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Suppose to have n observations of p variables, such that
X′ = (X1, . . . ,Xp).

Graphical representations are useful with small number of
variables

Summarizing data in presence of too many variables can be
difficult: Suppose we have data on athletes and their scores in
5 different specialties. How to summarize such information in
order to rank them?

Furthermore, the explanatory variables can be highly
correlated: issues when applying multivariate techniques (e.g.,
regression)
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Solutions

Simplest: take just one element and discard all others: loss of
information and in interpretation

Consider a summary measure 1
p

∑p
j=1 Xj : same importance to

all the variables

Cosider a summary measure w′X =
∑p

j=1 wjXj such that

w′w =
∑p

j=1 w
2
j = 1

How do we choose the weights?

Is a single summary measure enough?

A more advanced solution: Principal Component Analysis
(PCA)
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Principal Component Analysis

Principal Component Analysis (PCA) is an unsupervised
exploratory MVA technique that aims at:

Data reduction: reduce the dimension of the data matrix
without (almost) losing information;

Data visualization: identify a lower dimensional space where
to project the points without (almost) deforming the distance
between them;

Data interpretation: reducing the original data, we create a
smaller number of new variables (artificial variables) that
might have a more direct interpretation than the original ones.



Suppose to have a p-dimensional set of correlated variables
X′ = (X1, . . . ,Xp). PCA is used to extract and express important
information of the original variables with a set of few new variables
Y′ = (Y1, . . . ,Yp) called principal components (PCs), that:

correspond to linear combinations of X:

Yi = a′
iX =

p∑
j=1

aijXj i = 1, . . . , q (q ≤ p)

are uncorrelated (orthogonal): Y ′
i Yj = 0 ∀i , j = 1, . . . , q

are build in a sequential way and ordered:

Y1 is the variable with the highest variability;

Y2 is orthogonal to Y1 and Var(Y2) ≤ Var(Y1)



The information of a data matrix X corresponds to its total
variation:

Itot =

p∑
j=1

Var(Xj)

The goal of PCA is to identify directions (or principal

components) along which the variation in the data is maximal

Y1 is s.t. Var(Y1) = Var(a′
1X ) = a′

1Σxa1 is maximal;

Y2 is s.t. Var(Y2) = Var(a′
2X ) = a′

2Σxa2 is maximal s.t.
Cov(Y1,Y2) = 0

where Σx = Var(X ).
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The ”interesting directions” are found through the spectral
decomposition of Σx . They are given by the eigenvectors v
corresponding to the largest eigenvalues λ of the covariance matrix
Σx .

1 Find the eigenvalues of Σx and order them:

λ1 ≥ · · · ≥ λp

2 Find the eigenvectors φ1 . . . φp corresponding to the
eigenvalues λ1, . . . , λp and define the first component as:

Y1 = φ1X =

p∑
j=1

φ1jXj

3 Repeat the second step for each component.



Note that:

Var(Yj) = λj∑p
j=1 λj = Itot

When we choose the number of PCs, we agree on a maximum
number of information to lose:

We generally want to preserve 80% of the total information
Itot

We select the first q components such that:

Var(Y1) + · · ·+ Var(Yq)

Itot
≈ 0.8



You can work with the original variables (variance-covariance
matrix) or with the standardized variables (correlation matrix).
The results are, in general, different.

Original variables X strongly correlated: maximum
dimensionality reduction;

Original variables X uncorrelated: p = q



PCs are linear combination of the original variables:

Yij = φ1jXi1 + φ2jXi2 + · · ·+ φqjXiq

where the generic coefficient φij represents the weights that
the variable Xj has in determining the j-th principal
component;

The component Yj will be mostly represented by the variables
with the larger coefficients.



Geometrical interpretation

PCs represent a selection of a new coordinate system obtained
by rotating the original axes to a set of new axes (to provide a
simpler structure).

The first PC represents the direction of maximum variability,
followed by the others, all orthogonal.

”Best” fit hyper-plane: minimizes the sum of squared distances
between points that represent cases and space defined by PCs

The first PC defines a line; the first Two PCs define a plane.



PCA for Data Representation

the principal direction in which the data varies is shown by the
U axis;

the second most important direction is the V axis (orthogonal
to U).

If we place the U − V axis system at the mean of the data it
gives us a compact representation.



Data Representation and dimension Reduction

If the variation in the data is caused by some other
relationship then PCA gives us a way of reducing the
dimensionality of a data set

the principal direction in which the data varies is shown by the
U axis

in this case all the V coordinates are all very close to zero: we
can represent the data set by one variable U and discard V



PC calculation

Required background for PCA: (a little of) linear algebra:

The principal components are found by calculating the
eigenvectors and eigenvalues of the data covariance matrix:
this process is equivalent to finding the axis system in which
the co-variance matrix is diagonal.

The eigenvector with the largest eigenvalue is the direction of
greatest variation, the one with the second largest eigenvalue
is the (orthogonal) direction with the next highest variation
and so on.



Eigendecomposition

Let A be a p × p matrix. The eigenvalues of A are defined as the
roots of:

det(A− λI ) = |(A− λI )| = 0

where I is a p × p matrix and the equation has p roots.

Let λ be an eigenvalue of A. Then there exists a vector φ such
that:

Aφ = λφ

The vector φ is called an eigenvector of A associated with the
eigenvalue λ.



Let consider a simple p=3 case. Suppose we have a 3× 3 matrix A
with eigenvectors φ1, φ2, φ3, and eigenvalues λ1, λ2, λ3 so:

Aφ1 = λ1φ1 Aφ2 = λ2φ2 Aφ3 = λ3φ3.

By defining:

Φ =
[
φ1 φ2 φ3

]
and Λ =

λ1 0 0
0 λ2 0
0 0 λ3


we get the matrix equation

AΦ = ΦΛ



Since eigenvectors are normalized to unit magnitude, and they are
orthogonal, so ΦTΦ = I . Therefore

AΦ = ΦΛ

ΦTAΦ = ΦTΦΛ

ΦTAΦ = Λ

and
A = ΦTΛΦ

The matrix A is represented in terms of its eigenvalues and
eigenvectors; this factorization† is defined eigendecomposition. If A
is a symmetric matrix, the decomposition is called spectral
decomposition.

†a matrix factorization is a factorization of a matrix into a product of
matrices



Spectral decomposition in PCA

Let Σx be an p × p covariance matrix. There is an orthogonal
p × p matrix Φ, whose columns are eigenvectors of Σx and a
diagonal matrix Λ whose non-zero elements are the eigenvalues of
Σx such that

ΦTΣxΦ = Λ

We can look on the matrix of eigenvectors as a linear
transformation which transforms data points in the [x1; x2] axis
system into the [y1, y2] axis system.



In the general case the linear transformation given by Φ transforms
the data points into a data set where the variables are uncorrelated:
the covariance matrix of the data in the new coordinate system is
Λ which has zeros in all the off diagonal elements.



Summary

We start with the p (X1, . . . ,Xp) original variables (quantitative),
and we obtain q ≤ p new variables, where q is a good compromise
between

the minimum number of variables (max dimensionality
reduction)

minimum lost of information (max variability)

(X1, . . . ,Xp)→ (Y1, . . . ,Yq)



When?

High-dimension datasets;

Quantitative variables;

Variables with a correlation pattern (redundancy in the data);

n > p



Example: Brand ratings data

We investigate dimensionality using a simulated data set that is
typical of consumer brand perception surveys. The data comprise
ratings of 10 brands (a to j) on 9 adjectives (performance,

leader, fun, etc), for n = 100 respondents, as expressed on
survey items with the following form: scale from 1 (least) to 10
(most).
Example:
How trendy is Intelligentsia Coffee?



> brand.ratings <- read.csv("http://goo.gl/IQl8nc")

> head(brand.ratings)

perform leader latest fun serious bargain value trendy rebuy brand

1 2 4 8 8 2 9 7 4 6 a

2 1 1 4 7 1 1 1 2 2 a

3 2 3 5 9 2 9 5 1 6 a

4 1 6 10 8 3 4 5 2 1 a

5 1 1 5 8 1 9 9 1 1 a

6 2 8 9 5 3 8 7 1 2 a



> str(brand.ratings)

'data.frame': 1000 obs. of 10 variables:

$ perform: int 2 1 2 1 1 2 1 2 2 3 ...

$ leader : int 4 1 3 6 1 8 1 1 1 1 ...

$ latest : int 8 4 5 10 5 9 5 7 8 9 ...

$ fun : int 8 7 9 8 8 5 7 5 10 8 ...

$ serious: int 2 1 2 3 1 3 1 2 1 1 ...

$ bargain: int 9 1 9 4 9 8 5 8 7 3 ...

$ value : int 7 1 5 5 9 7 1 7 7 3 ...

$ trendy : int 4 2 1 2 1 1 1 7 5 4 ...

$ rebuy : int 6 2 6 1 1 2 1 1 1 1 ...

$ brand : chr "a" "a" "a" "a" ...



> library(psych)

> describe(brand.ratings)

vars n mean sd median trimmed mad min max range skew

perform 1 1000 4.49 3.20 4.0 4.24 4.45 1 10 9 0.43

leader 2 1000 4.42 2.61 4.0 4.27 2.97 1 10 9 0.28

latest 3 1000 6.20 3.08 7.0 6.37 4.45 1 10 9 -0.35

fun 4 1000 6.07 2.74 6.0 6.18 2.97 1 10 9 -0.24

serious 5 1000 4.32 2.78 4.0 4.07 2.97 1 10 9 0.58

bargain 6 1000 4.26 2.67 4.0 4.07 2.97 1 10 9 0.37

value 7 1000 4.34 2.40 4.0 4.21 2.97 1 10 9 0.33

trendy 8 1000 5.22 2.74 5.0 5.19 2.97 1 10 9 0.02

rebuy 9 1000 3.73 2.54 3.0 3.43 2.97 1 10 9 0.74

brand* 10 1000 5.50 2.87 5.5 5.50 3.71 1 10 9 0.00



> brand.sc <- brand.ratings

> brand.sc[, 1:9] = apply(brand.ratings[, 1:9], 2, scale)

> summary(brand.sc)

perform leader latest fun serious

Min. :-1.0888 Min. :-1.3100 Min. :-1.6878 Min. :-1.84677 Min. :-1.1961

1st Qu.:-1.0888 1st Qu.:-0.9266 1st Qu.:-0.7131 1st Qu.:-0.75358 1st Qu.:-0.8362

Median :-0.1523 Median :-0.1599 Median : 0.2615 Median :-0.02478 Median :-0.1163

Mean : 0.0000 Mean : 0.0000 Mean : 0.0000 Mean : 0.00000 Mean : 0.0000

3rd Qu.: 0.7842 3rd Qu.: 0.6069 3rd Qu.: 0.9113 3rd Qu.: 0.70402 3rd Qu.: 0.6036

Max. : 1.7206 Max. : 2.1404 Max. : 1.2362 Max. : 1.43281 Max. : 2.0434

bargain value trendy rebuy brand

Min. :-1.22196 Min. :-1.3912 Min. :-1.53897 Min. :-1.0717 Length:1000

1st Qu.:-0.84701 1st Qu.:-0.9743 1st Qu.:-0.80960 1st Qu.:-1.0717 Class :character

Median :-0.09711 Median :-0.1405 Median :-0.08023 Median :-0.2857 Mode :character

Mean : 0.00000 Mean : 0.0000 Mean : 0.00000 Mean : 0.0000

3rd Qu.: 0.65279 3rd Qu.: 0.6933 3rd Qu.: 0.64914 3rd Qu.: 0.5003

Max. : 2.15258 Max. : 2.3610 Max. : 1.74319 Max. : 2.4652



> library(corrplot) > corrplot(cor(brand.sc[, 1:9]), order = ”hclust”)



Perform PCA

> brand.pc <- prcomp(brand.sc[, 1:9])

> summary(brand.pc)

Importance of components:

PC1 PC2 PC3 PC4 PC5

Standard deviation 1.726 1.4479 1.0389 0.8528 0.79846

Proportion of Variance 0.331 0.2329 0.1199 0.0808 0.07084

Cumulative Proportion 0.331 0.5640 0.6839 0.7647 0.83554

PC6 PC7 PC8 PC9

Standard deviation 0.73133 0.62458 0.55861 0.49310

Proportion of Variance 0.05943 0.04334 0.03467 0.02702

Cumulative Proportion 0.89497 0.93831 0.97298 1.00000



Check orthogonality

> cor(brand.pc$x)

PC1 PC2 PC3 PC4

PC1 1.000000e+00 -1.027928e-16 -8.324536e-17 8.071781e-16

PC2 -1.027928e-16 1.000000e+00 5.124408e-16 2.578368e-15

PC3 -8.324536e-17 5.124408e-16 1.000000e+00 -3.101350e-16

PC4 8.071781e-16 2.578368e-15 -3.101350e-16 1.000000e+00

PC5 -3.999033e-16 -9.154739e-16 3.040767e-16 2.044069e-15

PC6 1.196430e-15 2.621610e-15 -2.423218e-16 -1.758965e-15

PC7 -2.677865e-16 5.669396e-16 -6.452385e-16 1.236603e-15

PC8 -1.195225e-16 5.143978e-16 -6.455569e-16 -4.750556e-16

PC9 -8.130889e-17 7.586994e-16 -4.401351e-16 6.530373e-16

PC5 PC6 PC7 PC8 PC9

PC1 -3.999033e-16 1.196430e-15 -2.677865e-16 -1.195225e-16 -8.130889e-17

PC2 -9.154739e-16 2.621610e-15 5.669396e-16 5.143978e-16 7.586994e-16

PC3 3.040767e-16 -2.423218e-16 -6.452385e-16 -6.455569e-16 -4.401351e-16

PC4 2.044069e-15 -1.758965e-15 1.236603e-15 -4.750556e-16 6.530373e-16

PC5 1.000000e+00 1.154086e-15 -2.006218e-15 1.290515e-15 -1.117524e-15

PC6 1.154086e-15 1.000000e+00 1.167053e-15 2.354267e-16 5.737252e-16

PC7 -2.006218e-15 1.167053e-15 1.000000e+00 1.504508e-15 -5.307298e-16

PC8 1.290515e-15 2.354267e-16 1.504508e-15 1.000000e+00 7.434271e-16

PC9 -1.117524e-15 5.737252e-16 -5.307298e-16 7.434271e-16 1.000000e+00



> biplot(brand.pc)



The plot of individual respondents’ ratings is too dense and it does
not tell us about the brand positions! Biplots are especially helpful
when:

there are a smaller number of points

when there are clusters

Better solution: perform PCA using aggregated ratings by brand!



brand.mean <- aggregate(brand.sc[,1:9], list(brand.sc[,10]), mean)

rownames(brand.mean) = brand.mean[, 1]

brand.mean

Group.1 perform leader latest fun serious

a a -0.88591874 -0.5279035 0.4109732 0.6566458 -0.91894067

b b 0.93087022 1.0707584 0.7261069 -0.9722147 1.18314061

c c 0.64992347 1.1627677 -0.1023372 -0.8446753 1.22273461

d d -0.67989112 -0.5930767 0.3524948 0.1865719 -0.69217505

e e -0.56439079 0.1928362 0.4564564 0.2958914 0.04211361

f f -0.05868665 0.2695106 -1.2621589 -0.2179102 0.58923066

g g 0.91838369 -0.1675336 -1.2849005 -0.5167168 -0.53379906

h h -0.01498383 -0.2978802 0.5019396 0.7149495 -0.14145855

i i 0.33463879 -0.3208825 0.3557436 0.4124989 -0.14865746

j j -0.62994504 -0.7885965 -0.1543180 0.2849595 -0.60218870

bargain value trendy rebuy

a 0.21409609 0.18469264 -0.52514473 -0.59616642

b 0.04161938 0.15133957 0.74030819 0.23697320

c -0.60704302 -0.44067747 0.02552787 -0.13243776

d -0.88075605 -0.93263529 0.73666135 -0.49398892

e 0.55155051 0.41816415 0.13857986 0.03654811

f 0.87400696 1.02268859 -0.81324496 1.35699580

g 0.89650392 1.25616009 -1.27639344 1.3609257

h -0.73827529 -0.78254646 0.86430070 -0.60402622

i -0.25459062 -0.80339213 0.59078782 -0.20317603

j -0.09711188 -0.07379367 -0.48138267 -0.96164748



> brand.mu.pc <- prcomp(brand.mean[, 2:10], scale = TRUE)

> summary(brand.mu.pc)

Importance of components:

PC1 PC2 PC3 PC4 PC5

Standard deviation 2.1345 1.7349 0.7690 0.61498 0.50983

Proportion of Variance 0.5062 0.3345 0.0657 0.04202 0.02888

Cumulative Proportion 0.5062 0.8407 0.9064 0.94842 0.97730

PC6 PC7 PC8 PC9

Standard deviation 0.36662 0.21506 0.14588 0.04867

Proportion of Variance 0.01493 0.00514 0.00236 0.00026

Cumulative Proportion 0.99223 0.99737 0.99974 1.00000



> biplot(brand.mu.pc, main = ”Brand positioning”)



Interpretation

What does the map tell us? First we interpret the adjective
clusters and relationships and see four areas with well differentiated
sets of adjectives and brands that are positioned in proximity.
Brands f and g are high on value, for instance, while a and j are
relatively high on fun, which is opposite in direction from
leadership adjectives (leader and serious).



Let suppose that you are the brand manager for brand e. What
does the map tell you?

Your brand is in the center and thus appears not to be
well-differentiated on any of the dimensions. That could be good
or bad, depending on your strategic goals.

If your goal is to be a safe brand that appeals to many consumers,
then a relatively undifferentiated position like e could be desirable.

On the other hand, if you wish your brand to have a strong,
differentiated perception, this finding would be unwanted.
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Suppose you wanted to move in the direction of brand c. You
could look at the specific differences from c in the data:
> brand.mean <- aggregate(. ~ brand, data = brand.sc, mean)

> brand.mean[3, -1] - brand.mean[5, -1]

perform leader latest fun serious

3 1.214314 0.9699315 -0.5587936 -1.140567 1.180621

bargain value trendy rebuy

-1.158594 -0.8588416 -0.113052 -0.1689859

This shows you that e is relatively stronger than c on value and
fun, which suggests dialing down messaging or other attributes that
reinforce those. Similarly, c is stronger on perform and serious.


