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1 Differential equations

1.1 Models of differential equations in applied sciences

The main role of mathematics in applications often consists in building math-
ematical models which may serve as reference for the description of possibly
different type of phenomena. If we believe in Galileo’s intuition, that the
world is written in the language of mathematics, we see how important it is
to understand the description of phenomena in mathematical terms. If we
are able to do so, we will next use all the strength of mathematics to analyze
phenomena, to raise questions and give answers concerning their behavior.
Differential equations are at the heart of applied mathematics; indeed, the
most natural way to observe phenomena is to report changes in what we see.
In mathematics, a change of some variable, as well as of related quantities,
are described through growth ratios ∆y

∆x
and, in the continuous limit, through

derivatives.

Definition 1.1 A differential equation is an equation of the type

F (x, y(x), y′(x), y′′(x), . . . , y(n)(x)) = 0 x ∈ (a, b) ⊆ IR
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to be satisfied for every x ∈ (a, b) by the (unknown) function y(x), which
is required to be a Cn function in the interval (a, b), y(k) denoting its k-
derivative.

We say that the equation has order n if this is the maximal order of
derivation of y involved in the equation.

In other words, a differential equation is an identity required to be satis-
fied by a function together with its derivatives, for all values of the variable
x in some interval (a, b).

Most common differential equations are of first or second order, i.e. they
involve only up to first or second derivatives of y.

In particular, several phenomena from biology and medicine are described
through (experimental) models of first order equations, where the variable x
represents time: those models are derived by looking at the variation ∆y of
some quantity measured at different times. In the following examples, the
independent variable is called t in place of x.

Example 1.1 The decay of radioactive isotopes of Carbonium 14 satisfies
the first order differential equation

y′ = −λ y

where λ is a positive constant and y(t) is the unknown function (note that
the independent variable is denoted by t).

Typically, a law of this kind may be obtained by observing, at different
times, a proportionality between ∆y and the quantity y itself:

y(t+ h)− y(t) = −λh y(t)

The proportionality constant is λ for units of time. If this law is observed
regularly at different time steps of order h, and holds for h arbitrarily small,
it will be reasonable to deduce a law independent of the time-step of our
measurements: letting h→ 0 one deduces

y′(t) = lim
h→0

y(t+ h)− y(t)

h
= −λy(t) .

This is a typical way in which many laws are deduced in the form of differ-
ential equations.
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The above example of differential equation is one of the most important
models of growth or decay. Since y′ represents the (instantaneous) growth
rate of the function y, this model describes all phenomena in which the growth
rate of a quantity is proportional to the quantity itself.

One class of applications is when y stands for the amount of some pop-
ulation: in many natural models the growth rate of the population is pro-
portional to the amount of population. The differential model in this case
yields

y′(t) = k y(t) (1.1)

where k is the proportionality constant, which is interpreted as the intrinsic
growth rate, i.e. the per capita rate of increase of the population. Note that
k > 0 means an effective increase but k < 0 means actually a decrease, as it
was in the case of radioactive decay.

The solution to (1.1) is always the exponential function y(t) = c ekt;
notice that y is a solution for any possible choice of multiplicative constant
c ∈ IR. Indeed, we have one degree of freedom here for the class of solutions.
This degree of freedom can be fixed, for example, by prescribing an initial
condition y(0) = y0: if y must satisfy this condition, then only one value of
c is acceptable, and in this case y = y0e

kt is the unique solution.
We will come back to the role of initial condition later on. Please observe

the analogy with the discrete laws of recursions of first order: given a recur-
sive law an = f(n, an−1), one needs a starting value a0 in order that an be
well defined.

The exponential growth model (1.1) can be modified to take into account
that the intrinsic growth rate be dependent on the population itself. If this is
the case, one says that the intrinsic growth rate is density dependent, which
simply means that the ratio y′

y
is a function of y, i.e. y′ = k(y) y (or possibly

even time dependent y′ = k(t, y) y. The simplest case happens when k is a
linear function, as in the famous logistic growth model.

Example 1.2 (Logistic growth) A population y is said to evolve with logistic
growth if y(t) satisfies

y′(t) = r y(t)

(
1− y(t)

K

)

where r,K are positive constants. The interpretation of those parameters
is the following: r is the initial intrinsic growth (since for y ' 0 we have
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y′(t) ' ry(t), like in the usual exponential growth), while K is the carrying
capacity. Indeed, y is increasing provided y(t) < K, otherwise the growth
would be decreasing: the value y(t) = K corresponds to y′ = 0, meaning
that the population does not grow. We will see later that the value y(t) = K
represents a stable equilibrium for this model.

Example 1.3 (Newton’s cooling law) According to Newton’s law of cooling, a
body exchanges temperature with the neighborhood environment in a way that
the rate of change of the body temperature is proportional to the difference
between the temperature of the body and the external temperature. This means
that there exists a constant k > 0 such that

T ′(t) = −k(T (t)− Te)

where T (t) denotes the body temperature at time x and Te is the external
temperature. Notice the minus sign in front of k, meaning that the body will
decrease its temperature whenever the external one is lower (and viceversa,
it will warm up should the external temperature be higher).

Newton’s law of motion gives examples of second order equations, since
F = ma means that we are given the acceleration, i.e. the second order
derivative y′′(t), according to the forces which are acting. Of course, only
in the simplest case the forces acting are independent of the motion, like for
instance for the simplified model of a body falling on earth surface (from not
too far...): assuming the gravity force to be constantly proportional to the
mass of the body, one has y′′(t) = g. The solution can be found with two
successive integrations, and gives that y is a parabola (which was Galileo’s
solution). But other forces could play a role, which depend themselves on
the motion, like for instance a friction force depending on the velocity of the
body. In this case, we should modify the law as

my′′(t) = mg − λy′(t)

where λ > 0 is a friction coefficient (e.g. related to air resistance). This
modification makes the law a truly differential equation, whose solution will
be less obvious at first glance.

Example 1.4 (motion of a spring) The motion of a spring is analyzed through
Newton’s law by considering the elastic force (proportional to the elongation
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of the spring) and, in case, a friction force due to air resistance. In absence
of other external forces, the equation becomes

my′′(t) + λy′(t) + ky(t) = 0

where y(t) represents the elongation (from rest) of the spring, m is the mass
of the body, k (usually called the spring stiffness constant) is related to the
intrinsic rigidity of the spring, λ is a friction coefficient. In the simplest
situation, those coefficients m,λ, k are assumed to be constants (nonnegative,
of course). The analysis of this model will be done in the last section.

1.2 Solving differential equations.

The simplest case of differential equation is given by

y′ = f(x) , x ∈ (a, b) (1.2)

where (a, b) is some interval in IR. Here we know that the solution comes
from the fundamental theorem of calculus: if f(x) is continuous, the solution
is given by the indefinite integral y =

∫
f(x) dx. As we know, the indefinite

integral denotes the set of all primitives, and in a given interval (a, b) this
has precisely one degree of freedom. So, if x0 ∈ (a, b), all solutions of (1.2)
are given by

y(x) =
∫ x

x0
f(s)ds+ c

where c varies in IR. Observe that a unique solution can be found by fixing
the value of y at x = x0. As we saw in the examples of previous section, this
is naturally interpreted as the initial condition.

Solving more general differential equations as

y′ = f(x, y)

can be not easy as before. Nevertheless, a general theorem by Cauchy ensures
that, whenever f is a regular function, the initial value problem{

y′ = f(x, y)
y(x0) = y0

(1.3)

is well posed at least in some neighborhood of x0. Problem (1.3) is usually
referred to as the Cauchy’s problem.
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Theorem 1.1 Assume that f is a C1 function of the variables (x, y) in some
neighborhood of (x0, y0). Then, there exists an interval (a, b), containing x0,
such that the problem (1.3) admits a unique solution y(x) for x ∈ (a, b).

The above theorem says that the problem (1.3) is well-posed at least
near x0: whether this solution will exist for every x (before or past x0) is
not guaranteed and will depend on properties of the function f(x, y). If x is
interpreted as time, we say that a solution exists at least in short time (past
and future), and we talk of global existence in time (in the past or in the
future) if the solution lives for all times (before or later x0).

A case when solutions exist globally is whenever the function f is linear
with respect to y, i.e. f(x) = b(x)− a(x)y. In this case, the equation reads
as

y′ + a(x)y = b(x) (1.4)

and is called a linear nonhomogeneous differential equation of first order.

Theorem 1.2 Assume that a(x), b(x) are continuous functions. Then, all
solutions to (1.4) are given by the formula

y(x) = e−A(x)
{∫

eA(x)b(x)dx+ c
}

(1.5)

where A(x) is one primitive of the function a(x). In particular, the unique
solution to {

y′ + a(x)y = b(x)
y(x0) = y0

is given by

y(x) = e−A(x)
{∫ x

x0
eA(s)b(s)ds+ y0

}
,

where A(x) =
∫ x
x0
a(s)ds.

Please notice that in formula (1.5) you may take A(x) as any primitive of
a(x); in fact, if you add a constant to A(x), the formula won’t change. With
(1.5), we find all solutions to the differential equation, and again this is a set
with one degree of freedom, namely the constant c. By fixing the value at
x0, only one solution is selected, as you see in the last statement.

Proof. Let A(x) be a primitive of a(x). Since eA(x) > 0, multiplying
by eA(x) both sides the equation is unchanged. Then we get

eA(x)(y′ + a(x)y) = b(x)eA(x)
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Now we notice that the left-hand side equals d
dx

(eA(x)y(x)). Hence

d

dx
(eA(x)y(x)) = eA(x)(y′ + a(x)y) = b(x)eA(x)

which means that eA(x)y(x) is a primitive of b(x)eA(x). In other words, we
have

eA(x)y(x) =
∫
b(x)eA(x) dx .

Recall that the indefinite integral is the set of all primitives (invariant by
addition of a constant), so it is the same if we write

eA(x)y(x) =
∫
b(x)eA(x) dx+ c , c ∈ IR .

From here, multiplying both sides by e−A(x), we find y(x) and formula (1.5)
is proved.

To see an example of application of formula (1.5), let us solve the equation

y′ =
y

x
+ (x+ 2)2 ,

for x > 0.
First notice that here a(x) = − 1

x
and b(x) = (x + 2)2. Then we have

A(x) =
∫
a(x)dx = − log |x| and, since we are studying x > 0, we have

A(x) = − log x. Now the formula reads

y(x) = x

{∫ (x+ 2)2

x
dx+ c

}

We need to compute∫ (x+ 2)2

x
dx =

∫ x2 + 4x+ 4

x
dx =

∫
(x+ 4 +

4

x
)dx =

x2

2
+ 4x+ 4 log |x|

and finally we have (recall that x > 0 so here log |x| = log x)

y(x) =
x3

2
+ 4x2 + 4x log x+ cx . (1.6)

If we are required to find the unique solution to the Cauchy’s problem{
y′ = y

x
+ (x+ 2)2

y(1) = 2
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it is enough to impose the condition y(1) = 2 in formula (1.6):

2 =
1

2
+ 4 + c

and we find c = −5
2
. So the unique solution to this Cauchy’s problem is given

by

y(x) =
x3

2
+ 4x2 + 4x log x− 5

2
x .

Example 1.5 A cup of hot chocolate is brought in a room during a cold
winter afternoon. Assume that the room temperature Tr is varying as Tr(t) =
24(1 − t

12
) (time is measured in hours) being 24 (Celsius degrees) its initial

temperature, and that the chocolate is, initially, at 70 degrees. Use Newton’s
law of cooling for the temperature T (t) of the chocolate cup

T ′(t) = −k(T (t)− Tr(t))

and assume that k = 1. What will be the temperature of the chocolate after
15 minutes?

Let us first solve the differential equation:

T ′ + kT = k(24− 2t) .

This gives, according to (1.5),

T = e−kt
∫
ekt(24− 2t)dt+ ce−kt

We have ∫
ekt(24− 2t)dt =

24

k
ekt − 2

∫
ektt dt

and last integral is solved with integration by parts:∫
ektt dt =

ekt

k
t− 1

k

∫
ekt dt =

ekt

k
t− 1

k2
ekt

Therefore, altogether we have∫
ekt(24− 2t)dt =

24

k
ekt − 2

ekt

k
t+

2

k2
ekt .
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The solution is finally

T =
24

k
− 2

k
t+

2

k2
+ ce−kt .

At initial time we have T (0) = 24
k

+ 2
k2

+ c, hence c = T0 − 24
k
− 2

k2
if T0 is

the initial time. We conclude that

T = (
24

k
+

2

k2
)(1− e−kt) + T0e

−kt − 2

k
t .

Now we insert the informations: k = 1, T0 = 70 and we find T = 26(1 −
e−t) + 70e−t − 2t. After 15 minutes, we have t = 1

4
and we approximately

compute T (1
4
) ' 59.7. I hope now you can enjoy your cup of chocolate !!

1.3 Equations with separation of variables

A special class of differential equations which can be solved through direct
integration consists of equations of the form

y′ = f(x)g(y) (1.7)

where f, g are continuous functions. Those equations are in a form said as
separation of variables, since the variables x and y can be separated just
dividing by g:

y′

g(y)
= f(x) .

Integrating with respect to x both terms we get∫ y′(x)

g(y(x))
dx =

∫
f(x)dx .

But if we change the variable in the first integral by setting y = y(x), since
dy = y′(x)dx we can rewrite as∫ 1

g(y)
dy =

∫
f(x)dx .

We deduce the following: whenever g(y) 6= 0, all solutions to (1.7) are given
by

H(y) = F (x) + c , where H(y) =
∫ 1
g(y)

dy and F (x) =
∫
f(x)dx. (1.8)

9



The above formula gives, in principle, the solution y, always up to one degree
of freedom, which is the constant c. Notice that, since we are assuming
that g(y) 6= 0, the function H(y) will be strictly monotone and therefore
injective. This means that we can recover y through the inverse function
y = H−1(F (x) + c).

The procedure described above allows one to solve first order equations
with separation of variables. However, be careful to the condition g(y) 6= 0
which was assumed: one should often check this condition at the initial time.
In particular, we have

Proposition 1.1 If g is a C1 function in a neighborhood of y0, then the
Cauchy problem {

y′ = f(x)g(y)
y(x0) = y0

(1.9)

has a unique solution y defined at least in some neighborhood of x0.
(i) If g(y0) = 0, the unique solution is the constant function y(x) = y0.
(ii) If g(y0) 6= 0, then the unique solution is given by the implicit relation∫ y

y0

1

g(y)
dy =

∫ x

x0
f(s)ds . (1.10)

The above theorem tells us that, if we start with y = y0 and g(y0) = 0,
then the solution will remain constantly equal to y0. It is natural to interpret
those values as equilibrium points for the evolution, and they are often very
important in applications. We will discuss this issue in the next paragraph.

Example 1.6 The growth of some species of fishes seems to obey the so-
called Von Bertalanffy law. In particular, the lenght y of the fish depends on
time t according to the equation

y′(t) = k(L− y(t))

where k, L are positive constant. The fish will increase its length since the
birth, so we understand that y0 < L, where y0 is the initial value of y. By
solving the equation, according to (1.10),∫ y

y0

1

L− y
dy =

∫ t

0
k ds
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we get

− log |L− y|+ log |L− y0| = kt ⇒ |L− y| = (L− y0)e−kt

Since y0 < L, it is never possible that y(t) = L, so y(t) < L for all times. We
write then |L− y| = L− y and we finally find

y(t) = L− (L− y0)e−kt

which is the unique solution starting from y0.
From this solution we can interpret L as the maximal length of the fish,

an upper bound to be possibly reached only in infinite times. In math terms,
L is the horizontal asymptote of y(t) as t → ∞. The constant k is related
to the growth rate: here the maximal growth rate (i.e. max y′(t)) is at the
initial time and equals to k(L− y0).

Example 1.7 The height of a tree evolves according to the law

y′(t) =
k

t2
y(t)

meaning that the intrinsic growth rate y′

y
is decreasing with time. By sepa-

rating the variables and integrating, as in (1.8), we get∫ 1

y
dy =

∫ k

t2
dt ⇒ log |y(t)| = −k

t
+ c

Since y > 0 we have |y| = y, so we obtain

y(t) = ec e−
k
t .

Notice that lim
t→0+

y(t) = 0, regardless of the value of c. This means that,

in this model, the initial condition is necessarily y(0) = 0; the degree of
freedom is instead related to the limiting growth of the height. In fact, we
have lim

t→∞
y(t) = ec; by calling ec = L, this horizontal asymptote for y(t) is,

similar to the example before, the upper bound of the growth.
The solution can therefore be written as

y(t) = Le−
k
t

It is a good exercise to compare this growth to the growth in length of the
fish presented above. How would you state the differences and similarities of
those two growth models ?
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Example 1.8 In a simplified model of spreading of a contagious disease, y(t)
denotes the percentage of infected individuals, and 1−y(t) the complementary
set of non-infected (we used a normalization condition that the totality be
equal 1). If r is a coefficient of transmission rate of the disease, the evolution
of y is given by

y′ = ry(1− y)

meaning that the increase of infected individuals is proportional to how many
infected meet non-infected individuals.

We can solve this differential equation which is in separation of variables
form. From (1.8) we get∫ 1

y(1− y)
dy =

∫
r dt = rt+ c

To solve the first integral in the right, observe that

1

y(1− y)
=

1

y
+

1

1− y

so∫ 1

y(1− y)
dy =

∫ 1

y
dy +

∫ 1

1− y
dy = log |y| − log |1− y| = log

∣∣∣∣∣ y

1− y

∣∣∣∣∣
Therefore we get

log

∣∣∣∣∣ y

1− y

∣∣∣∣∣ = rt+ c ⇒
∣∣∣∣∣ y

1− y

∣∣∣∣∣ = ert ec

By setting y(0) = y0, we identify the constant ec since when t = 0 we have

ec =
∣∣∣ y0
1−y0

∣∣∣. Moreover, we are here considering values y ∈ (0, 1), so we can

drop the absolute value since
∣∣∣ y
1−y

∣∣∣ = y
1−y . We deduce

y

1− y
=

y0

1− y0

ert

and finally we find the solution

y(t) =
y0

y0 + (1− y0)e−rt
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We notice that, in this model, the disease will eventually spread over the
totality of individuals if t→∞. Namely, we have lim

t→∞
y(t) = 1.

Of course, the velocity of spreading depends on the transmission rate r.
Can you find how much time is needed, since the initial moment, to double
the infected population?

The method of integration used in the previous example is quite impor-
tant. This method is part of a general rule to compute the integral of a
rational function P (y)

Q(y)
, where P and Q are polynomials. Since the general

rule is too complicated for the purposes of this course, let us analyze at least
one more example of this method similar to what we did before. Assume we
wish to compute ∫ 3y − 1

y2 − y − 2
dy

The strategy consists in
(i) a factorization of the denominator as product of simple monomials.

In this example, by finding the roots of the parabola, we know that

y2 − y − 2 = (y − 2)(y + 1)

(ii) rewriting the ratio as sum of simpler fractions, each with a monomial as
denominator.

In this example, since 3y−1
y2−y−2

= 3y−1
(y−2)(y+1)

, we wish now to read this ratio
as a sum of simpler fractions. Namely, we hope that

3y − 1

y2 − y − 2
=

3y − 1

(y − 2)(y + 1)
=

A

y − 2
+

B

y + 1

for some A and B.
Of course, it may not be immediate to find which A,B are suitable. So

we first compute the sum in abstract terms, and then simply impose that the
right and left sides be equal. So first we compute

3y − 1

y2 − y − 2
=
Ay + A+By − 2B

(y − 2)(y + 1)

and then we give the needed conditions for the numerators to be equal. By
the principle of identities of polynomials, this means that

3y = (A+B)y and − 1 = A− 2B

13



The result is a system of conditions{
A+B = 3
A− 2B = −1

which we can solve to find A and B. Here we get A = 5
3

and B = 4
3
.

Therefore, we found that

3y − 1

y2 − y − 2
=

5
3

y − 2
+

4
3

y + 1

(iii) Now we can integrate easily

∫ 3y − 1

y2 − y − 2
dy =

∫ 5
3

y − 2
dy +

∫ 4
3

y + 1
dy =

5

3
log |y − 2|+ 4

3
log |y + 1|+ c

Ex: The logistic growth equation

y′ = ry
(

1− y

K

)
can be reduced to the equation studied in Example 1.8 by rescaling the
unknown y. In fact, the function ỹ = y

K
satisfies

ỹ′ = rỹ(1− ỹ)

Using the solution of Example 1.8, compute ỹ and find the solution y of the
logistic growth equation.

Example 1.9 The logistic growth equation is just one model of density de-
pendent intrinsic growth rate y′

y
. In the logistic model, the ratio y′

y
depends

on y, and more precisely it is decreasing with respect to y (the simpler case
is therefore a decreasing linear function).

In recent times, over-population phenomena led to models with a possi-
bly increasing density dependent intrinsic growth. An example is when the
intrinsic growth is proportional to a positive power of y. This means that
y′

y
∝ yα, i.e. there exists k > 0:

y′ = ky1+α

for some α > 0.
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By solving this equation, show that, whatever α > 0 you take, this growth
is not sustainable for all times in the future.

Let us give the solution of this exercise. Integrating the equation leads to∫
y−1−αdy = k

∫
dt = kt+ c

hence

−y
−α

α
= kt+ c .

When t = 0 we find c = − 1
α
y−α0 , where y0 is the initial value for y. Then we

obtain
y−α

α
= −kt+

1

α
y−α0

and so we find y as

yα =
1

y−α0 − αkt
.

We realize from this formula that the solution exists only up t0 =
y−α0

αk
since

lim
t→t−0

y(t) = +∞. We interpret this fact by saying that the model is sustain-

able only in a finite maximal time in the future; the solution y exists only

for t < t0 and given by y =
(

1
y−α0 −αkt

) 1
α

.

1.4 Stability of equilibrium points.

As we saw in the last paragraph, when studying the equation

y′ = g(y) (1.11)

a special role is played by the zeroes of the function g. Any y∗ such that
g(y∗) = 0 is an equilibrium point for this equation, since a possible solution
in this case is the constant y(t) = y∗. By Theorem 1.1, we know that when
g ∈ C1 in a neighborhood of y∗, the unique solution starting from y∗ would
be the constant one. In this case, even starting from a different initial value,
it is not possible that the solution y crosses the value y = y∗ in finite time:
this is a consequence of formula (1.10). Indeed, since∫ y

y0

1

g(y)
dy =

∫ x

x0
ds = (x− x0)
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if lim
x→b−

y(x) = y∗ for some finite b, we would have

lim
y→y∗

∫ y

y0

1

g(y)
dy = (b− x0) .

But the right-hand side would be finite while the left-hand side would be
infinite, leading to a contradiction. In fact, since g is C1 we have |g(y)| ≤
k|y∗ − y| by Lagrange theorem; suppose for example that y0 < y < y∗, then∫ y

y0

1

g(y)
dy ≥

∫ y

y0

1

k(y∗ − y)
dy

=
1

k
[log(y∗ − y0)− log(y∗ − y)]

y→y∗→ +∞

Therefore, a fundamental remark is the following: if g ∈ C1 and y∗ is such
that g(y∗) = 0, then either y(t) = y∗ for all times or y 6= y∗ for all times.
And this latter case implies, from the intermediate values theorem, that y
can never reach in finite time the value y∗.

On account of this remark, we know that when g ∈ C1 the points of
equilibria for the dynamics can only be reached at infinity.

Example 1.10 In Example 1.8, we have g(y) = ry(1− y) and the equilibria
are y = 0 and y = 1. We may notice, from the explicit solution, that
lim
t→+∞

y(t) = 1, regardless of the initial value y0. A significant difference is

therefore observed between the two equilibria: here y = 0 is unstable and
y = 1 is stable, since the dynamics will go far from y = 0 and will tend to
y = 1 whatever choice of initial condition is taken.

Let us now generalize this situation. We say that an equilibrium point y∗

is unstable for the dynamics if the solution, even starting close to y∗, tends
to move away from this value; we say that y∗ is stable if the solution tends
to return to y∗ as time evolves.

Assume now that the function g has a finite number of zeroes y0, y1, . . . yN .
Do we have a method to understand whether one zero is stable or not without
computing the solution of the differential equation? The answer is yes, and
we only need to look at the function g to understand the stability of an
equilibrium. We have indeed the following criterion:
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Proposition 1.2 Assume that g ∈ C1 and let y∗ such that g(y∗) = 0. Then
we have, with reference to the dynamics (1.11):

(i) If g′(y∗) < 0 then the equilibrium is stable.
(ii) If g′(y∗) > 0 then the equilibrium is unstable.

Notice that, in the case of g′(y∗) < 0, if the dynamics enters a suitable
neighborhood of y∗, then it will converge to this equilibrium with exponential
rate. This can be observed by replacing g with its linear approximation. Since

g(y) ' g(y∗) + g′(y∗)(y − y∗)

and since g(y∗) = 0, one has

y′ = g(y) ' g′(y∗)(y − y∗)

and therefore

(y − y∗)′ ' k(y − y∗) with k = g′(y∗)

which means that y − y∗ behaves like ekx. Since k < 0, it will converge to
zero exponentially fast.

Example 1.11 The Solow growth model in economics assumes that the out-
put Q is given in terms of capital and labour as

Q = Q(K,L)

and a fraction of the production is invested in capital, so that

K ′(t) = κQ(K,L)

for some constant κ > 0, while labour grows according to

L′ = λL

for some λ > 0. If we assume that Q obeys the Cobb Douglas function with
constant return to scale: Q = cKαL1−α, with α ∈ (0, 1), find the differential
equation satisfied by the function y = K

L
(ratio capital to labor) and the

equilibria for its time evolution.
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Let us first give a general way to proceed in order to find the equation
solved by y. From the chain rule we have

y′ =
K ′

L
− K

L2
L′

and so, using the conditions on K ′ and L′ given by the Solow growth model,
we have

y′ = κ
Q

L
− λK

L
= κ

Q

L
− λy

Now we observe that
Q

L
= c(

K

L
)α = cyα

and so we obtain the differential equation for y as

y′ = c κyα − λy

You may notice that the assumption of constant return to scale (for the
Cobb-Douglas model) played a crucial role in the above reduction.

Now we are asked to study the equilibria of this autonomous equation,
which is in the form

y′ = g(y)

with g(y) = c κyα − λy. Equilibrium points are given by the solutions of

c κyα − λy = 0

which gives y0 = 0 and y1 =
(
cκ
λ

) 1
1−α . By computing the derivative of g we

find that g′(0) = +∞ and g′(y1) < 0. Therefore, y0 is an unstable equilibrium
while y1 is a stable equilibrium.

As a conclusion, we found that in the Solow growth model the ratio capital
to labor given by

K

L
=
(
cκ

λ

) 1
1−α

represents a stable attractive equilibrium point for the evolution of this ratio.

We conclude this paragraph with a remark concerning the assumption
g ∈ C1 which we made all along the previous discussion. It is worth pointing
out that, if the function g was not C1, then the Cauchy problem (1.9) may
have more than one solution, and new phenomena can happen: for example,
it is possible to move instantaneously from an equilibrium, as the following
example shows.
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Example 1.12 The equation {
y′ = 3

√
y

y = 0

admits an infinite number of solutions. Indeed, for any a > 0, y(x) =
max(0, (x− a))3 is a solution of the above initial value problem.

1.5 Second order linear equations with constant coef-
ficients

In this section we briefly analyze what happens for second order equations
which are linear and with constant coefficients, namely

ay′′(x) + by′(x) + cy(x) = f(x) , a, b, c ∈ IR ,

where a, b, c are constants.
For the sake of simplicity, we only consider the case that f = 0, namely

ay′′(x) + by′(x) + cy(x) = 0 , a, b, c ∈ IR . (1.12)

We first notice the following fundamental facts:

(i) the equation is linear with respect to y; therefore, any linear combi-
nation of solutions will remain a solution. In other words: if y1 and y2 are
two solutions of (1.12), it follows that y = αy1 + βy2 is also a solution, for
any α, β ∈ IR.

(ii) The problem 
ay′′(x) + by′(x) + cy(x) = 0
y(x0) = y0

y′(x0) = ỹ0

has a unique solution.
As a consequence of (i) and (ii), it can be proved that the set of all

solutions to (1.12) is a linear vector space which has dimension two (since
any solution is determined up to 2 degrees of freedom). Therefore, if we find
two independent solutions y1 and y2, then all solutions will be described by
linear combinations of those two.
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It remains to answer the main practical question: how do we find those
two independent solutions which generate all the others? The main hint here
is given by the following remark:

y(x) = eλx ⇒ ay′′(x) + by′(x) + cy(x) = eλx(aλ2 + bλ+ c)

Therefore, y(x) = eλx is a solution if and only if λ is a zero of the associated
parabola aλ2 + bλ+ c.

In particular, when the parabola has two real roots λ1 and λ2, we im-
mediately find two different solutions y1 = eλ1x and y2 = eλ2x. When the
parabola has just one single root (i.e. λ1 = λ2), the two solutions of course
coincide and we still need to find one more. But we can observe that, by
rules of derivation, we have

y(x) = xeλx ⇒ ay′′(x)+ by′(x)+ cy(x) = eλx(aλ2 + bλ+ c)+eλx(2aλ+ b)

If the parabola has only root λ1, then we know that λ1 = − b
2a

, therefore we
conclude that the function y(x) = xeλ1x is also a solution in this case. So we
found the second solution whenever the parabola had only one root.

Finally, the case that the parabola has no real roots can be dealt with as
the first situation provided we use imaginary numbers. In fact, in this case
the parabola has two different imaginary roots and since the exponential of
imaginary numbers gives the trigonometric functions, one is able to find two
different solutions as well.

We summarize the whole stuff in the following result, which gives a general
formula for the set of solutions of (1.12).

Theorem 1.3 Let a, b, c ∈ IR. Then we have

1. If b2 − 4ac > 0, all solutions to (1.12) are given by the formula

y(x) = αeλ1x + βeλ2x

where α, β ∈ IR and λ1, λ2 are the two real solutions to aλ2 +bλ+c = 0.

2. If b2 − 4ac = 0, all solutions to (1.12) are given by the formula

y(x) = αeλ1x + βxeλ1x

where α, β ∈ IR and λ1 is the unique solution to aλ2 + bλ+ c = 0.
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3. If b2 − 4ac < 0, all solutions to (1.12) are given by the formula

y(x) = αe−
b
2a
x cos(ωx) + βe−

b
2a
x sin(ωx)

where α, β ∈ IR and ω =

√
|b2−4ac|

2a
.

The above theorem gives the general solution of (1.12) up to the constants
α, β; those can be fixed by two conditions, for instance by prescribing the
initial value for y and y′.

Example 1.13 Find the solution to the Cauchy problem
y′′ + 2y′ + 2y = 0
y(0) = 1

2

y′(0) = 1

We start by finding all solutions to the equation. Since λ2 + 2λ+ 2 = 0 has
no real roots and λ = −1±

√
−1 are the (imaginary) roots, we are in case 3

of the above theorem. Therefore all solutions are described by

y = αe−x cosx+ βe−x sinx .

Imposing the initial conditions given we have

y(0) = α =
1

2
, y′(0) = −α + β = 1

so α = 1
2

and β = 3
2
. The unique solution is therefore

y =
1

2
e−x cosx+

3

2
e−x sinx .

Thanks to the above theorem, we know the qualitative behavior of the
general solution of a linear equation like (1.12). A typical application is the
study of the motion of a spring.

Example 1.14 With reference to Example 1.4, let us study the equation

my′′(t) + λy′(t) + ky(t) = 0

We first notice that whenever λ2 ≥ 4km, solutions behave like exponentials,
since we are in case 1 and 2 of Theorem 1.3. This means that no oscillations
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are observed, and we can interpret this as a consequence of either too much
resistance in the air (i.e. λ too big) or a too small combination of mass and
elasticity, which prevents oscillations to happen. Of course, this case is only
possible if some friction force is present.

Therefore, we conclude that oscillatory solutions exist if and only if

λ2 − 4km < 0 .

In this case, the solutions are given by the formula

y = e−
λ
2m

t [α cos(ωt) + β sin(ωt)] , ω =

√
4km− λ2

4m2

which can be rewritten as

y(t) = e−
λ
2m

t
√
α2 + β2 cos(ωt+ φ)

for some phase angle φ.
We recognize that this function describes an oscillatory motion with period

T = 2π
ω

multiplied by a (varying in time) amplitude e−
b
2a
t
√
α2 + β2. Notice

that, as t → ∞, the amplitude of oscillation will decrease to zero (an effect
of air friction). The frequency of oscillation is

ν =
1

T
=

1

2π

√
4km− λ2

4m2
.

We recognize that the frequency decreases as the friction coefficient λ in-
creases, and the maximal frequency is attained in absence of air resistance,

i.e. when λ = 0. In this case, the frequency is ν = 1
2π

√
k
m

(the intrin-
sic frequency of the spring) and the motion is globally periodic with period

T = 2π
√

m
k

.

1.6 Exercises

1. Solve the following Cauchy problems, where y = y(x):{
y′ = x

1+x

y(1) = 2

{
y′ = lnx

x

y(1) = −1

{
y′ = 1− y
y(1) = 0{

y′ = 2y3

y(0) = 1

{
y′ = y

x+1

y(1) = 1

{
y′ + 2y = x
y(0) = 1{

y′ = y ln y
2x

y(1) = 2

{
y′ = y(2− y)
y(0) = 1

{
y′ − xy = 2x
y(0) = 1
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2. Find the general solution of the following differential equations:

y′′ − y = 0 y′′ + y′ − 2y = 0

y′′ + 4y = 0 2y′′ + 6y′ + 4y = 0

y′′ − y′ = 0 y′′ − 2y′ + 5y = 0

y′′ + 2y′ + y = 0 3y′′ +
1

3
y = 0

3. A hot engine is cooling according to the law

T ′(t) = −k(T (t)− Te)

where the external temperature is Te = 2 degrees. If the engine is 120
degrees at initial time and 70 degrees after 3 minutes, find the value
of the proportionality constant k in the law. Then find out how much
time is needed for the engine to be at the external temperature up to
0.1 degrees.

4. A population is growing according to the logistic growth with initial
intrinsic rate r = 0.4. If the initial population is 106, find the time
when the population will be half of the carrying capacity.

5. A disease is spreading according to the law

y′ = ry(1− y)

where y ∈ (0, 1) denotes the fraction of population which is infected
and time is measured in days. If initially we have y = 0.1, find what
is the least transmission rate r such that half of population would be
infected after 1 month.

6. A population y is growing according to the law

y′ = ky2

for some constant k > 0. Knowing that the population is 2 millions at
the initial time and 4 millions after 1 year, find the maximal sustain-
able time for this population (i.e. the blow-up time for the amount of
population)
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7. A population is growing with a density dependent per capita growth
rate

y′

y
= k(y)

where k is a positive function defined in (0,∞). Show that the growth
is sustainable for all times in the future if and only if the function k
satisfies ∫ ∞

1

1

yk(y)
dy =∞

Deduce that there exists models of sustainable growth with an ever
increasing per capita growth rate: exhibit examples.

8. A population y grows according to a logistic equation perturbed by an
additional term due to effects of predation:

y′ = y(1− y

5
)− ky

1 + y

Find all possible equilibrium points and discuss their stability. Try to
give interpretation in terms of the model.

9. Consider the Solow growth model (Example 1.11) with λ = 1, c = 1
and α = 2

3
, then

y′ = κy
2
3 − y

where y = K
L

is the ratio capital to labour. Solve the equation through
the following recipe:

(i) Set z = 3
√
y, compute z′ with the chain rule and find the equation

satisfied by z.

(ii) Solve the equation of z and deduce the expression for y = z3.
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