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Classification

Usual and natural operation in the organization of knowledge

Given a set of individuals / objects / elements we want to
identify subsets that have somehow common characteristics

obtain classification criteria to locate within the heterogeneity
of a collective / population of aggregations capable of
simplifying the perception of this collective or of interpreting
the typical elements of differentiation



What does common characteristic mean?

In the simplest case, variables of classification

disease diagnosis: (healthy / diseased)

degree of customer satisfaction: (zero / average / total)

proximity to a particular place of reference

real: topological / geographical classification

ideal: by mapping individuals through scores based on internal
/ external variables



Guessing an already defined classification

if already available, it tries to highlight the statistical link with
other variables external, assess their limits and potential and
perhaps isolate those most related to explicit classification
variable
if not available yet, supervised classification!

Explore within a collective phenomenon on which they are
detectable numerous variables for each unit and the different
possibilities of subdividing into subsets showing some degree
of homogeneity: classification unsupervised!

understand a complex phenomenon and operate in a targeted
manner in the subgroups
isolate some particularly interesting subgroups as represent a
typology on which you want to deepen the research



Cluster analysis procedure

1 Selection of the variables of interest

2 Raw data manipulation

3 Selection and implementation of one of the clustering
methodologies

4 Output analysis:

trade off in the choice of the number of groups (Occam’s
razor)

groups interpretation



Preliminary notions

Partition of a set

Dissimilarity and distance

Deviance decomposition



Partition of a set

The partition of a set A is the collection of subset

π = {I1, I2, . . . , Ik}

such that each subset has no elements in common with any of the
others

Ig ∩ Ir = ∅ ∀g 6= r

and the union of all subsets Ig reconstitutes the given set A.

A =
k⋃

g=1

Ig .

There are also methods that do not lead to partitions



Dissimilarity and Euclidean distance

Distance typically used between two units on which they have
been taken p measurements: the Euclidean distance

dij = d(xi , xj) =

√√√√ p∑
r=1

(xir − xjr )2

Dissimlilarity index:

d2
ij = d2(xi , xj) =

p∑
r=1

(xir − xjr )
2 = ||xir − xjr ||2



Dissimilarity and Euclidean distance

Distance d : D × D ∈ R

d(xi , xj) = 0 ⇔ xi = xj

d(xi , xj) = d(xj , xi ) simmetry

d(xi , xj) ≤ d(xi , xk) + d(xk , xj) triangle inequality

Dissimilarity d : D × D ∈ R

d(xi , xj) ≥ 0 ∀ xi , xj

d(xi , xi ) = 0 ∀xi
d(xi , xj) = d(xj , xi ) simmetry



Total deviance decomposition

T = B + W

where:

T→Total deviance

B→ Between deviance

W→ Within deviance

Suppose we observe one variable n times, the n units partitioned in
G groups of size ng , such that

∑G
g=1 ng = n

n∑
j=1

(xj−x̄)2 =
G∑

g=1

ng∑
i=1

(xig−x̄)2 =
G∑

g=1

ng (x̄g−x̄)2+
G∑

g=1

ng∑
i=1

(xig−x̄g )



Clustering algorithms

Hierarchical

Aggregation Algorithms

Scissor Algorithms

Not hierarchical

groupings around means (k-means)

groupings around representative units (k-medoids)



Not hierarchical algorithm

You get a single partition with number of components (groups)
specified a priori. Starting from an initial subdivision into a fixed
number of clusters, we proceed sequentially obtaining at each step
a new partition that improves the current partition according to a
chosen criterion.



K-means algorithm

1 Initialization: we choose the desired number of groups (K ),
and set as starting points K centers or means (K
p-dimensional vectors): (m1, . . . ,mK )

2 Allocate the i-th unit for i = 1, . . . , n into the group j such
that the distnce between the unit xi and the center mk is
minimized;

3 Calculate the new centers (m1, . . . ,mK ) basing on the new
allocations to the groups (clusters).

Repeat the steps 2 and 3 until convergence, i.e. when the
allocation of the observations does not vary between two iterations.



K-means algorithm

This algorithm only works starting with a data matrix in which all
variables are quantitative (measurements). Let nj be the number
of units that are assigned in step 2 to the j-th group Gj

mj = (mj1, . . . ,mjr , . . . ,mjp)

mjr =
1

nj

∑
i∈Gj

xir

The objective to be achieved is formalized in the following problem
of optimization: identify K groups for which the internal variability
is minimal and (automatically) the between variability is maximal.



Generalization fo the K-means method

To allow to use only one dissimilarity matrix between units you can
modify it the identification of centers through averages with
corresponding actual centers to the coordinates of central units
(Medoids) which minimize the distance between the unit candidate
to play the role of center and the other units of the group. There
modification of step 3 becomes much more expensive from the
point of view computational.

The modification of step 2 is immediate and does not involve
additional difficulties. Such modifications can lead to more robust
algorithms than the presence of anomalous distances between
single pairs of units

K-means vs K-medoids



PAM (Partitioning Around Medoids) algorithm

1 Initialization:

calculation of the dissimilarity matrix
choice of K points as initial candidate medoids

2 (build phase) assign each unit to the nearest medoid to form
the K matching clusters

3 (swap phase) for each cluster formed, check if each unit of the
cluster it is able to decrease the overall dissimilarity of the
same cluster ed eventually proceed with the replacement of
the medoid with that unit it does decrease the dissimilarity of
the cluster more. If for at least one cluster it was replaced the
previous medoid go back to step 2.



Hierarchical algorithms

Do not specify the number of groups, which ranges from the
extreme minimum (1 group only) to the extreme maximum (many
groups how many units are considered). This range of possibilities
is typically represented by the dendrogram.

Aggregatives algorithms: start from the consideration of the
maximum number of groups n obtainable considering each
group formed by a single unit; proceed sequentially to obtain a
smaller number of groups (n→ n − 1→ n − 2 . . . ).

Scissors algorithms: start from the consideration of all the
units belonging to only one group and proceed by subdivision
according to suitable criteria of optimality.



Dendrogram

It is a visualization of the subsequent aggregation process
(aggregation methods) of the n minimal subgroups (each consisting
of a single unit) in groupings composed of the aggregation of pairs
of subgroups according to a pre-established criterion; or the
subsequent subdivision process (methods scissors) starting from the
set of all units. What you must be able to see in a dendrogram:

1 how to identify the subdivision into K groups;

2 which units belong to a group;

3 indications on the selection of an adequate number of groups
to well represent the (possible) grouping structure;



Dendrogram



Aggregtive methods

The general operating principle is as follows:

It is initialized considering K = n distinct groups each
consisting of one element starts from a matrix of
distances/dissimilarities between the K groups

aggregate the two groups that are less distant between all the
K (K − 1) = 2 possible pairs and the new distance matrix
relating to (K − 1) is recalculated groups thus determined

If K = 1 we stop otherwise we decrease the index K by 1 and
go back to step 1.



The strting matrix of distances necessary for the elaborations
or is provided directly as input or it is calculated as a function
of raw data.

The calculation of the new matrix of distances / dissimilarity
to when the number of groups and diminished by one, it
presupposes that the notion of distance between sets of units
(between two groups). For example the distance between
group I and the group J we will denote it d(I ; J).

When the two groups are made up of a single unit, the
definition is natural. In the non-trivial case of groups
consisting of several units, they can be used different
definitions. Among these we point out the most frequently
used:

dSL = min
i∈I ,j∈J

d(i , j)

dCL = max
i∈I ,j∈J

d(i , j)

dAL = mean d(i , j)



Note that the operations in question can be calculated starting
from the last matrix of distances obtained. If group I is obtained
by aggregation of groups G1 and G2 from the last distance matrix
obtained, I can identify the quantities a d(G1; J) and d(G2; J)
from which I deduce:

Single-Linkage or Neirest neighbor:

dSL = min
i=1,2

d(Gi , J)

Complete-Linkage:

dCL = max
i=1,2

d(Gi , J)

Average-Linkage or Mean distance:

dAL =
nG1

nG1 + nG2

d(G1, J) +
nG2

nG1 + nG2

d(G1, J)

where nGi
is the number of units composing the group Gi .



Single-Linkage or Neirest neighbor



Complete-Linkage



Average-Linkage or Mean distance



How to choose the number of groups

Graphic inspection of the dendrogram

Some tests based on formal criteria: Calinski and Harabasz

Silhouette

Gap statistics



Silhouette

The silhouette is an index which takes values in the interval [−1, 1].

s(i) =
b(i)− a(i)

max {a(i), b(i)}

where a(i) is the average dissimilarity in the cluster considered,
b(i) is the average dissimilarity w.r.t. any other clusters. If:

s ≈ 1→ the unit i is assigned to the right cluster

s ≈ 0→ the unit i should not be assigned to either the
compared clusters

s ≈ −1→ the unit i is assigned to the wrong cluster



Silhouette in the choice of the number of clusters

The value of s(i) depends on the partition π and so on the chosen
number of clusters. We should adopt a notation of the type sπ(i).
We use as criteria for the choice of the number of groups the one
based on the mean of the siluatte, therefore the number K which
maximizes

S̄K =
1

n

n∑
i=1

sK (i).



Diagnostics

Internal validation: uses data only and is based on the
quantitative measures of distance used and / or on the
definition of reference structures for the presence / absence of
groupings.

Average silhouette (S̄)

S̄ ∈ (0.7, 1.00] the partition obtained is extremely reliable
S̄ ∈ (0.5, 0.7) the partition obtained is reliable
S̄ ∈ (0.25, 0.5) the partition obtained is not very reliable
S̄ ∈ [−1, 0.25) the partition obtained is not reliable

Between deviance ratio on total deviance

External validation: uses a priori information or structures of
existing classification.

Rand index

Rand index adjusted



Probabilistic non hierarchical methods: mixture models

When analyzing a data set we assume that each observation comes
from one specific distribution.

Yi ∼ N(µ, σ2) for i = 1, . . . , n

Then we proceed to estimate parameters of this distribution using
maximum likelihood estimation, i.e.:

∂L(µ, σ2;Y )

∂µ∂σ2
= 0 and

(
µ̂ML, σ̂

2
ML

)
The assumption that each observation comes from one specific
distribution may often be inadequate.



Mixture models: when?

In many cases, assuming that each sample comes from the same
unimodal distribution is too restrictive and may not make intuitive
sense. Often the data we are trying to model are more complex:

Single or groups of observed individuals may have unobserved
effects which may affect the estimates.

↓

Multimodality: multiple regions with high probability mass.



Mixture models: overview

A mixture model is a probabilistic model for representing the
presence of subpopulations within an overall population.

It does not require that an observed data set should identify the
sub-population to which an individual observation belongs, i.e:

we observe a sample of n individuals;

we assume that in our sample there are K subpopulations;

we do not specify the subpopulation to which each individual
belongs.



Mixture models: Iris data example



Mixture models: Iris data example



Mixture models: Iris data example



Finite mixture models

We define a mixture distribution fθ ∈ Ω, with θ ∈ Θ:

fθ(y) =
K∑

k=1

wk fθk (y)

where:

fθk ∈ Ω ∀k ∈ K ;∑K
k=1 wk = 1.

Note that in a sample of n observed individuals K ≤ n.



Finite mixtures in regression analysis

Let y be a dependent variable and let x represent a covariate. We
define a mixture of regression models as a distribution fθ ∈ Ω, with
θ = (α, β) ∈ Θ:

fθ(y |x) =
K∑

k=1

wk fθk (y |x)

where:

fθk ∈ Ω ∀k ∈ K ;∑K
k=1 wk = 1;

g(E (y |x)) = αk + βkx .



Mixture in regression analysis: Iris data example



Finite mixture models

Let assume to have a sample of N individuals. We define a mixture
model as a hiearchical model composed by:

N random variables that are observed, each distributed
according to a mixture of K components belonging to the
same parametric family of distributions, but with different
parameters;

N random latent variables specifying the identity of the
mixture component of each observation, each distributed
according to a K-dimensional categorical distribution;

A set of K mixture weights w , which are probabilities that
sum to 1.

A set of K parameters, each specifying the parameter of the
corresponding mixture component.



Finite mixture models: inference

Most of the approaches for finite mixture estimation that have
been proposed focus on maximum likelihood methods.

Two scenarios to consider:

if K is assumed to be known: expectation maximization (EM)
is the most popular technique used to determine the
parameters of a mixture with an a priori given number of
components;

if K is assumed to be uknown: (in general) methods to
determine the number and functional form of the mixture
components are distinguished from methods to estimate the
corresponding parameter values.


