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Why Generalized Linear Models?

Let suppose to be in the ordinary linear regression framework, such
that:

Y = β0 + β1X1 + · · ·+ βkXk + ε, ε ∼ N(0, σ2).

in cases where the response variable Y is expected to be always
positive and varying over a wide range, these assumptions turn out
to be inappropriate.

The GLM is a flexible generalization of ordinary linear regression.



GLM routine

More specifically, GLMs are generalization of linear models for
situations in which the outcome is not Gaussian, summarized as
follows:

specify distribution for the dependent variable f (Y |θ);

specify a link function g(·);

specify a linear predictor.



Assumption on Y

The distribution of the dependent variable f (Y |θ) is assumed to
belong to the exponential family. Some examples:

Normal

Poisson

binomial (with fixed n)

multinomial (with fixed n)

negative binomial (with fixed number of failures).

*Note tath the parameters which must be fixed determine a limit
on the size of observations.



Model definition

We define the distribution f (Y |X ), with mean µ of the depending
on the independent variables, X , through:

E(Y |X ) = µ = g−1(Xβ)

where:

E (Y |X ) is the expected value of Y conditional on X ;
Xβ is the linear predictor;
g is the link function.

The variance is typically a function, V , of the mean:

var(Y |X ) = ν(g−1(Xβ)).

However, by choosing ν as a distribution of the exponential family
we get a more flexible model.



Binary Outcome dependent variable

Let Y denote a binary response variable (Y ∈ {0, 1}) and let
x = (x1, . . . , xk) be the vector of observed covariates.

We denote with

π(x) the mean E (Y |X ) = P(Y = 1), for underlining its
dependence on the covariates x;

var(Y ) = π(x)(1− π(x)).

We present three GLMs for binary data:

Linear probability model

Logit model

Probit model



Linear probability model

A linear probability model is a GLM with binomial random
component Y and identity link function

π(x) = α + βx

A structural problem due to the identity link:

1 linear functions take values over the entire real line;

2 π(x) ∈ [0, 1] (it is a probablity);

3 for sufficiently large or small x , π(x) falls outside the [0, 1]
interval.
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Linear probability model

In the multiple predicor extension (x = (x1, . . . , xk))

π(x) = α + β1x1 + · · ·+ βkxk

we have the same fitting problems as in the univariate case:

π̂(x) may fall outside the range [0, 1] for some observed
individuals.

The model can be valid over a restricted range of x values.

So, what’s the andantage with this model?



Linear probability model

The andantage is its simple interpretation: β represents the
increment in π(x) as x increases of one-unit.

Since the model is linear, one may think to estimate it via Ordinary
Least Squares instead of MLE. Is it a good guess?

1 OLS assumes constant variance: condition not satisfied;

2 the binomial ML estimator is more efficient than OLS.

However, OLS and MLE estimates are similar when π̂(x) is in the
range within which the variance is relatively stable.



Logit model

Usually, binary data result from a nonlinear relationship between
π(x) and x , that is for a fixed change in x , there is:

lower impact if π(x) is close to 0 or 1

higher impact if π(x) lies in a neighborhood of 0.5



Logit model

Let Y be a binary variable and let x be an observed covariate. We
define the Logistic regression model or equivalentely Logit model
as:

π(x) =
exp (α + βx)

1 + exp (α + βx)
.

As x →∞

if β < 0, π(x) gets closer to 0;

if β > 0, π(x) gets closer to 1.
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Logit link

From the model definition, the odds of the logistic regression are:

π(x)

1− π(x)
= exp(α + βx)

thus, the log-odds has the linear relationship with the covariate

log

(
π(x)

1− π(x)

)
= α + βx .

This is also called logit link.



Interpretation: hard challenge

log

(
π(x)

1− π(x)

)
= α + βx .

How to interpret β?

its sign determines whether π(x) is increasing or decreasing as
x increases;

the rate of climb or descent increases as β increases;

as β → 0 the curve flattens to a horizontal straight line;

when β = 0, Y is independent of X;

Interpretation: the odds increases multiplicatively by eβ as x
increases of 1-unit.



"Approximating" the intepretation

Most scientists are not familiar with odds or logits. Two solutions
proposed:

Linear approximation (Berkson 1951);

calculate π(x) at certain x values.



Summary and properties

Logistic regression models (Logit models) are GLMs with:

binary outcome variable;
logit link function.

Advantages of logit models:

the logit link is the natural parameter of the binomial
distribution ( canonical link);
the logit link can be any real number and π(x) always belong
to [0, 1].



Probit model

By defining a binary response having form π(x) = F (x) for some
cdf F permits the curve to be more flexibile.

Let assume to use a standard Normal cdf Φ (N(0,1)) to define a
model

π(x) = Φ(α + βx).

Shapes of different cdf’s in the class occur as α and β vary.

β controls the rate of increasing (if β > 0) or decreasing (if
β < 0) of the cdf;

α controls the location of the curve.



With α = 0, as β varies in [0,∞]...
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With α = 0, as β varies in [−∞, 0]...
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Probit model

When Φ is stricly increasing over R its inverse function exists and

Φ−1(π(x)) = α + βx

is called Probit model. Here Φ−1 (the quantile function of the
standard Normal distribution) is the link function.

With this model setting, β indicates how much the (conditional)
probability of the outcome variable changes when you change the
value of x .



Probit to logit

As for probit models, we may consider the logistic regression curve
as the cdf of the logistic distribution, having expression

F (x) =
exp ((x − µ)/τ)

1 + exp ((x − µ)/τ)
,

where µ is the mean and τ > 0 is the dispersion parameter.

The standardized logistic distribution (µ = 0 and τ = 1) is then:

Φ(x) =
ex

1 + ex



Probit to logit

Hence, the logit model is

π(x) = Φ(α + βx) =
exp (α + βx)

1 + exp (α + βx)

Therefore, the logit transofrmation is simply the quantile function
(inverse cdf) for the standard logistic distribution

x = Φ−1(π(x)) = log

(
π(x)

1− π(x)

)
.



Moments for Binomial GLM

Let consider niYi ∼ Bin(ni , πi ). Then, yi is the sample proportion
of successes for ni trials. We define the moments of the Binomial
GLM as

E (Yi ) = πi

var(Yi ) = πi (1− πi )/ni



Overdispersion for Binomial GLMs and Quasi-likelihood

The quasi-likelihood approach can handle overdispersion for counts
based on binary data.

As shown before,
E (Yi ) = πi ;

var(Yi ) = πi (1− πi )/ni .

A simple quasi-likelihood approach uses the alternative variance
function

ν(πi ) = φπi (1− πi ),

overdispersion occours when φ > 1. Estimates are equal to the ML
case for the Binomial response (φ drops out from likelihood
equations and it is estimated separately) and the standard errors
multiply by

√
φ.



Binary GLMs diagnostics

Standard error of the estimated parameters

Deviance of the model

Likelihood ratio

Statistics on the residuals (RSS-like statistics):

deviance residuals

Pearson residuals



Binary outcome regression models in R

Logit: glm(formula, family = binomial(link =
"logit"), data, ...)

Probit: glm(formula, family = binomial(link =
"probit"), data, ...)


