
Neo4j: A graph database

Global Governance, 3rd year
Science and Technology Major

Algorithms, Data and Security
A.Y. 2024/25

Valeria Cardellini

What is a database?
• Organized collection of structured

information, or data, stored in a computer
system

• Usually controlled by a database
management system (DBMS)

• Together, data and DBMS, are referred to as
a database system, often shortened to just
database

• Data stored in a database can be easily
accessed, managed, modified, updated,
controlled, and organized

Valeria Cardellini - ADS 2024/25 1

Types ofdatabases
• Many types of databases, that mainly differ

on data models
– E.g., relational databases, NoSQL databases,

graph databases
• The best type depends on how you intend to

use data
• Relational databases

– The most common type
– Data is modeled in rows and columns in a series

of tables to make processing and data querying
efficient

– Use Structured Query Language (SQL) for writing
and querying data

Valeria Cardellini - ADS 2024/25 2

Neo4j: a graph database

• Graph database: database designed to treat
relationships between data as equally
important to (or even more important than)
data itself
– Purpose-built to store and navigate relationships
– Uses nodes to store data entities, and links to

store relationships between entities

• Neo4j: an open-source, native graph
database https://neo4j.com/

Valeria Cardellini - ADS 2024/25 3

Graph data model

4

• Powerful data model
– Designed to treat relationships between data
– Focus on visual representation of information (more

human-friendly)

• Data model based on graph (network) structure
– Nodes are the entities and have a set of attributes
– Links are the relationships between the entities

• E.g.: an author writes a book

Valeria Cardellini - ADS 2024/25

Graph data model: movies example

Valeria Cardellini - ADS 2024/25 5

• How can we model information regarding the movie
The Matrix?

Graph data model: Twitter example

6

• How can we represent Twitter data and relationships?
• Choice depends also on what we want to analyze: let’s

assume social media activity

Valeria Cardellini - ADS 2024/25

• Nodes in the graph model
– User: represents a Twitter

user
– Tweet: represents a tweet
– Hashtag: represents a

hashtag
– Link: represents a shared

link in a tweet
– Source: represents the

platform used by Twitter
users to tweet from

Graph data model: Twitter example

7Valeria Cardellini - ADS 2024/25

• Relationships in the
graph:
– POST relationship between a

User and a Tweet: indicates
that this user is the tweet
author

– RETWEETS relationship between
two Tweets: indicates the first
Tweet retweets the second
Tweet

– TAGS relationship between a
Tweet and a Hashtag

– FOLLOWS relationship between
two Users: indicates the first
User follows the second User

– MENTIONS relationship between
Tweet and User: indicates that
the Tweet mentions the User

Suitable use cases for graph databases

• Good for applications where:
– you need to model entities and relationships

between them
– and the focus is on querying for relationships

between entities and analyzing relationships
• Some example of applications

– Social network analysis
– Recommendations
– Fraud detection
– Supply chain management

8Valeria Cardellini - ADS 2024/25

Neo4j: concepts

Valeria Cardellini - ADS 2024/25 9

• Graph
– Nodes, relationships, properties, and labels

• We use nodes to represent entities
– A node can have properties and labels
– A node can have relationships to other nodes, including itself

• Nodes and relationships have individual attributes
called properties

• Properties consist of key-value pairs, e.g.,
– name = ‘Tom Hanks’, born = 1956
– title = ‘Forrest Gump’, released = 1994

Neo4j: concepts

Valeria Cardellini - ADS 2024/25 10

• Nodes can be tagged with labels (i.e., node types)
– Labels are used to group nodes into sets, so that all nodes

with a given label belong to the same set (e.g., Actor and
Director are labels for Person nodes)

• Relationships connect nodes, are unidirectional and
can have properties
– E.g., ACTED_IN, DIRECTED

• Properties are key-value pairs that are used to add
qualities to nodes and relationships

Neo4j: Cypher

11Valeria Cardellini - ADS 2024/25

• Cypher: Neo4j’s graph query language
• Allows users to read data from and write data to

Neo4j https://neo4j.com/docs/getting-started/current/cypher-intro/

• It uses a declarative way to query the graph powered
by traversals and other techniques
– A traversal navigates through the graph to find paths

• Starts from starting nodes to related nodes, finding answers to
queries

– A path is one or more nodes with connecting relationships,
typically retrieved as a query or traversal result

• It is a textual declarative query language
– Uses a form of ASCII art to represent graph-related patterns
– E.g., (:nodes)-[:ARE_CONNECTED_TO]->(:otherNodes)

Cypher syntax: node

• Cypher uses a pair of parentheses (), usually
containing a text string, to represent a node

– () represents a node
– varname (optional) is a variable that we can assign to the

node and use later in a query to refer to that node
– Label (prefixed with a colon :) declares node’s type (or
label)

– Node’s properties are represented as a list of key/value
pairs, enclosed within a pair of { }

– E.g., to represent a Person node with name and year of
birth

12

(varname:Label { p_name: p_value, ... })

Valeria Cardellini - ADS 2024/25

(keanu:Person {name:'Keanu Reeves', born:1964})

properties as
key:'value' pairs

node typevariable

Cypher syntax: relationship
• Cypher uses a pair of dashes -- to represent an

undirected relationship. Directed relationships have
an arrowhead at one end <-- -->
– It is possible to create only directed relationships, although

they can be queried as undirected

• Bracketed expressions [] are used to add details to
a relationship:
– We can assign a variable (e.g., role) also to a relationship

and use it later in a query
– Relationship’s type (e.g., :ACTED_IN) is analogous to the

node's label
– Relationship’s properties (e.g., roles) are analogous to

node’s properties

13Valeria Cardellini - ADS 2024/25

(keanu)-[role:ACTED_IN {roles:['Neo']}]->(TheMatrix)

relationship typevariable
properties as
key:'value' pairs

Cypher syntax: pattern variables

• To increase modularity and reduce repetition, Cypher
allows patterns to be assigned to variables
– This allows the matching paths to be inspected, used in

other expressions, etc.

• E.g., acted_in is a variable

14

acted_in = (:Person)-[:ACTED_IN]->(:Movie)

Valeria Cardellini - ADS 2024/25

Operations on data

• We consider only a subset of operations
available in Cypher

• How to perform write operations?
– CREATE, DELETE
– E.g., to create nodes and relationships between

nodes

• How to perform read operations?
– MATCH

Valeria Cardellini - ADS 2024/25 15

Cypher syntax: CREATE

• Use CREATE to insert data (nodes and relationships)
in the database
– Example: create a node with label Person and property

name with value John Doe
– RETURN defines what to include in the query result

16

CREATE (p:Person {name: 'John Doe'})
RETURN p

Valeria Cardellini - ADS 2024/25

Cypher syntax: CREATE

• Use CREATE to insert data (nodes and relationships)
– Example: create a Person node and a Movie node and their

relationship

17Valeria Cardellini - ADS 2024/25

CREATE (a:Person {name: 'Tom Hanks', born: 1956})-
[r:ACTED_IN {roles: ['Forrest']}]->(m:Movie {title:
'Forrest Gump', released: 1994})
CREATE (d:Person {name: 'Robert Zemeckis', born:
1951})-[:DIRECTED]->(m)
RETURN a, d, r, m

Cypher syntax: display graph model

• Once we have created data (or we use a pre-
populated database), we can display the graph model
in terms of node types and relationship types

Valeria Cardellini - ADS 2024/25 18

call db.schema.visualization()

Cypher syntax: MATCH
• Use MATCH to read data from database

– MATCH specifies the patterns to search for in the database

– E.g., find which movies Keanu Reeves has acted in

19Valeria Cardellini - ADS 2024/25

MATCH (keanu {name:'Keanu Reeves'})-[:ACTED_IN]->
(movies:Movie) RETURN keanu, movies

Cypher syntax: MATCH
• Use MATCH to read data from database

– E.g., find which movies Keanu Reeves has acted in but now
return only the movies title

20Valeria Cardellini - ADS 2024/25

MATCH (keanu {name:'Keanu Reeves'})-[:ACTED_IN]->
(movies:Movie) RETURN movies.title

Cypher syntax: MATCH and WHERE
• Use WHERE to add constraints to the patterns in a

MATCH clause
– E.g., find the movie with title The Matrix

21Valeria Cardellini - ADS 2024/25

MATCH (m:Movie)

WHERE m.title = 'The Matrix'

RETURN m

Cypher syntax: DELETE

• Use DELETE to delete a node, e.g.,

• Node cannot be deleted if it participates in a
relationship. To remove also relationships, we need
to detach the node, delete it and its relationships:

22

MATCH (d:Person {name: 'Greg Kinnear'})

DETACH DELETE d;

Valeria Cardellini - ADS 2024/25

MATCH (p:Person {name: 'John Doe'})

DELETE p

Cypher syntax: search for patterns using length

• Cypher can be used to match patterns also of fixed,
variable or unknown length

• Relationship pattern length:

• It is possible to specify a length (e.g., 2) in the
relationship description of a pattern

It can be a variable length:
*3..5 (between 3 and 5)
*3.. (greater than 3)
*..5 (less than 5)
* (any length)

23

(a)-[*2]->(b)

Valeria Cardellini - ADS 2024/25

Example: movie database

• Let’s use as case study the movie database provided
by Neo4j as sandbox with pre-populated data
– Basic dataset of Actors acting in Movies
– Available at https://neo4j.com/sandbox/
– Data model of the movie database is

24Valeria Cardellini - ADS 2024/25

Example: movie database

• The goal of our analysis is to show recommendations
for other actors to work with
– By following the meaningful relationships between actors

and movies, we can determine:
• Occurrences of actors working together
• Frequency of actors working with one another
• Movies they have in common in the graph

• Let’s start with simple queries and then increase their
complexity

Valeria Cardellini - ADS 2024/25 25

Some basic queries

• Let’s find a single actor like Tom Hanks
MATCH (tom:Person {name: 'Tom Hanks'}) RETURN tom

Valeria Cardellini - ADS 2024/25 26

Some basic queries
• Let’s retrieve all Tom Hanks’ movies by starting from

Tom Hanks node and following ACTED_IN
relationships
MATCH (tom:Person {name: 'Tom Hanks'})-[r:ACTED_IN]-
>(movie:Movie) RETURN tom, r, movie
– The query result looks like a graph

Valeria Cardellini - ADS 2024/25 27

Some basic queries

• Tom Hanks has colleagues who acted with him in his
movies, let’s find these co-actors:

MATCH (tom:Person {name: 'Tom Hanks'})-[:ACTED_IN]-
>(:Movie)<-[:ACTED_IN]-(coActor:Person) RETURN
coActor.name

Valeria Cardellini - ADS 2024/25 28

tom coActormovieacted_in acted_in

Recommendations queries

• Let’s find Tom’s co-co-actors, i.e., the second-degree
actors in Tom’s network

Valeria Cardellini - ADS 2024/25 29

tom coActormovie1acted_in acted_in

coCoActor movie2acted_in acted_in

Recommendations queries

• Let’s find the co-co-actors, i.e., the second-degree
actors in Tom’s network. This will show us all the
actors Tom may not have worked with yet, and we
can specify a criterium to be sure he hasn’t directly
acted with that person
MATCH (tom:Person {name: 'Tom Hanks'})-[:ACTED_IN]-
>(movie1:Movie)<-[:ACTED_IN]-(coActor:Person)-
[:ACTED_IN]->(movie2:Movie)<-[:ACTED_IN]-
(coCoActor:Person) WHERE tom <> coCoActor AND NOT
(tom)-[:ACTED_IN]->(:Movie)<-[:ACTED_IN]-
(coCoActor) RETURN coCoActor.name

Valeria Cardellini - ADS 2024/25 30

Recommendations queries

• In the query result a few names appear multiple
times, because there are multiple paths to follow from
Tom Hanks to these actors

Valeria Cardellini - ADS 2024/25 31

Recommendations queries

• Let’s see which co-co-actors appear most often in
Tom’s network: we can take frequency of
occurrences into account by counting the number of
paths between Tom Hanks and each coCoActor and
ordering them by highest to lowest value
MATCH (tom:Person {name: 'Tom Hanks'})-[:ACTED_IN]-
>(movie1:Movie)<-[:ACTED_IN]-(coActor:Person)-
[:ACTED_IN]->(movie2:Movie)<-[:ACTED_IN]-
(coCoActor:Person) WHERE tom <> coCoActor AND NOT
(tom)-[:ACTED_IN]->(:Movie)<-[:ACTED_IN]-
(coCoActor) RETURN coCoActor.name, count(coCoActor)
as frequency ORDER BY frequency DESC LIMIT 5

Valeria Cardellini - ADS 2024/25 32

Recommendations queries

• The query result

Valeria Cardellini - ADS 2024/25 33

Recommendations queries

• One of the most frequent “co-co-actors” is Tom
Cruise. Now let’s see which movies and actors are
between the two Toms so we can find out who can
introduce them
MATCH (tom:Person {name: 'Tom Hanks'})-[:ACTED_IN]-
>(movie1:Movie)<-[:ACTED_IN]-(coActor:Person)-
[:ACTED_IN]->(movie2:Movie)<-[:ACTED_IN]-
(cruise:Person {name: 'Tom Cruise'}) WHERE NOT
(tom)-[:ACTED_IN]->(:Movie)<-[:ACTED_IN]-(cruise)
RETURN tom, movie1, coActor, movie2, cruise

Valeria Cardellini - ADS 2024/25 34

Recommendations queries
• The query result: there are multiple paths between

the two Toms
– And there is Kevin Bacon in one of the paths: see the six

degrees of Kevin Bacon game
https://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon

Valeria Cardellini - ADS 2024/25 35

Degree centrality

• The Neo4j Graph Data Science (GDS) library
contains many graph algorithms

• Let’s find which actor has acted in the most movies
using degree centrality

• We first need to create a graph projection using
gds.graph.project procedure
https://neo4j.com/docs/graph-data-science/current/management-
ops/graph-creation/graph-project/

CALL gds.graph.project(
'proj',
['Person','Movie'],
'ACTED_IN'
);

Valeria Cardellini - ADS 2024/25 36

Degree centrality

• Then we run the degree centrality algorithm on the
projected graph using gds.degree.stream
procedure

• We also order the results to determine which actor
has directed the most movies

CALL gds.degree.stream('proj')
YIELD nodeId, score
RETURN

gds.util.asNode(nodeId).name AS actorName,
score AS numberOfMoviesActedIn

ORDER BY numberOfMoviesActedIn DESCENDING,
actorName LIMIT 5

Valeria Cardellini - ADS 2024/25 37

Degree centrality

• The query result is

Valeria Cardellini - ADS 2024/25 38

Shortest path
• What is the shortest path between Kevin Bacon and

Clint Eastwood?
• We first need to create a graph projection

using gds.graph.project procedure

// Create projection
CALL gds.graph.project(

'proj2',
['Person','Movie'],
{

ACTED_IN:{orientation:'UNDIRECTED'},
DIRECTED:{orientation:'UNDIRECTED'}

}
);

Valeria Cardellini - ADS 2024/25 39

Shortest path
• We match the 2 Person nodes and then use

gds.shortestPath.dijkstra.stream procedure to
find the shortest path

MATCH (kevin:Person{name : 'Kevin Bacon'})
MATCH (clint:Person{name : 'Clint Eastwood'})
CALL gds.shortestPath.dijkstra.stream(

'proj2',
{

sourceNode:kevin,
TargetNode:clint

}
)
YIELD sourceNode, targetNode, path
RETURN sourceNode, targetNode, nodes(path) as path;

Valeria Cardellini - ADS 2024/25 40

Shortest path

• The query result is

Valeria Cardellini - ADS 2024/25 41

Neo4j sandboxes

• As project for the course, you are going to use one of
the Neo4j sandboxes
– Online tool, not requiring a local installation

https://neo4j.com/sandbox/
– Pre-populated with domain data and focus on use-case

specific queries
• See sandbox description on the course web site

– Each sandbox is available for at least 3 days after creation
and can be extended for 7 additional days before expiration;
after the additional days, you need to restart the sandbox
from scratch (in this case, you will lose new data you have
written to the database)

Valeria Cardellini - ADS 2024/25 42

References

• Neo4J fundamentals (1-hour course)
https://graphacademy.neo4j.com/courses/neo4j-fundamentals/

• Cypher fundamentals (1-hour course)
https://graphacademy.neo4j.com/courses/cypher-fundamentals/

Valeria Cardellini - ADS 2024/25 43

