(X)2 − 2E(X)2 = E(X2)− E(X)2
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Bivariate random variables

When the outcome of the random experiment is a pair of numbers
(X,Y ) we call (X,Y ) a bivariate (or two-dimensional) random
variable

Example: result of a football match, cases of COVID19 today and
tomorrow, income of husband and income of wife, cost and outcome
of a medical treatment...

When X and Y are both discrete we call Z = (X,Y ) a bivariate
discrete random variable

When X and Y are both continuous r.v. we call Z = (X,Y ) a
bivariate continuous random variable
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The joint probability function of a discrete bivariate r.v. Z = (X,Y )
is the function

pX,Y (x, y) = P (X = x, Y = y)

where x and y run over the possible values of X and Y

Note that P (X = x, Y = y) = P (X = x ∩ Y = y)

If C is a subset of the possible values of Z = (X,Y )

P (Z ∈ C) =
∑

(x,y)∈C

pX,Y (x, y)

and if D is the set of all possible values of Z = (X,Y ) we have

P (Z ∈ D) =
∑
(x,y)

pX,Y (x, y) = 1
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By the joint probability function of (X,Y ) we obtain pX(X = x) =
pX(x), i.e. the probability function of X that we call marginal
distribution of X

pX(x) =
∑
y

pX,Y (x, y)

pX(x) = P
(
[X = x]

⋂
[whatever result for Y ]

)
= P

(
[X = x]

⋂[⋃
y

[Y = y]

])

= P

(⋃
y

[X = x, Y = y]

)
=

∑
y

pX,Y (x, y)

Similarly the marginal distribution of Y is given by

pY (y) =
∑
x

pX,Y (x, y)
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By applying the multiplication rule we have ∀(x, y) : pY (y) > 0

pX,Y (x, y) = P (Y = y)P (X = x|Y = y) = pY (y)P (X = x|Y = y)

where

P (X = x|Y = y) =
P (X = x ∩ Y = y)

P (Y = y)

We will call
pX|Y (x|y) = P (X = x|Y = y)

the conditional distribution of X given Y = y

The joint distribution of (X,Y ) can be obtained by specifying the
marginal distribution of Y and the conditional distributions of
X|Y = y given all the values y
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Continuous random variables

Suppose now that X and Y are continuous random variables.

More formally, let B = {x : x ∈ Bx, y : y ∈ By} be the product of the
intervals Bx and By, i.e. B = Bx ×By. We say that Z = (X,Y ) is a
bivariate continous r.v. if it exists a real function fX,Y (x, y) such taht

f(x, y) ≥ 0 ∀(x, y) ∈ R2

P [(X,Y ) ∈ B] = P (X ∈ Bx, Y ∈ By) =

∫
B

fX,Y (x, y)dxdy

=

∫
By

[∫
Bx

fX,Y (x, y)dx

]
dy

The function fX,Y (x, y) is called the density of the the r.v.

f(x) =
∫
By

fX,Y (x, y)dy

f(y) =
∫
Bx

fX,Y (x, y)dx
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Statistical Inference

Statistics aims to extract information about the system that
generated the data

Are the data at hand the best representation of the system?
What about the data variability?

Statistical models: mathematical cartoons (with unknown
quantities...parameters) describing how data might have been
generated

If the unknowns were known, a good model should generate data that
resemble the observed ones...reproducing their variability
Statistical inference goes in the reverse direction: given a statistical
model we take the unknown values of the model that are consistent
with the observed data
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The class of statistical models is huge:
time series models, non linear models, generalized regression models,
Markov models, mixture models, hidden Markov models, latent
variable models, spatial models, spatiotemporal models, hierarchical
models, change point models, extreme value models.. non parametric
models ....

Statisticians often mix up different models to improve the adequacy
of the resulting model to the data yyy

More complicated models may lead to f(y;θθθ) that can be only
numerically evaluated... or that cannot be evaluated at all.
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Inferential questions

Given some data yyy and a statistical model with parameters θθθ we may
ask

What values for θθθ are most consistent with y? → point estimation
Is some prespecifed restriction on θθθ consistent with y? → hypothesis
testing
Which of several alternative models/hypothesis is most consistent with
yyy? → model selection
What ranges of values of θθθ are consistent with yyy? → interval
estimation
Is the model consistent with yyy for any values of θθθ? → model cheking
The data gathering process can be optimized? → experimental or
sampling design

Statistics zigzag up and down across these questions
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Point estimation tecniques that we will use

Maximum likelihood estimation:

assume a statistical model f(x; θ) basing on the observed data;

define and maximize the likelihood function L(θ) w.r.t. θ.

Ordinary least squares (linear regression)

minimize the sum of the squares of the differences between the
observed dependent variable and those predicted by the linear function
of the independent variable.
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Likelihood and log-likelihood function

Let x be a realization of a random variable or vector X with
probability function (in the book is called mass function) or density
function f(x; θ)

The function f(x; θ) depends on x and on (unknown) parameter θ.
Note that f is assumed known, for instance it can be the density of a
random sample or of a more complex statistical model

The Greek letter θ will be used for general notation. In specific
examples we will adopt different Greek letters

Let X be a Poisson random sample and let x = (x1, . . . , xn) be the
realization of X. Then

f(x;λ) =

n∏
i=1

e−λλxi

xi!
=

e−λnλ
∑n

i=1 xi∏n
i=1 xi!

The parameter θ can be a scalar or a vector (for example in the
normal case we have (µ, σ2)). Vector parameters will be denoted with
θθθ
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The space of all possible realizations of X will be denoted with T and
called sample space

The parameter θ takes values in the parameter space Θ

Definition The likelihood function

L(θ) = L(θ;x) = f(x; θ) θ ∈ Θ

is the probability function or density function of the observed data x,
viewed as a function of the unknown parameter θ

Parameter values that make the observed data appear relatively
probable are more likely to be correct than parameter values that
make the observed data appear relatively improbable
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Example: Inference for a proportion

Inference for a proportion. Consider X ∼Binomial(n, π): For example
X = x may represent the observed number of students with a mac
computer among n randomly selected students.

The number n of selected students n is hence known, while the true
proportion π of mac users in the student population is unknown.

When n = 20 and x = 8 the likelihood is

L(π) = f(x;π) =

(
n

x

)
πx(1− π)n−x for π ∈ (0, 1)
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Maximum likelihood estimate

Plausible values of θ should have a relatively high likelihood.

Definition. Maximum likelihood estimate. The maximum
likelihood estimate (MLE) θ̂ML of a parameter θ is the point where
the likelihood assumes the maximum value

θ̂ML = argmax
θ∈Θ

L(θ)

In order to compute the MLE we can ignore multiplicative constant.
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Definition. Likelihood kernel. The likelihood kernel is obtained by
removing from a likelihood function all multiplicative constants. We
will use the same symbol L(θ) both for likelihoods, likelihood kernels
and each function a · L(θ)

In the binomial example

L(π) =

(
n

x

)
πx(1− π)n−x

but also
L(π) = πx(1− π)n−x

where the last expression is the likelihood kernel. We will also use the
notation

L(π) =

(
n

x

)
πx(1− π)n−x ∝ πx(1− π)n−x
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It is very often convenient to use the log-likelihood function

ℓ(θ) = logL(θ)

In fact the logarithm is a strictly monotone function and

θ̂ML = argmax
θ∈Θ

ℓ(θ)
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Multiplicative constant in L(θ) turn to additive constants in ℓ(θ). For
example in the binomial example we have

ℓ(π) = log

{(
n

x

)
πx(1− π)n−x

}
=

= log

(
n

x

)
+ x log π + (n− x) log (1− π)

and additive constant in the loglikelihood can be ignored so we have
also

ℓ(π) = x log π + (n− x) log (1− π)

Note that in the binomial case we have

ℓ′(π) =
dℓ(π)

dπ
=

x

π
− n− x

1− π

and ℓ′(π) = 0 when π = x/n and ℓ′′(π) < 0 so x/n is MLE
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Confidence Intervals

A confidence interval (CI) is a range of estimates for an unknown
parameter. A confidence interval is computed at a designated confidence
level.

The confidence level represents the long-run proportion of corresponding
CIs that contain the true value of the parameter. For example, out of all
intervals computed at the 95% level, 95% of them should contain the
parameter’s true value.

Typically a rule for constructing confidence intervals is closely tied to a
particular way of finding a point estimate of the quantity being considered.
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